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Abstract. Artificial Intelligence (AI) models are currently deployed in smart agriculture for various applications like crop 
monitoring and identification or yield estimation. AI models rely on huge amounts of data; thus, the first concern is the size and 
quality of labeled data for training such models. The second main concern is the explainability of the results produced by AI models. 
In this article, based on the 5-year data set we previously produced and published, we perform a correlation analysis in the 
attempt of explaining the performance of an AI model in a crop identification scenario. 

1. Introduction

Crop monitoring and identification are examples of 
applications that play a significant role in modern agriculture. 
With advancements in technology, monitoring systems are 
increasingly automated, relying on remotely-acquired data from 
sensors mounted on drones, airplanes, or satellites. The growing 
number of satellite missions has made free data more accessible 
to researchers and institutions, driving innovation across various 
fields and advancing smart agriculture (Ivanovici et al. 2024). 

Multispectral satellite imagery, such the one from the EU 
Copernicus Earth Observation (EO) programme, provides 
valuable insights into crop types, growth stages, health, and soil-
vegetation characteristics. One of the most widely-used and 
accessible satellites for vegetation analysis is Sentinel-2, which 
captures multispectral images across 13 spectral bands, covering 
both the visible and near-infrared (NIR) spectrum. 

To enable automatic crop monitoring and crop identification 
based on satellite data, the first essential step is accurately 
identifying crops from this data. A common approach, accepted 
as the de facto approach (ECA, 2020), involves analyzing time 
series, often based on the well-known Normalized Difference 
Vegetation Index (NDVI) (Pettorelli, 2013; Qin et al., 2021).  

In recent years, artificial intelligence (AI) and machine learning 
(ML) have become key tools for crop identification. However,
the effectiveness of these models heavily depends on the quality
and relevance of the datasets used. The accuracy of the results
can be significantly impacted by data correlations and
similarities, making dataset selection a critical factor in model
performance. Various datasets exist (Sumbul et al., 2019),
(Weikmann et al., 2021),

This paper presents a multi-year multi-crop correlation analysis 
across 47 parcels with 17 agricultural crop types, for the purpose 
of explaining the classification results based on an ML model. 

1.1 Data 

The current study utilizes a multispectral dataset, called 
µDACIA5, constructed based on the Sentinel-2 satellite optical 
data (DOI: 10.5281/zenodo.14283242) collected over a time 
period of five years (2020–2024) in Northern Brașov area, 
Romania. The research focuses on parcels managed by the 
National Institute of Research and Development for Potato and 
Sugar Beet, Brașov, Romania (NIRDPSB), which provided 
detailed crop type data over multiple years, that allowed the 
labelling of the data for ML tasks. Such data enables insights into 
crop distribution, growth stages, and phenological events. The 
crop correlation analysis was performed based on the NDVI time 
series, as NDVI time series are often used both for monitoring 
and identification of agricultural crops.   

1.2 Crop spectral signature analysis 

As an initial step, we plotted the spectral signatures and 
averaged spectral signatures for each crop, generating curves for 
each cultivated parcel. These curves were created using Sentinel-
2 data from the crop growing season, while capturing key stages 
such as planting, flowering, growth, and maturity. The evolution 
of crops over time is evident from these graphical 
representations. For instance, Figure 1 illustrates the average 
spectral signature of late potatoes, with distinct lines representing 
average reflectance curves for each image. This approach 
highlights the crop's growth period, allowing the identification of 
specific growth phases based on the curves. Such evolution of the 
spectral curves in time is characteristic for most of the types of 
agricultural crops. 

Figure 1. Average reflectance curves for parcel no. 97 with late 
potato crop (code 253) in 2023. 

The potato plant's phenological growth stages, as outlined by 
(Meier, 1997), can be summarized into four main phases: 
planting to sprouting, sprouting to bud flowering, bud flowering 
to flowering, and flowering to maturity (Munteanu et al., 2008; 
Nemes et al., 2008). Consider the following example: potato 
planting on parcel no. 97 began on May 14, 2023. Sentinel-2 data 
reveal key growth stages of the potato crop on parcel 97. Early 
reflectance curves (May 23 and June 2) in bands B5, B6, B7, B8, 
B8A, and B9 were low, indicating the planting phase. These 
bands, particularly B5–B7 for vegetation classification and B8 
for chlorophyll sensitivity, show minimal vegetation activity 
after planting. By June 24, a slight increase in reflectance marked 
the second growth phase. From July 17 to August 18, the crop 
reached maturity, producing abundant chlorophyll and dense 
vegetation with high reflectance. After August 21, reflectance 
began to decline as chlorophyll production decreased, signaling 
plant senescence. A sharper decrease was observed after August 
31 as the plants dried, culminating in harvest on September 10. 
Bands B11 and B12, used to measure soil and vegetation 
moisture, provided insights into crop water content. Monitoring 
these bands helps detect water stress, enabling timely irrigation 
to maintain crop health. This analysis effectively tracks crop 
growth, vegetation status and moisture dynamics. 
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1.3 NDVI monitoring 

Vegetation indices play a fundamental role in crop monitoring 
and analysis and one of the most relevant and widely used is the 
NDVI (Pettorelli, 2013; Qin et al., 2021), which is calculated as:  

 NDVI =  𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

,   (1)  
where, NIR represents the reflectance value of the band 

selected for near-infrared and RED the reflectance value of the 
red band. For a comprehensive list of available vegetation indices 
see (Ivanovici et al., 2024). 

Sentinel-2 multispectral images provide the following two 
spectral bands: B4 (664.6 nm, RED) and B8 (832.8 nm, NIR) to 
calculate NDVI, an indicator of vegetation status and health 
ranging from -1 to 1. In summary, negative values mark bare soil 
and artificial, built-up areas, values in the interval (0, 0.33], 
indicate unhealthy or sparse vegetation, while 0.66 is the 
threshold between healthy and moderately healthy vegetation. 

NDVI was calculated for all parcels across all acquisition dates, 
generating time series to track vegetation growth. Figure 2 
illustrates NDVI evolution for all pixels corresponding to parcel 
39, where sugar beet was cultivated in 2023. Thirty observations 
were made at uneven intervals due to weather conditions, thus 
availability of Sentinel-2 data. Sugar beet was selected as it is one 
of the representative crops for the region and significant for 
NIRDPSB research activity. 
 

 
Figure 2. Temporal evolution of NDVI for each pixel in parcel 

39 cultivated with sugar beet in 2023. 
 

For each parcel, we also calculated a representative NDVI 
curve in time, as an average of all the NDVIs of the pixels in the 
parcel. A representative NDVI curve was calculated for each 
parcel by averaging the NDVI values of all its pixels. For parcel 
39 in 2023, Figure 3 illustrates this average NDVI curve, 
representing the general NDVI evolution for the parcel (in red). 
In addition, we calculated the representative NDVI curve for each 
crop, by calculating the average NDVI for all the pixels, in all 
parcels within the dataset, with the same crop. For sugar beet in 
2023 there are three parcels and the NDVI AVG curve is 
represented in Figure 3 with magenta. The seeding and harvesting 
events are indicated with blue arrows. 
 

 
Figure 3. The representative average NDVI curve for parcel 39 

cultivated with sugar beet in 2023 compared against the average 
NDVI for all parcels cultivated with sugar beet in 2023. 

 
Representative NDVI curves illustrate crop growth, decay, 

and harvest periods. For sugar beet, the maximum NDVI value 
(~0.7) slightly exceeds the 0.66 threshold for moderately healthy 
vegetation, highlighting possible discrepancies with in-situ 
measurements due to satellite image processing, sensor 
aggregation, and atmospheric effects. This may be also due to the 
characteristic canopy which does not cover the ground 
completely, requiring further correction of the NDVI value. 

NDVI time series can also be used to detect anomalous growth 
within a parcel by comparing deviations from the representative 
curve. Such curves, calculated over multiple years and correlated 
with meteorological data, could provide broader insights into 
crop health. 
 

2. Single-year correlation analysis 

In this section we perform a correlation analysis for a single 
year, based on the Pearson correlation coefficient computed 
between pairs of representative average NDVI time serios of 
crops. We present the analysis result as the correlation matrix, 
thus showing the degree of linear correlation between the chosen 
crop features. For the single-year we focused on 2023 as the 
reference year for our analysis.  

In Figure 4, the correlation matrix for the per-parcel average 
NDVI time series of our dataset is displayed. Each label indicates 
the parcel index and the corresponding crop type. The correlation 
values between the average NDVI curves of the two parcels are 
represented using a colour gradient ranging from yellow to green, 
with yellow indicating low correlation and dark green indicating 
very high correlation, aligning with the interpretation of NDVI.  

 
Figure 4. Correlation matrix of average NDVI time series 

per parcel. 
 
As can be observed from Figure 4, parcels with the same crop 

exhibit a very large correlation, as expected. Various cereals 
(codes 101 and 108) or potato varieties, (codes 254 and 255), can 
be easily confused due to their high similarity, as indicated by the 
correlation coefficients. We observed that some parcels with 
different crops, such as sugar beet on parcel 39 (code 3017) and 
corn on parcel 38 (code 108), show a high correlation, despite the 
crops being distinct.  

In order to better interpret these correlations, we calculated 
the correlation between all crops using the representative average 
curves for each crop, derived from all pixels in the respective 
parcels. The resulting correlation matrix is displayed in Figure 5, 
using the same colour scheme as in Figure 4. One can notice in 
Figure 5 the large correlation values for the pairs of crops with 
codes 253, 254, 255, and 2557, which all represent different types 
of potatoes, but also between sugar beet (code 3017) and corn 
(code 108), as observed before. Other crops, like corn (108), and 
autumn wheat (101), with low correlation are visibly different. In 
2023 only 12 of the 17 crops present in our dataset were planted 
on the considered parcels and are thus represented in the 
correlation matrices. Such a correlation analysis shows the 
limitations of an analysis based on the NDVI time series, which 
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may be very similar for different types of crops (that were planted 
approximately in the same period).  

 
Figure 5. Correlation matrix of average NDVI signature per crop. 
 

3. Multi-year correlation analysis 

Starting from the analysis in 2023, we consider the most and 
the least correlated crops and verify the consistency of the 
observations made for 2023 for the other 4 years: 2020, 2021, 
2022 and 2024. In particular, 2022 was a dryer year compared to 
the other 4 years. In this section we shall present the results and 
interpretation of our multi-year correlation analysis.  

For the correlation analysis, we computed a representative 
average NDVI time curve for each crop in each year and 
estimated the correlation between time curves from two different 
years, such as 2023 and 2024. The 2022 and 2024 years were 
both dry years for the agricultural activity in the region, 2023 was 
normal from the point of view of precipitations. When comparing 
crops across years, several factors must be considered. 

First, due to crop rotation and diversification policies, some 
crops may appear in certain years but are absent in others. To 
ensure a consistent correlation matrix, we included only crops 
present in the compared pairs of years.  

Another challenge in cross-year correlation analysis is the 
variation in image acquisition dates and the number of 
observations. For instance, in 2023, images were collected on 30 
different days, whereas in 2024, data was available from 40 dates. 
As a result, the time series differ in length, making a direct 
Pearson correlation calculation infeasible. 

One approach to analysing the correlation between different 
crops across two years, as well as the autocorrelation of the same 
crop between two different years, is to calculate the cross-
correlation between each of the considered pair of time series. 
Cross-correlation measures the similarity between two 
sequences, even of different lengths, by shifting one sequence 
relative to the other. 

However, a major challenge in using cross-correlation is the 
irregular timing of multispectral image acquisitions in our 
dataset. The intervals between consecutive acquisition dates vary 
significantly, ranging from 3–4 days to an entire month. As a 
result, applying cross-correlation directly to NDVI time series 
from different years can cause sequence misalignment, leading to 
inaccurate correlation results. 

To ensure equal spacing between the considered dates, we 
interpolated the NDVI time curves, considering that NDVI 
values typically do not change abruptly over short time frames. 
After experimenting with both linear and cubic interpolation, we 
found that linear interpolation was the most suitable for this task. 
The interpolation was applied to each curve over the entire year, 

from January 1st to December 31st, with a fixed interval of 5 days 
between consecutive NDVI values. 

The comparison of average NDVI time series was conducted 
for each crop that was present in the years 2022, 2023, and 2024 
as follows. For each common crop, we computed the interpolated 
average NDVI time series for 2023 and evaluated different shifts 
of the corresponding average NDVI time series from 2022 and 
2024 to determine the optimal alignment. 

To perform these calculations, we utilized the cross-correlation 
function provided by the SciPy library in Python (SciPy. (n.d.), 
2025). This function computes the correlation between two 
discrete sequences, x and y, representing the time series from two 
different years, based on the following formula: 
 Corr[k] = ∑ 𝑥𝑥𝑙𝑙𝑦𝑦𝑙𝑙−𝑘𝑘+𝑁𝑁−1

�|𝑥𝑥|�−1
𝑙𝑙=0    (2) 

in which k = 0, 1, …, ||x||+||y|| - 1, ||.|| indicates the length of the 
time series, N = max(||x||, ||y||) and ym =0 outside the range of y. 
The second time-series is shifted by k steps.  

This calculation produces a set of values for each pair of time 
series, corresponding to the number of applied shifts. Larger 
values indicate stronger correlations; however, the results do not 
fall within the interval [-1, 1]. To standardize them, we applied 
the normalized cross-correlation, which involves first subtracting 
the mean from each time series and then normalizing by its 
standard deviation before computing the cross-correlation. 
Among all possible shifts between two time series, we selected 
the maximum correlation value obtained. 

In Figure 6 are illustrated pairs average NDVI time series for 
corn (crop code 108), late potato (crop code 253) and alfalfa (crop 
code 9748) from 2023 together with the accordingly shifted time 
series from 2022, while in Figure 7 are presented similar pairs for 
2023 and 2024. 

 

 

 
Figure 6. Pairs of interpolated average NDVI time curves for 
2022 and 2023. The curves of 2022 are shifted, as to obtain the 
maximum correlation with the curve of 2023.  
   

To verify the consistency of the one-year analysis conducted 
on 2023, we calculated the normalized cross-correlation between 
the common crops for the following year pairs: (2022, 2023) and 
(2023, 2024). The rationale behind this choice is that 2022 and 
2024 were relatively similar in terms of weather conditions, while 
2023 was a normal to rainy year. We aimed to observe whether 
this similarity, or dissimilarity, would also be reflected in the 
correlation matrices. For each pair of years, we considered pairs 
of representative interpolated average NDVI curve in time for 
each of the crops present in both these years and calculated the 
cross-correlation as explained in the previous section. We 
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represented the resulted correlation matrix as a heat map like the 
one obtained for year 2023. 

 

 

 
Figure 7. Pairs of interpolated average NDVI time curves for 
2022 and 2023. The curves of 2022 are shifted, as to obtain the 
maximum correlation with the curve of 2023.  
 
In Figure 8 we show the cross-correlation matrix for the pairs of 
interpolated curves in years (2022, 2023), while in Figure 9 we 
plotted the cross-correlation matrix for the pairs of interpolated 
curves in years (2023, 2024). The curves in 2022 and respectively 
2024 were shifted along the curves in 2023, as to yield the best 
correlation. From the two figures, one can observe that the 
correlation values for the pair (2023, 2024) in Figure 8 are larger 
than those from the pair (2022, 2023) in Figure 9, suggesting that 
the similarity in weather conditions could influence this 
relationship. Furthermore, when compared with the correlation 
matrix of crops from 2023 presented in Figure 5, the strong and 
weak correlations appear between the same pairs of crops, such 
as the strong correlation between peas and winter wheat and the 
weak correlation between sugar beet and winter wheat. What is 
somewhat unusual, however, is the weak correlation between 
sugar beet in 2024 and sugar beet in 2023, indicating that the 
different environmental conditions in the two years considerably 
affected the NDVI time series-based analysis. 
 

 
Figure 8. Cross-correlation matrix of average NDVI signature 

per crop. The pairs of interpolated signatures considered are from 
2022 and 2023, where the 2022 signatures were shifted, as to 
obtain the best correlation. 

 
Figure 9. Cross-correlation matrix of average NDVI signature per 
crop. The pairs of interpolated signatures considered are from 
2024 and 2023, where the 2024 signatures were shifted, as to 
obtain the best correlation. 
 
To illustrate the low correlation between NDVI curves of the 
same crop in different years, in Figure 10 we show, as an extreme 
case, the NDVI curves for alfalfa in 2021 and 2023. One can 
notice the very different behaviour which explains the very low 
correlation coefficients between identical crops considered for 
different years. 
 

 

   
Figure 10. The average NDVI time series for alfalfa for 2021 

(top) and 2023 (bottom). 
 

4. NDVI time series-based crop identification 

To analyze how the correlation between NDVI time series 
influences the ability of a neural network (NN) to differentiate 
between crops, we trained a fully connected neural network 
(FCNN) on the NDVI time series for all the pixels in the common 
crops from the years 2022, 2023, and 2024. The training set was 
built using all the time series from 2023, and the model was tested 
on the time series from 2022 and 2024. All the time series were 
interpolated over the interval [0, 365] corresponding to a full year 
data at 1-day time resolution, then down sampled to a 5-day time 
resolution, resulting in a total of 73 values per time series. 
Additionally, the time series for 2022 and 2024 were shifted for 
each crop by a specific amount to achieve the maximum 
correlation with the corresponding crop in 2023. The common 
crops and their respective shifts are presented in Table 1. The 
shift value represents the number of shift steps, with each step 
corresponding to 5 days. A positive shift indicates a rightward 
shift, while a negative shift corresponds to a leftward shift. 
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Table 1: Time series shifts (in number of data samples) per crop 
for 2022 and 2024 with respect to 2023. 

Crop name Crop 
code 

Shift for 
2022 

Shift for 
2024 

Winter wheat 101 2 -2 
Spring wheat 1010 1 -3 
Corn 108 1 1 
Peas 151 0 -2 
Late potato 253 1 0 
Sugar beet 3017 1 4 
Temporal grassland 450 -3 0 
Alfalfa 9748 7 0 
Permanent grassland 606 3 0 

 
Since the interpolation at the beginning and end of the year 

involves extrapolation, the interpolation error tends to be larger 
in these regions. Additionally, shifting the time series introduces 
some zero values at the ends of the interval. To address these 
issues, we removed the first 5 and the last 10 interpolated values, 
resulting in NDVI interpolated time series with a length of 58. 

The architecture of the FCNN is presented in Figure 11 and 
consists of one input layer of 58 neurons, corresponding to the 58 
values of the interpolated time series, three hidden layers of 
respectively 64, 32 and 8 neurons and of an output layer of 9 
neurons corresponding to the 9 common crops of the years 2022, 
2023 and 2024.  The activation on the hidden layers is the 
Rectified Linear Unit (ReLu) and on the output layer softmax. 
We used as an optimizer the AdamW function, with learning rate 
lr=10-3 and a weight decay of also 10-3. The loss function 
considered was cross entropy loss.  
 

 
Figure 11: FCNN trained on the interpolated NDV time series of 
year 2023. On the right side the class labels for each crop code 
are indicated. 
 

The FCNN was trained over 400 epochs in several folds and 
reached an average accuracy of 85% on the train set. But we 
observed that after about 300 epochs the accuracy on the 2022 
and 2023 sets stabilize or even get worse, indicating an overfit on 
the training set. 

Figure 12 presents the confusion matrix for the training set 
(year 2023) after 280 epochs, with a total accuracy of 83%. From 
the confusion matrix, one can see that 5 crops are correctly 
recognized (codes 101, 108, 151, 606 and 1010), while late potato 
(code 253) and sugar beet (code 3017) are consistently 
misclassified as corn. Additionally, temporal grassland is 
misclassified as permanent grassland. The latter confusion is not 
entirely unexpected, as both crops share significant similarities. 
As we can observe in Figures 6 and 7 the average NDVI curves 
of corn and late potato are very similar, this can be an explanation 
of the misclassification done by the deployed ML model. 

When using the trained network to determine the crops in 2022, 
the detection accuracy is, at best, around 60%. The confusion 
matrix in Figure 13 shows that while some crops are classified 
very accurately, others exhibit significant confusion with 
different classes. As seen in Figure 13, winter wheat, corn, peas, 
and spring wheat are classified with an accuracy exceeding 87%. 
However, temporal grassland (code 450) and permanent 

grassland (code 606) are consistently misclassified as winter 
wheat. Looking at the correlation matrix in Figure 8, we notice a 
strong correlation between these three crops, which could explain 
this misclassification. FCNN misclassifies late potato and sugar 
beet as corn, a pattern that also occurs in 2023 for these crops. 

 
Figure 12: The confusion matrix obtained when classifying the 
interpolated NDVI curves of 2023 by the FCNN trained on 2023. 

 
Figure 13: The confusion matrix obtained when classifying the 
interpolated and shifted NDVI curves of 2022 by the FCNN 
trained on 2023 data. 

 
Figure 14: The confusion matrix obtained when classifying the 
interpolated and shifted NDVI curves of 2024 by the FCNN 
trained on 2023 data. 
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The results of the FCNN-based classification on the 
interpolated and shifted NDVI time series of 2024 are illustrated 
by the confusion matrix presented in Figure 14. The average best 
accuracy in the different folds for 2024 was approximately 35%. 
One can notice that in the case of 2024, only winter wheat and 
corn are correctly classified. The classification pattern observed 
in Figure 13 corresponds, to some extent, to the correlation 
matrix pattern which can be seen in Figure 9.  
 

5. Conclusions 

In this article we presented a single- and multi-year correlation 
analysis for agricultural crops, for the purpose of explaining the 
ML-based crop classification results. The µDACIA5 dataset was 
used in our experiments, which is based on the Sentinel-2 multi-
spectral data collected over 5 years from 47 parcels with 17 crop 
types, in the Brasov North area, Romania. Such multi-spectral 
datasets are very useful for the development and validation of 
crop analysis tools, such as AI- or ML-based crop identification, 
in smart agriculture. The µDACIA5 dataset provides reliable, 
accurately labelled data, verified in-situ by the owner of the land, 
NIRDPSB Brasov. The correlation analysis was performed on 
the NDVI time series of the under-study crops, considering the 
representative average curves for each parcel and each culture. 
Given the availability of the Sentinel-2 data in different years, 
interpolation and resampling of the NDVI time series was 
performed. Given the difference in seeding times in different 
years, due to the weather conditions, required shifting the time 
series in time for increasing the efficacy of the analysis. Some 
consideration on the correlation of the different cultures, as 
represented by the specific NDVI was provided. The computed 
correlation matrices showed high correlation for both identical 
and different crops, while for certain identical crops, the 
correlation was low. The results also pointed out the impact of 
the weather conditions on the correlation. The correlation 
analysis was followed by a ML-based classification of the crops, 
using an FCNN model, in a crop identification scenario. The 
experimental results using a FCNN showed good similarity with 
the results of the correlation analysis, pointing out the limitations 
of the NDVI time series-based, ML-based identification of 
agricultural crops.  
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Appendix 

In the Table 2 we show the name of the crops and their 
corresponding codes used by APIA (Agency for Payments and 
Interventions in Agriculture), Romania. 
 

Table 2. Crop names and corresponding APIA codes. 
Crop name APIA code 
Common winter wheat  101 
Common spring wheat  1010 
Corn  108 
Peas  151 
Late potatoes  253 
Other potato crop  254 
Potatoes for seed  255 
Potatoes for seed  2557 
Sugar beets  3017 
Temporal grassland  450 
Alfalfa  9748 
Permanent grassland  606 
Corn silage  131 
Soybean  2037 
Alfalfa  9747 
Winter rapeseed  202 
Sunflower  123 
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