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Abstract 

 

Evapotranspiration (ET), and in particular Reference Evapotranspiration (ET₀), is essential for agricultural planning, irrigation 

management, and water resource allocation—especially in regions facing water scarcity and limited observational data. While ground-

based ET₀ is typically estimated using the FAO Penman-Monteith method, satellite-derived products such as MOD16 offer broader 

spatial coverage, although with conceptual and methodological differences. MOD16 provides Potential Evapotranspiration (PET) 

estimates, which, unlike ET₀, depend on local biome characteristics and are not standardized to a reference surface. 

This study investigates whether the PET data from the MOD16A2GF product (version 6.1) can be adapted for ET₀ estimation in 

Piemonte (NW Italy), a region characterized by diverse climates and topographies. We compared PET data from 2010 to 2022 with 

ground-based ET₀ and applied a bias-correction method using linear regression models calibrated on local meteorological time series. 

The corrected dataset (𝐸𝑇₀̂) shows significantly improved agreement with ground-based ET₀, reducing the Mean Absolute Error from 

10.06 mm/8 d to 2.48 mm/8 d, a 75% improvement. This correction proved robust across the region and particularly effective during 

the summer, when accurate ET₀ estimation is critical for crop irrigation. 

Our results suggest that, with appropriate local calibration, MOD16A2GF PET data can serve as a practical surrogate for ET₀ in data-

scarce environments. Future research should focus on exploring the impact of additional factors, such as altitude and land cover 

variability, to further refine the accuracy of satellite-derived ET₀ estimates and improve their applicability in diverse climatic and 

topographical conditions. 

 

 

1. Introduction 

Evapotranspiration (ET) plays a fundamental role in the Earth's 

water cycle, as it describes the process through which water 

moves from the soil and plant surfaces into the atmosphere via 

evaporation and transpiration. This process is vital for 

understanding the movement of water in ecosystems, and it is a 

key component in hydrological and agricultural models. Among 

the various types of evapotranspiration, Reference 

Evapotranspiration (ET₀) is particularly important. ET₀ 

represents the amount of water that would evaporate and 

transpire from a well-watered grass surface under standard 

environmental conditions. It is widely used to estimate crop water 

requirements, plan irrigation schedules, and manage water 

resources, especially in regions facing water scarcity (Allen et al., 

1998). 

Globally, agriculture accounts for nearly 70% of freshwater 

withdrawals, with most of that water used for irrigation (Hoekstra 

and Mekonnen 2012). As climate change leads to increased 

frequency and severity of droughts, improving water-use 

efficiency in agriculture has become more urgent (Liu et al., 

2016). To achieve this, accurate and reliable methods for 

estimating evapotranspiration are essential, particularly in areas 

where ground-based meteorological data are sparse or 

unavailable. Estimating ET₀ is complex, as it depends on a 

variety of climatic factors, including temperature, solar radiation, 

humidity, and wind speed. Over the years, several models have 

been developed to estimate ET₀, ranging from empirical methods 

to physically based approaches. Among these, the Penman-

Monteith equation, recommended by the Food and Agriculture 

Organization (FAO), is considered one of the most accurate and 

consistent methods across different climatic zones (Allen et al., 

1998). 

In recent decades, the availability of satellite data has opened new 

possibilities for estimating evapotranspiration over large spatial 

scales. One widely used product for estimating global 

evapotranspiration is MOD16, which is derived from NASA’s 

MODIS satellite sensor. The Potential Evapotranspiration (PET) 

layer is one of the available ones. PET maps the estimate of the 

maximum possible evapotranspiration from a specific biome, 

assuming unlimited water availability. While PET can provide 

valuable insights into atmospheric demand for moisture over vast 

regions, it differs from ET₀ in several key ways. PET is 

influenced by different land covers (defining the local biome) and 

atmospheric variables, and does not account for specific crop 

types or phenology. In contrast, ET₀ is a standardized measure 

designed to reflect water loss from a uniform reference crop 

under ideal conditions. Thus, although PET and ET₀ are 

conceptually related, they are not interchangeable (Mu, Zhao, 

and Running 2011). 

This distinction raises an important question for researchers and 

water managers: Can satellite-derived PET be used as a substitute 

for ET₀, especially in regions with limited ground-meteo 

stations? If not, is it possible to adjust or calibrate PET so that it 

aligns with ET₀ derived from traditional meteorological 

methods? These questions are at the core of the present study. 

This work deepens a previous one for the same research group 

(Farbo et al. 2024) aims at evaluating whether PET data from the 

MOD16 product can be reliably used to map ET₀ in the context 

of agricultural water management. Specifically, we focus on the 

Piemonte region (NW Italy), a region with diverse climatic and 
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topographical conditions. We compare PET values from the 

MOD16A2GF dataset with ground-based ET₀ estimates 

calculated using the FAO Penman-Monteith method. We 

explored a bias-correction approach based on local linear 

regressions, calibrated along measures time series, relating 

MOD16A2GF estimates with ground ones. 

If successful, this method would provide a valuable tool for 

agricultural planning and water resource management in areas 

lacking sufficient observational infrastructure. Ultimately, our 

findings are expected to contribute to a better understanding of 

how remote sensing products can be adapted to meet practical 

needs in a changing climate, promoting more efficient and 

sustainable water use in agriculture. 

 

2. Materials and methods 

2.1 Study area 

The Po River Basin, covering 23% of Italy's territory, is essential 

for Italian agriculture, contributing 35% of national agricultural 

production and 50% of its agricultural value. Spanning 2.7 

million hectares, 59% of which is irrigated, the region's key crops 

include maize, rice, and forage, with irrigation largely reliant on 

canal systems managed by consortia, notably the Cavour Canal. 

Historically rich in water resources, the basin has faced 

increasing pressure from socio-economic demands, 

technological developments, and climate variability. Since 2003, 

recurring water shortages have emerged due to rising 

temperatures, prolonged dry spells, and increased demand, 

leading to significant agricultural losses and power disruptions, 

especially during drought years like 2003, 2007, and 2022. 

Furthermore, seawater intrusion into the Po River has posed 

additional challenges. 

 

In this context, the Piemonte region stands out as a crucial area 

within the Po River Basin. As the region responsible for 45% of 

the irrigation water withdrawals in the entire basin, it plays a 

central role in agricultural water management. The region heavily 

relies on open canals (94%) and surface flooding techniques 

(52%) for irrigation. Given its importance, the region is 

particularly vulnerable to the impacts of recurrent droughts, 

making precise hydrological monitoring and efficient water 

resource management essential. Studying the Piemonte region is 

thus critical for understanding and addressing the broader 

challenges faced by the Po River Basin, especially as water 

scarcity continues to threaten agricultural production and 

regional stability. 

 

2.2 Meteorological data 

Meteorological data were retrieved from the ARPA Piemonte 

website. There are 337 ARPA monitoring stations across the 

Piemonte region. Only 61 out of these are fully equipped with a 

thermometer, hygrometer, anemometer, and radiometer, which 

are necessary to compute the reference evapotranspiration 

(paragraph 2.3). Since 22 stations present incomplete data time 

series, only 39 stations having complete recordings were used for 

this study (Figure 1). After removing the ones falling where no 

satellite estimates were available, only 28 stations remained for 

the study. 

 

 
 

Figure 1. Spatial distribution of the fully equipped 

meteorological stations in the Piemonte region. Yellow dots = 

stations falling in positions without MOD16 estimates. 

 

2.3 Calculation of ET0 from Ground Measures 

Data needed to compute the FAO Penman-Monteith (PM) 

equation are the elevation and the latitude of the location and the 

standard meteorological measure of solar radiation (sunshine), 

maximum and minimum daily air temperature, maximum and 

minimum daily relative humidity, and wind speed. To ensure the 

integrity of computations, meteorological measurements should 

be made at 2 m (or converted to that height). The ground stations 

are not equipped with barometers, so the atmospheric pressure 

was calculated as described by (Allen et al. 1998). 

The ground data needed for the computation of the FAO PM 

formula were filtered for the reference period (1st January 2010 

- 31th December 2022). 

Once obtained the needed data the ET₀ was calculated using the 

FAO PM equation (Equation 1). 

 

𝐸𝑇0 =  
 0.408𝛥(𝑅𝑛 − 𝐺 )+γ 

900

𝑇+273
𝑢2(𝑒𝑠 − 𝑒𝑎)

𝛥 + 𝛾( 1+0.34𝑢2)
 (1) 

 

Where  ET0=reference evapotranspiration [mm day-1], 

 Rn=net radiation [MJ m-2 day-1], 

 G=soil heat flux density, set to 0 [MJ m-2 day-1], 

 T=air temperature at 2 m height [°C], 

 u2=wind speed at 2 m height [m s-1], 

 es=saturation vapour pressure [kPa], 

 ea=actual vapour pressure [kPa], 

 es-ea=saturation vapour pressure deficit [kPa], 

 ∆=slope vapour pressure curve [kPa °C-1], 

 Γ=psychrometric constant [kPa °C-1] 

 

The reference crop evapotranspiration (ET₀) is a climatic 

parameter expressing the evaporation capacity of the atmosphere. 

It represents the evapotranspiration from the reference surface. 

This hypothetical reference surface is defined as: “The reference 

surface is a hypothetical grass reference crop with an assumed 

crop height of 0.12 m, a fixed surface resistance of 70 s m-1 and 

an albedo of 0.23”(Allen et al. 1998). The reference surface 

closely resembles an extensive surface of green, well-watered 

grass of uniform height, actively growing and completely 

shading the ground. The fixed surface resistance of 70 s m-1 

implies a moderately dry soil surface resulting from about a 

weekly irrigation frequency. The only factors affecting ET₀ are 
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meteorological measures. The FAO Penman-Monteith method is 

recommended for this calculation, though it requires many 

climatic parameters which may not always be available. Then, 

the obtained daily ET₀ values were aggregated based on the 

MOD16A2GF dates, obtaining an 8-day aggregated dataset. 

However, this aggregation can be problematic if one or more data 

points are missing within the 8-day period, so those periods were 

discarded. 

 

2.4 The MOD16A2GF product 

The MOD16A2GF product from the NASA MODIS sensor was 

tested against ground ET estimates. MOD16 product is a dataset 

that includes the global evapotranspiration (ET), latent heat flow 

(LE), potential ET (PET) and potential LE (PLE). The MOD16 

product provides regular 500m x 500m land surface ET datasets 

for the 109.03 million km2 global vegetated land areas at 8-day, 

monthly and annual intervals. The algorithm developed by Mu et 

al. 2007 and improved by Mu, Zhao, and Running 2011 used for 

the MOD16 data product collection is based on the logic of the 

Penman-Monteith equation (Monteith,1965), which includes 

inputs of daily meteorological reanalysis data along with MODIS 

remotely sensed data products such as vegetation property 

dynamics, albedo, and land cover. The MODIS input data 

required for the MOD16 algorithm includes global soil and land 

cover products (MOD12Q1), leaf area index (LAI), fraction of 

photosynthetically active radiation (FPAR-MOD15A2), and 

albedo (MCD43B2) (Mu, Zhao, and Running, 2013). According 

to the MODIS Science Team, the MOD16A2 6.1 product will not 

have data before 2023, and the gap-filled MOD16A2GF 6.1 

product will be recommended for data from 2000 to 2023. The 

MODIS Science Team recommends the gap-filled product 

because it is expected to be superior. This is achieved by 

retrieving the FAL/FPAR values through interpolation for pixels 

that do not meet the quality screening criteria. The MOD16A2GF 

is not available in the current year because it is generated at the 

beginning of the following year, when the entire yearly 8-day 

M*D15A2H (LAI/FPAR product) is available. In this study, 8-

days PET data from MOD16A2GF of collection 6.1 were used. 

MOD16A2GF PET does not cover all land uses, only those with 

vegetation. Therefore, for other land uses, the pixel values in the 

images are filled with the following codes: Earth (bare soil and 

rock), 32767; water bodies, 32766; barren or sparse vegetation, 

32765; permanent snow and ice, 32764; permanent wetlands, 

32763; urban or built areas, 32762; unlisted, 32761. As a result, 

of the 39 stations shown in Figure 1, 11 stations were excluded 

due to falling into one of the non-vegetated categories, bringing 

the total number of stations used for the comparison to 28. 

Google Earth Engine platform was used to retrieve the 8-day PET 

from the MOD16A2GF values for the study period (1st January 

2010 - 31st December 2022) for all the points where ground 

stations were located. PET values were extracted at the locations 

of the 28 ARPA meteorological stations to ensure spatial 

consistency between the PET and ET₀ time series. 

 

2.5 Modelling biases 

The comparison between PET and ET₀ was achieved over time,  

through a I order linear regression (Equation 2), for each ground 

station located at (x,y). Firstly, this was done at a single-year level 

and then considering all years jointly for the entire reference 

period. Estimates of local gain – 𝑎̂(𝑥, 𝑦) - and offset – 𝑏̂(𝑥, 𝑦) - 

were obtained through an Ordinary Least Squares approach and 

applied to recover new timely unbiased PET values (hereinafter 

called 𝐸𝑇₀̂).  

 

𝐸𝑇₀̂ = 𝑎̂(𝑥, 𝑦) ∙ 𝑃𝐸𝑇 + 𝑏̂(𝑥, 𝑦) (2) 

 

2.6 Statistical analyses 

Various metrics were calculated for each year within the 

reference periods to test improvement of estimates after bias 

removal. The following metrics were used: Pearson's Correlation 

Coefficient (r), Mean Absolute Error (MAE) and Mean Relative 

Error (MRE) as defined in eq. 4 and 5 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑆𝑖−𝐺𝑖|

𝑛

𝑖−1
 (3) 

 

𝑀𝑅𝐸 =
1

𝑛
∑ (

𝑆𝑖−𝐺𝑖

𝐺𝑖
)

𝑛

𝑖−1
 (4) 

 

Where  𝑆𝑖 is the satellite value (PET or 𝐸𝑇₀̂)) at time i 

 𝑆̅ is the average satellite value (PET or 𝐸𝑇₀̂)) 

 𝐺𝑖 is the ground measurement at time i 

 𝐺̅ is the average ground measurement 

 n is number of observations 

 

3. Results and Discussion 

Results are reported in the following figures. Namely, Figure 2 

displays the yearly r values between ET0 and PET, illustrating 

the variability of these values across the different meteorological 

stations. It can be noticed that the median r value remains 

consistent throughout the years, hovering around 0.96. 

Additionally, 50% of the values, between the upper and lower 

quartiles, fall within the range of 0.93–0.98. Although values 

show great variability, they do not drop below 0.90. This means 

that PET is well correlated with ET₀ at the annual scale in the 

time domain, and that this relationship remains stable over the 

years and consistent across different meteorological stations. 

These findings are in line with previous studies (Farbo et al. 

2024; Mu et al. 2013). 

Figure 3 shows the distribution of r values concerning the 

comparison of PET and ET0 at monthly level throughout the 

years and for all the stations. Compared to annual values, 

monthly r values are generally lower. This is likely due to (i) the 

shortness of the investigated period (1 month) that makes 

differences in evapotranspiration values small; (ii) the limited 

number of observations available per month (about 3-4 

observations for all the stations), which makes it harder to detect 

stable trends. 

It is evident that the r values are particularly low in winter 

months, namely November, December, and January. This drop in 

correlation may have several explanations. One possible 

hypothesis is that evapotranspiration is naturally very low during 

this time due to climatic conditions (low temperatures, reduced 

solar radiation, etc.). Under such conditions, the MOD16 dataset 

may lack the sensitivity needed to capture small variations in ET₀, 

leading to reduced accuracy in the estimates. Another potential 

explanation could involve systematic errors in the MOD16 

product during winter. For example, the presence of snow, frozen 

soil, or persistent cloud cover may interfere with the quality of 

the satellite data used in the calculations. 
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Figure 2. Box plot showing the distribution of the yearly 

Pearson’s correlation coefficient (r) between PET and ground 

ET₀ estimates for the period 2010-2022 considered for all the 

meteorological stations. 

 

 
Figure 3. Box plot showing the monthly Pearson’s correlation 

coefficient (r) between MOD16 PET and ground-based ET₀ 

estimates for the period 2010–2022. Each box represents the 

distribution of r values calculated across different 

meteorological stations and years for a given month. 

 

In Figure 4, each box represents a single year from 2010 to 2022, 

illustrating the distribution of the yearly mean absolute error 

(MAE) for the different meteorological stations. White boxes and 

green boxes correspond to PET and 𝐸𝑇₀̂, respectively. The mean 

of the PET MAE fluctuates between 8 and 12 mm among the 

years, while for 𝐸𝑇₀̂, it ranges between 2 and 3 mm, suggesting 

that the linear adjustment significantly reduced the MAE. This 

reduction in mean MAE was statistically validated through a 

paired t-test, confirming a significant decrease in the mean yearly 

MAE from 10.06 mm to 2.48 mm. The year-to-year variability of 

𝐸𝑇₀̂ has also decreased, as shown by more compact box plots, 

narrower interquartile ranges, and shorter whiskers. Additionally, 

within each year, the MAE values of 𝐸𝑇₀̂tend to be tightly 

clustered and close to the mean. This indicates that the local 

adjustment effectively reduces the variability of the error across 

different meteorological stations, likely due to their spatial 

distribution. 

 
Figure 4. Box plot showing the annual MAE, measured in 

mm/8d MOD16A2GF and ground ET₀ estimates for the period 

2010-2022.  The box illustrates the distribution of MAE values 

across various meteorological stations within that year. 

 

Figure 5 and Figure 6 provide a clearer view of the magnitude 

and seasonal pattern of bias throughout the year. Figure 5 

illustrates the trend of MAE, while Figure 6 displays MRE, both 

averaged across all stations and locations. 

Native PET values are consistently higher than ET₀, with a 

maximum overestimation of 13.12 mm/8d during the June–

August period, as shown in Figure 5. These findings were also 

noted by Westerhoff, 2015. This significant overestimation in 

summer could result in excessive irrigation for crop no alignment 

is done, reinforcing this approach. Differently, 𝐸𝑇₀̂ exhibits only 

a slight average positive difference of 2.5 mm/8d when compared 

to ground-based ET₀. Native PET values show a higher bias 

during winter and a lower one in summer (May–August), 𝐸𝑇₀̂ 

follows a similar seasonal trend but with reduced differences, 

ranging from 30% down to 0% (Figure 6). Although the largest 

absolute discrepancies between PET and ground-based ET₀ occur 

in summer, the highest relative errors are observed in winter. This 

is because, during periods of low evapotranspiration, even small 

absolute errors can lead to disproportionately high relative errors 

when expressed as a percentage of the observed value 

 
 

Figure 5. . Box plot showing the monthly MAE distribution 

(mm/8d) for the period 2010-2022 including all meteorological 

stations before and after bias removal. 
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Figure 6. Box plot showing the distribution of monthly MRE, 

for the period 2010-2022, including all meteorological stations 

before and after bias removal. 

 

Figure 7a shows that the central area of the Piemonte region 

exhibits higher gain values (0.88–0.98, shown in dark green), 

suggesting that the model effectively captures the spatial 

variability of evapotranspiration in these zones. In contrast, lower 

gain values (0.48–0.68, represented in red and orange) are found 

in the northern, western, and southern parts of the region. These 

zones correspond to mountainous regions where complex 

topography and sparse vegetation may limit the model’s 

accuracy. Big differences between PET values and ET0 

measurements were found in areas that had high altitudes (Dias 

et al. 2021). This can suggest that there’s an influence of altitude 

on PET values. However, it is important to note that a high gain 

does not necessarily imply a lower absolute error, as this metric 

primarily reflects the model’s ability to reproduce relative 

changes rather than absolute accuracy. 

Figure 8a reveals negative error values in the central area (red 

and orange, ranging from -8.4 to -4.4 mm), indicating that the 

model systematically overestimates potential evapotranspiration 

in this region. These central zones are characterized by plains and 

hills and are predominantly cultivated areas. This behavior 

suggests that, despite the model’s ability to follow the variability 

(as shown by high gain), it introduces a consistent positive bias. 

This may be related to the known limitations of remote sensing 

models in agricultural areas, where heterogeneity and 

management practices can reduce predictive performance (Kim 

et al. 2012). 

Figures 7b and 8b display the standard deviation of the gain and 

offset values across the meteorological stations over the years. 

Unlike the clear spatial patterns observed in the gain and offset 

maps, the standard deviation does not reveal any consistent 

spatial trends. This suggests that the year-to-year variability in 

the gain and offset values is not dependent on spatial factors. 

 

 

 
 

Figure 7. Spatial distribution of gain values (panel a) and the 

corresponding standard deviation (panel b) across the Piemonte 

region. 

 

 
 

Figure 8. Spatial distribution of the offset values (panel a) and 

the corresponding standard deviation (panel b) across the 

Piemonte region. 

 

4. Conclusions 

The performance of the MOD16A2GF product in estimating 

evapotranspiration showed a strong correlation with ground-

based ET₀ values across most meteorological stations in the 

Piemonte region. However, some discrepancies were observed 

during specific periods, particularly in winter, confirming that 

MODIS-based PET products, while effective in capturing 

seasonal trends, can be affected by specific climatic and land-

cover conditions. The application of a simple bias-correction 

method based on local linear regressions significantly improved 

the agreement with ground-based ET₀, reducing the Mean 

Absolute Error from 10.06 mm/8 d to 2.48 mm/8 d. This 

substantial reduction, consistent across the region, highlights the 

robustness of the correction method and its potential 

applicability in other data-scarce regions. The adjusted dataset 

(𝐸𝑇₀̂) could therefore support operational water resource 

management, especially in areas lacking sufficient 

meteorological infrastructure. Nonetheless, this study has some 

limitations. In particular, it does not account for potential 

measurement errors in the ground-based ET₀ data, which may 

influence the accuracy of the regression models used for 

adjustment. Future research should explore the influence of 

environmental factors, such as altitude, vegetation cover, and 

land use, on the accuracy of PET estimates from MODIS 

products. Including these variables in the calibration process, 

possibly through the use of Biome Property Look-Up Tables 

(BPLUTs), may further enhance the reliability of satellite-based 
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evapotranspiration estimates for agricultural and hydrological 

applications. 
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