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Abstract 

Data collection on urban greenery plays a key role in its management and in evaluating the benefits it provides to society, including 

ecological, aesthetic, and health-related advantages. To manage urban greenery effectively, it is essential to seek ways to optimize the 

process of its inventory and assessment. Technological advancements in data collection methods offer new possibilities for making 

these processes more efficient. The aim of this study was to utilize and integrate available technologies and methods for the inventory 

of urban greenery and to evaluate their effectiveness. The results show that the combination of drone imagery with open-source software 

tools and data provides an accurate and cost-effective solution for monitoring urban vegetation. In conclusion, the proposed 

methodology enables efficient and economically beneficial management of urban greenery, which supports its broader implementation 

in urban areas. 

1. Introduction

In the Czech Republic, a complete inventory of urban trees is 

often lacking, despite their significant potential to improve 

residents' quality of life. Although urban greenery is essential for 

a healthier and more ecological environment, tree inventory 

processes are still frequently time-consuming and costly, which 

limits their availability and sustainability. In the city of Olomouc, 

for example, tree mapping efforts are primarily focused on major 

urban parks and representative areas, while housing estates, 

which are among the most densely populated parts of the city, 

lack such tree inventories.Yet it is precisely these housing estates 

where greenery could substantially contribute to better living 

conditions and support biodiversity, as most residents spend their 

daily leisure time in these areas. However, greenery mapping and 

inventory can also be approached differently than through 

traditional field surveys. With the development of remote 

sensing, advanced GIS technologies, and artificial intelligence, 

innovative and accessible methods are now available that can 

significantly simplify and broaden access to urban greenery 

inventories. The aim is to propose a procedure that allows for the 

easy application of mapping methods in housing estate green 

spaces, even with limited technological and data resources, and 

to identify potential limitations and ways to address them. 

2. State of Research and Approaches to Urban

Greenery Data Collection and Tree Mapping:

Tree mapping using remote sensing is currently being extensively 

studied by many experts. Matese et al. (2015) point out that it is 

important to consider how we intend to use the remote sensing 

platform, as each has its own advantages and disadvantages. A 

key factor is the desired level of detail and the part of the 

electromagnetic spectrum to be captured. To achieve sufficient 

detail, it is appropriate to use aerial or UAV imagery, while 

satellites offer continuous coverage and are often equipped with 

sensors capable of capturing additional spectral bands. Based on 

their research, Niedzielko et al. (2024) highlight aspects that may 

pose limitations for urban greenery mapping. In general, remote 

sensing methods are costly, as acquiring satellite or aerial 

imagery is very expensive. One of the key advancements in the 

field of remote sensing is the use of deep learning, which 

significantly facilitates data collection and enables effective 

mapping without the need for user presence in the field (Hennig, 

2021; Freudenberg et al., 2022; Weinstein et al., 2019). 

Weinstein et al. (2019) state that even RGB imagery can be a 

valuable data source for tree detection. A deep learning model for 

detecting individual tree crowns was trained specifically on RGB 

images. This model was trained on various locations to be able to 

detect trees regardless of species. During model training, it was 

found that the most accurate models are those that detect any tree 

species and are not focused on specific types. Such models also 

achieve the highest accuracy in locations where trees are freely 

spaced (Hennig, 2021). Additional inaccuracies occur with 

smaller trees whose crowns have an area of less than 10 m² 

(Freudenberg et al., 2022; Weinstein et al., 2019). A general issue 

with detecting trees using pre-trained deep learning models lies 

in their inability to generalize outputs. This means that models 

may perform better in regions with typical vegetation compared 

to areas with different vegetation types. Therefore, it is advisable 

to use models trained specifically for the given area. Another 

challenge in detection is the inability to accurately identify trees 

in dense stands (Weinstein et al., 2019). It should also be noted 

that these tree mapping methods require higher computing 

performance, which may pose an additional limitation (Hennig, 

2021). 

In terms of greenery mapping, Hennig (2021) combined remote 

sensing and automatic detection to map fruit trees in orchards, 

using RGB imagery for crown detection. Hartling et al. (2021) 

applied deep learning for tree species detection, using LiDAR 

data, thermal imagery, and hyperspectral images as input data. 

Incorporating multiple data sources increases reliability, 

especially when the goal is to identify tree species. Both authors 

thus utilize remote sensing methods for tree mapping. Niedzielko 

et al. (2024) state that including LiDAR data is highly suitable 

for accurate species identification, as reliability significantly 

decreases without it. Reliability also declines with a lower 

number of spectral bands used during imaging. This research 

supports the conclusions of Hartling et al. (2021). 
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In the Czech context, the detection, classification, and inventory 

of greenery using remote sensing is primarily focused on forest 

mapping. Research most commonly targets the health of trees or 

the overall state of the ecosystem. Kupková et al. (2018) 

monitored changes in forest cover and its health using Landsat 

time series data, observing changes related to the occurrence of 

acid rain. Klouček et al. (2024) investigated the use of 

multispectral UAV imagery to assess forest health in relation to 

bark beetle infestation. Komárek et al. (2024) conducted studies 

evaluating whether data acquired using a more affordable drone, 

capable of providing information on tree height, can be 

sufficiently accurate to eliminate the need for traditional field 

surveys or expensive laser scanning. This research focused on 

protecting infrastructure from falling trees. The results of the 

study indicate that even more accessible drones can perform such 

tasks. Therefore, it is not always necessary to use technologies 

that are financially demanding and thus less accessible to the 

broader public. 

 

2.1 Public Science in Greenery Data Collection 

 

In the context of collecting certain types of information, it is 

appropriate to utilize other freely available data on trees. Data 

collection does not always have to be directly tied to the work of 

a researcher. It is possible to use data already gathered by the 

public or to organize public data collection initiatives. In this 

context, the concept of PPGIS (Public Participation GIS) can be 

applied (Kahila-Tani et al., 2019), which is a method within 

participatory mapping (Ollivierre et al., 2021). Participatory and 

community mapping involves various techniques and tools that 

support community involvement in map-making and allow them 

to adapt formal mapping procedures to their needs (Peluso, 

1995). The strengths of these techniques include data collection 

at various scales and relatively easy engagement of large numbers 

of participants. However, challenges such as technical difficulties 

and the digital divide must be considered (Kahila-Tani et al., 

2019). Among the main disadvantages are inaccuracies in 

identifying tree species and other parameters. One of the key 

advantages is the relatively fast data collection process (Crown 

et al., 2018; Roman et al., 2017). Crown et al. (2018) notes that 

if participants are at least partially trained and provided with 

identification tools, the accuracy of species identification can 

reach 77,6 %. However, the accuracy of measuring the trunk 

circumference at breast height was significantly lower, only 32 

%, even with an acceptable deviation of 2,54 cm. The study by 

Roman et al. (2017) confirms a relatively high success rate in 

identifying tree genera (84,8 %) and similarly low accuracy in 

trunk circumference measurement with a 2,54 cm deviation 

(54,4 %). Both studies agree that using volunteers for tree 

inventory is suitable if the client does not require completely 

precise results and the accuracy levels are sufficient. It is not 

entirely appropriate for volunteers to assess the exact condition 

of trees. Measurements of trunk diameter at breast height should 

be accepted with greater tolerance. The identification of genera 

is very accurate, and species identification is relatively accurate 

as well (Crown et al., 2018; Roman et al., 2017). 

 

 

 

 

 

 

3. Data a methods 

 

3.1 Study Area 

 

Rigatti (2000) states that each housing estate exhibits a regular 

structure in which smaller repeating units can be identified. These 

units, referred to as housing blocks, represent the basic research 

unit in this study. For research purposes, housing blocks were 

randomly selected from various housing estates in the city of 

Olomouc. In some cases, the boundary of a housing block 

coincided with the boundary of a land parcel. When this was the 

case, the block was defined by this parcel boundary. In situations 

where the parcel boundary did not correspond to a land boundary, 

the block was delineated using physical infrastructure such as 

roads or sidewalks. Each delineated housing block was intended 

to include one residential building and its associated green space. 

In Olomouc, four housing estates were selected (Figure 1), each 

built in a different time period, as it is assumed that the structure 

of the environment varies (Kłopotowski, 2017). 

i) Olomouc – Norská: This is the first post-war, 

purpose-built housing development (1948–1955) 

constructed from scratch in Olomouc. The buildings 

are arranged in rows, with green space filling the areas 

between them (Skřivánková et al., 2016). 

ii) Olomouc – Lazce: The buildings here are 

arranged in an unconventional layout, forming 

incomplete hexagons. One of the reasons for this 

arrangement was to create larger, continuous green 

spaces. This housing estate was built between 1978 and 

1985 (Skřivánková et al., 2016). 

iii) Olomouc – Holandská čtvrť: This is the 

newest of the studied housing estates, constructed after 

2014 (ČUZK, 2025). 

iv) Olomouc – Hodolany (třída Kosmonautů): 

This estate was built in the first half of the 1960s on the 

edge of the Kosmonautů Avenue boulevard (Kuča K., 

2000 in Kladivo, P., & Šimáček, P., 2011). 

 

 

Figure 1. Location of the Studied Housing Blocks within the City 

of Olomouc 
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3.2 Field Mapping  

 

In the first step, a point layer was created in an online GIS 

environment. The attributes of this layer included only the 

geographic coordinates and tree species. Initially, trees recorded 

by the public were edited and uploaded to this online layer. In the 

Czech Republic, data collected by the public is available through 

the mobile application Tree Check (Nadace Partnerství, 2023). In 

this app, users can collect tree data through several steps, assisted 

by AI species recognition. The app allows users to input trunk 

diameter and upload photos of other organisms present on the 

tree, such as fungi or mistletoe. It also includes gamification 

features, awarding points for collecting data, watering trees, or 

simply visiting them. Data from this platform within the area of 

interest were imported into the point layer in the GIS 

environment. Subsequently, field data collection was carried out 

to add missing trees and attributes, and to verify the validity of 

the data collected by the public. During the field mapping, 

geographic coordinates were automatically generated when 

marking a point, and species identification was conducted by the 

author. The primary aim was to identify individual tree species, 

which represented a key aspect of the entire study. The point layer 

was essential for accurately determining the location and count 

of trees in the area, serving as a basis for validating the following 

steps of the study. Other attributes such as frost resistance, 

toxicity, salt tolerance, hazard potential, and drought resistance 

are directly linked to the tree species. Therefore, collecting these 

attributes in the field is considered inefficient (Málek et al., 

2022). 
 

3.3 Pre-trained Deep Learning Models and Input 

Remote Sensing Data 

 

For the purposes of this study, two pre-trained deep learning 

models were selected: Segment Anything Model (SAM) 

(esri_analytics, 2025a) and Tree Detection (esri_analytics, 

2025b). Both models recommend the use of 8-bit RGB imagery. 

For the Tree Detection model, the recommended pixel resolution 

is between 10–25 cm. However, this model was originally trained 

on data from the United States, and in this study, it was applied 

to data from the Czech Republic. As Weinstein et al. (2019) 

noted, this may result in reduced model accuracy due to 

differences in tree species and data characteristics. Since this 

study aims to utilize low-cost or freely available sources, aerial 

imagery freely provided by the Český úřad zeměměřický a 

katastrální (ČÚZK) was used. These datasets are freely 

downloadable, and the most recent available imagery for the 

selected area at the time of the study dated back to 2022. These 

images are in RGB format with a resolution of 12.5 cm (ČÚZK, 

2025a), which meets the requirements of the pre-trained models. 

Satellite imagery with lower resolution was deemed unsuitable 

because the study focuses on working with trees as individual 

objects. One limitation of aerial images from ČÚZK and similar 

sources is the lack of height information for the objects. A 

potential workaround could involve the use of the Digital Surface 

Model (DSM 1st generation) and Digital Terrain Model (DTM 

5th generation), which would allow for height estimation by 

subtracting the two layers. However, the DSM 1st generation is 

outdated, as it was scanned between 2009–2013 (ČÚZK, 2025b). 

For this reason, drone data were required to determine tree 

heights. 

For this study, the Phantom 4 Pro drone was selected, as it allows 

for data collection with high accuracy and resolution while 

remaining relatively affordable. Mission planning was conducted 

using the Pix4Dcapture Pro: drone flight application (Pix4D, 

2024), which enables the setup of flight missions in various 

modes. In this study, the "grid" mode was chosen, where the 

drone first flies in parallel paths and then captures additional 

imagery in a second set of parallel paths-oriented perpendicular 

to the first. The image overlap was set to a high value of 80 %, 

ensuring sufficient coverage for subsequent data processing. The 

camera angle was set to 30 ° to capture detailed information about 

objects and their spatial relationships. The flight altitude was set 

to 50 meters. The captured images were then stitched into an 

orthophoto in ArcGIS Pro (esri, 2025) using the Ortho Mapping 

Workspace, which facilitates the creation, management, and 

visualization of orthophotos, such as those produced from drone 

imagery. This tool automates the processing of images, including 

alignment, block adjustment, and orthophoto generation. As part 

of this process, the images were georeferenced and merged into 

a final orthophoto. 

 
3.4 Criteria for correct data selection  

 

When preparing a comprehensive workflow, it is essential to 

focus on the maximum accuracy and functionality of each step to 

prevent the accumulation of errors when connecting them. For 

this reason, it is crucial to carefully verify the correctness and 

suitability of each step. Even during the field mapping phase, 

attention must be paid to the precise placement of points. Points 

should be inserted exactly where the tree is located, and it is not 

sufficient to rely solely on the GPS position provided by the 

mobile device, as it may lead to relatively large deviations. The 

average deviation was calculated during a trial mapping session 

without manual point adjustment and amounted to 2,7 meters. 

 

The SAM segmentation model (esri_analytics, 2025a) is not 

specifically designed for tree segmentation, but rather for 

segmenting the entire image. Therefore, it is necessary to 

manually select polygons corresponding to trees or shrubs. In this 

study, these polygons were filtered using several criteria: 

 

• The first criterion was the use of positional matching 

with the point layer created in the field. 

• Polygons larger than 450 m² were removed, as this tool 

tends to merge multiple tree crowns into a single 

polygon. This threshold was chosen because the largest 

polygon capturing a group of trees was just below this 

value. 

• Pixel values within the generated polygons were also 

used as a filtering criterion. Only those polygons were 

selected in which all enclosed pixels met the condition 

of green dominance. The condition expression used for 

this filtering could look like this: 

("Green_Band" > "Red_Band") & ("Green_Band" > 

"Blue_Band") & ("Green_Band" > value) 

In this case, the "value" was set to 100. This parameter 

is expected to vary depending on the characteristics of 

the image. 
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• Spatial overlap with polygons generated by the Tree 

Detection tool (esri_analytics, 2025 b) was also 

considered. These polygons also had to be filtered 

accordingly. 

 

• Only quadrilaterals with a value of the 

automatically generated Confidence attribute of 

at least 15% were selected. While this may seem 

like a low threshold, the goal was to avoid 

removing polygons that do represent actual trees, 

and to filter out false positives using additional 

characteristics. 

• Another criterion applied to this tool was a 

minimum polygon area, which was set to 2 m². 

 

4 Results 

 

By synthesizing several tools in the ArcGIS Pro environment, 

specifically using Model Builder, a workflow was designed that 

optimized data collection and effectively integrated individual 

processes and tools (Figure 2). Although a functional working 

scheme was successfully created, its full utilization is 

conditioned by the availability of field survey data. A key aspect 

is at least the knowledge of the exact location of the tree, since 

based on the aerial image it is not always possible to determine 

whether it is one or more trees, a shrub, or whether there is 

another tree under the canopy. Fieldwork is also necessary to 

determine the tree species. As Hartling et al. (2021) point out, 

data with various spectra should be used for this identification. 

However, the aim of this work was to work exclusively with 

freely available data, and therefore it was not possible to apply 

this method. This is also related to the assessment of the health 

condition of the trees, which was not examined in the field 

survey, however, for its assessment using remote sensing (RS), it 

is necessary to work with the NIR spectral band, with an 

advantage being a single-species vegetation (Kupková et al., 

2018), which urban housing estates certainly are not. The result 

of this work is thus a working scheme that is not fully automated 

and requires continuous user intervention, as not all tools work 

reliably despite efforts to eliminate errors. The final product of 

the proposed procedure is a point layer containing information 

about the tree species, information directly linked to the species 

(frost resistance, salinity tolerance, hazard: thorns and toxicity, 

drought tolerance, nativeness, leaf-out period), tree height, crown 

dimensions: area and perimeter, crown radius (either determined 

from the area calculated using the SAM tool: 

 

𝑟 = √
𝑠

𝜋
 ,   (1) 

 

where r = tree crown radius 

s = tree crown area 

 

or determined as the geometric mean of the sides of the 

quadrilateral generated by the Tree Detection tool: 

 

𝑟 =
√𝑎∗𝑏

2
,   (2) 

 

where, r = tree crown radius 

a = north-south width of the tree 

b = west-east width of the tree 

 

 

Figure 2. Proposed methodology for mapping trees and selected 

attributes visualized in Model Builder in ArcGIS Pro 

 

4.1 Time Efficiency 

The time requirements of individual data processing steps vary 

significantly depending on the chosen method and the user’s 

computing equipment. Not only the specific workflow (e.g., 

a combination of segmentation and detection) plays a role, but 

also any potential modifications of these methods based on 

individual preferences. 

The most time-consuming operations are those associated with 

segmentation using the SAM tool and the subsequent tree 

detection (Tree Detection). Depending on the size of the input 

data and the performance of the device, these processes may take 

several hours. For this reason, an effective strategy proved to be 

dividing the processing into smaller sections—specifically by 

individual residential blocks. Once the operations for one block 

are completed, the process can continue with the next one, which 

optimizes both time and computing resource usage. 

In this study, the average segmentation time (SAM) for one 

residential block was 40 minutes, while tree detection using the 

TreeSegmentation tool took approximately 4 minutes. The 

average area of one block was 4 465 m², including built-up areas. 

The total time required for complete processing of one block, 

including the identification of additional attributes and manual 

adjustments, averaged 102 minutes. A standard notebook with an 
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AMD Ryzen 5 processor, 12 GB RAM, and an integrated AMD 

Radeon Vega 8 graphics card was used in this study. Although in 

some cases processing may be slower than fieldwork (especially 

with lower hardware performance), the main advantage of the 

digital approach remains its high level of automation, minimal 

dependence on the individual user, and the ability to perform the 

analysis at any time, regardless of weather or time of day. 

 

For comparison collecting the same parameters in the field, 

including subsequent digitization and data processing, took 

approximately 125 minutes per block. However, it is important 

to emphasize that the duration of field data collection varies 

depending on the individual's experience, the type of terrain, and 

the chosen methodology. Similarly, the performance of 

computing equipment significantly affects the speed of digital 

processing. 

 

4.2 Tree detection success rate 

 

The TreeDetection tool identified 71,9 % of trees in housing 

blocks from the total number of existing trees. However, the 

model also included other objects mistakenly identified as trees. 

These false detections made up 32,4 % of the total number of 

detected objects (polygons). Undesired objects were successfully 

filtered out using the criteria described above. Nevertheless, 

some incorrectly detected polygons remained, and some were not 

detected at all. In these cases, manual intervention by the author 

was necessary, including hand editing or deletion. 

 

When using the segmentation tool SAM, several specific 

limitations appeared. One of the main issues was the duplication 

of polygons, where some objects were identified repeatedly. 

There were also situations where one polygon was assigned to an 

entire group of trees, while others represented individual 

canopies; in some cases, even a combination of both occurred. In 

such cases, introducing a maximum polygon size criterion proved 

effective in eliminating overly extensive segments. At the same 

time, these larger segments provided an advantage in the form of 

manual splitting based on visually recognizable canopy 

boundaries on the orthophoto. Another significant complication 

was the occasional merging of tree canopies with their shadows, 

which often led to incorrect interpretation of the shape and extent 

of individual crowns. An attempt to refine the boundaries using 

height analysis from drone-acquired data was not successful, as 

the recording was not sufficiently detailed. 

 

After applying the filters and removing duplicate or irrelevant 

segments, the final number of polygons corresponded to 44,3 % 

of the trees recorded in the field. However, this proportion should 

not be interpreted as a direct indicator of success in many cases, 

one polygon included multiple trees. Nevertheless, it can be said 

that the SAM tool was partially capable of capturing the 

vegetation structure, and although the segmentation success rate 

may initially seem low, the results are relatively sufficient 

considering the complexity of the task. 

 

 

 

 

4.3 Tree Height Estimation 

 

The height mapping was performed using the Phantom 4 Pro 

drone and the Pix4Dcapture Pro application (Pix4D, 2024). The 

data were then processed in ArcGIS Pro within the Ortho 

Mapping Workspace, where the Digital Surface Model (DSM) 

and Digital Terrain Model (DTM) were created. These layers 

were subsequently used in the overall process shown in Figure 1, 

where they were subtracted, and their maximum heights were 

converted into point vector layers. Tree heights obtained via 

drone-based measurements were compared with values recorded 

using a digital hypsometer on a sample of 21 trees in the field. 

While the average difference between the two measurement 

methods was 0,42 m, indicating a relatively notable discrepancy, 

it is important to acknowledge that the sample size was limited. 

This limitation is recognized and should be taken into account 

when interpreting the results. Future investigations should 

therefore focus on identifying whether this variation stems from 

limitations in the accuracy of drone-based measurements or from 

potential errors associated with hypsometer-based field 

measurements. 

 

 

Figure 3.  Calculations of object heights above the surface: 

a) drone-based orthoimage, b) DSM, c) DTM, d) Object height 

above the surface, e) Tree connection point generation, f) 

Polygon-point linking for max tree height 

 

4.4 Reliability of Publicly Collected Data 

 

The reliability of tree species data collected by the public was 

assessed by comparing species identifications submitted by users 

of the TreeCheck application with the author's own field records. 

A total of 50 trees were verified in this manner, with full species-

level agreement in 45 cases (90,0 %) and genus-level agreement 

in 49 cases (98,0 %). While it is not possible to entirely rule out 

misidentification by the author, the high level of agreement 

between public data and expert verification indicates a high 

degree of accuracy in this citizen science approach. These 

findings are consistent with the results of studies by Crown et al. 

(2018) and Roman et al. (2017), although slightly higher 

accuracy was observed in this study. This difference may be 

attributed to the smaller sample size and the fact that TreeCheck 

incorporates AI-based species identification support. The most 

significant limitation of this method, however, is the incomplete 

spatial coverage. None of the surveyed residential blocks were 

fully mapped, and only three out of nine were at least partially 

covered within the scope of this study. 
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5 Conclusion 

Based on this study, it can be stated that the integration of 

affordable modern technologies, such as drones, open-source 

tools and pre-trained deep learning models, represents an 

effective and accessible approach to improving the mapping and 

management of urban greenery. The study demonstrated that 

even with limited technological and data resources, it is possible 

to carry out accurate tree inventory in urban environments, 

specifically in housing estates, which are often overlooked. Field 

data collection supported by public science provided valuable 

insights into tree species and their distribution. Additionally, 

drone data made it possible to obtain missing information on 

vegetation height, which is one of the key parameters for 

assessing its condition. The collected data can be visualized 

according to user needs for example, to highlight potential risks 

as illustrated in Figure 4, to show only spatial distribution, or to 

display other collected attributes. Despite certain limitations of 

deep learning models trained on different geographical regions, 

their use proved to be beneficial and can significantly streamline 

the entire process. The proposed integrated approach thus 

supports broader adoption of these methods in urban planning 

and green space management. 

 

 

Figure 4: Example of possible data visualization (Norská housing 

estate) 
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