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Abstract 

 

Soil degradation poses a significant threat to both food security and climate change. Remote Sensing offers valuable insights for soil 

monitoring, enabling cost-effective observation across extensive regions and extended periods of time. This study evaluates bare soil 

reflectance mapping at medium spatial resolution by benchmarking the performance of various compositing approaches, providing an 

assessment of the contribution of different techniques i.e., simultaneous use of multiple spectral indices, different compositing, masking 

or thresholding techniques and other parameters of the time series i.e. cloud cover and time range. Focusing on Greece, a Mediterranean 

country with diverse microclimates and soil types, the study leverages Landsat 8 images spanning from 2015 to 2020 and the LUCAS 

2015 database to evaluate the results. A wide range of experiments were conducted to determine the best approach for creating a bare 

soil reflectance composite (BSC), evaluated based on a) its correlation per spectral band with the spectral reference data and b) its 

performance in soil organic carbon prediction, serving as an indicator of the BSC’s quality. The study demonstrated that estimating 

bare soil reflectance from multispectral satellite image time series can be significantly improved through careful selection and 

optimization of a range of parameters especially over a large and heterogeneous study area. The results offer a strong basis for refining 

methodologies in bare soil reflectance estimation and provide insightful information for future monitoring efforts. 

 

1. Introduction 

Soil, as a natural resource, is essential for food production and 

plays a crucial role in achieving climate neutrality. Soil 

degradation is a growing problem that necessitates action, 

prompting the European Union (EU) and United Nations (UN) to 

implement policies for its continuous monitoring (Panos 

Panagos, 2024). In this context, there is a rising demand for 

current and comprehensive soil information to support climate 

change monitoring, policy-making decisions and the adoption of 

agricultural practices aligned with these policies.  

 

In the context of soil monitoring, Remote Sensing can provide 

valuable insights by enabling cost-effective monitoring of crops 

and soil across large areas and over long periods of time (Beth 

Delaney, 2025). Medium spatial resolution satellite data have 

been employed to produce bare soil surface reflectance maps 

used to predict valuable soil properties such as soil Organic 

Carbon (OC) content (Simone Zepp, 2023) (Tom Broeg, 2024) 

(Fabio Castaldi, 2023). Key challenges in this method include 

distinguishing soil from vegetation, especially crop residue, 

while minimizing the influence of soil moisture (Klara 

Dvorakova P. S., 2020) and surface roughness on the reflectance 

of bare soil (Diego Urbina-Salazar, 2023). Additionally, our 

study encompasses a large geographical extent, spanning the 

national level, which is characterized by highly heterogeneous 

landscapes, significant land cover diversity as well as different 

climate zones (Karakizi, 2018). In this case the methodology 

used needs to account for the challenges that come with large soil 

type and crop managemend technics variability  (Tom Broeg, 

2024), (Jie Xue, 2024),  (KARAKIZI, 2024).  

 

Generally, most works rely on several satellite spectral indices to 

distinguish bare soil (Beth Delaney, 2025) but few studies are 

dedicated to evaluating and comparing all the different 

approaches for the adequate estimation of bare soil reflectance 

from satellite imagery. The goal of this work is to thoroughly 

evaluate the accurate bare soil reflectance mapping in Greece at 

medium spatial resolution, by investigating the effectiveness of 

different compositing approaches. A comprehensive evaluation 

of the contribution of simultaneous use of multiple spectral 

indices, different compositing, masking or thresholding 

techniques and other time series parameters tuning, such as cloud 

cover and time range, is performed. 

 

This study contributes to the field of bare soil mapping by 

systematically evaluating the effectiveness of bare soil 

reflectance composites (BSCs) generated using various spectral 

indices, parameters and thresholding techniques applied to 

Landsat 8 (L8) time series. By incorporating dynamic 

thresholding with multiple spectral indices this study investigates 

the potential for enhancing the quality of BSCs while maintaining 

high spatial coverage, which is crucial given the large extent and 

high heterogeneity of the study area. Furthermore, this study 

emphasizes the sensitivity of the resulting BSCs when different 

methods are used and investigates the critical role of index 

selection in optimizing bare soil detection. 

 

2. Source materials & Compositing methodology 

2.1 Study Area 

This study focuses on Greece at the national scale. The climate 

in Greece is Mediterranean, characterized by mild, wet winters 

and relatively warm summers. However, due to the country's 

unique geography, Greece exhibits a remarkable range of 

microclimates and local variations (Karakizi C. K., 2021). The 

climate is divided into two main periods: the cold, wet winter 

period from mid-October to late March, and the dry period from 

April to October. Temperatures in the mainland range from -5 to 

+5°C during the coldest month, January, and up to 8°C in the 

islands. During the warmest part of the year, from late July to 
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mid-August, temperatures average between 29 and 35°C. Spring 

is brief with low temperatures, while autumn is characterized as 

long and cool. The country receives from 350 to 1200 mm of rain 

per year depending on the area (Hellenic National Meteorological 

Service, 2025). The main reference soil groups in Greece are 

Fluvisols, Cambisols, Gleysols, Luvisols, Calcisols, Regosols, 

Vertisols, Leptosols, and Histosols (OPEKEPE, 2015) 

 

2.2 Validation Data 

To evaluate the results LUCAS 2015 database (Gergely Tóth, 

2013), created by the European Soil Observatory, was utilized. 

This database includes data on soil properties such as clay, silt, 

and sand content, organic carbon (OC), calcium carbonate 

(CaCO₃), and other attributes, along with reflectance data and 

auxiliary information for each sample, such as land use and 

reference soil group. Specifically for Greece, the database 

includes 641 samples. For the purposes of this study, the soil 

reflectance data and OC content [g Kg-1] of each sample were 

utilized. The spectral reflectance of the samples includes 

measurements across the visible, infrared, and shortwave infrared 

parts of the spectrum (400–2500 nm) with a spectral resolution 

of 0.5 nm. To compare the spectral reflectance reference data 

from LUCAS 2015 database with the spectral reflectance from 

L8, resampling of reflectance to match the spectral specification 

of L8 bands was performed (Uta Heiden, 2022).  

 

2.3 Landsat 8 and Auxiliary Data 

Our workflow was based on L8 time series and auxiliary datasets 

that were accessed, processed and exported via Google Earth 

Engine (GEE) (Gorelick, 2017). We utilized all available L8 

Level 2, Collection 2, Tier 1 Surface Reflectance images over the 

study area spanning from 2015 to 2020 with cloud cover less than 

a set threshold (typically set to 30%). Each image was masked 

with the quality band of L8. Using ESA World Cover 10m v100 

2020 and Copernicus CORINE Land Cover 2018 datasets 

available on GEE only areas characterized as Grassland, 

Cropland and Bare / Sparse Vegetation were included for further 

analysis. 

 

2.4 Methodology 

A wide range of experiments were conducted to determine the 

best approach to create a BSC that a) shows the highest 

correlation per spectral band with the spectral reference data of 

LUCAS 2015 and b) achieves improved performance in regards 

of soil OC prediction using the LUCAS 2015 dataset. This study 

evaluates the use of Normalized Difference Vegetation Index 

(NDVI), Normalized Burn Ratio 2 (NBR2)  (José Alexandre 

Melo Demattê, 2018), Bare Soil index (BSI)  (Sanne Diek, 2017), 

Soil Surface Moisture Index (S2WI)  (Emmanuelle Vaudour C. 

G., 2019) spectral indices, used both individually and in various 

combinations, in order to test their ability to distinguish bare soil 

(BS) pixels from vegetation and crop residue while minimizing 

the influence of soil moisture.  

 

Additionally simple thresholding, i.e. setting a single threshold 

value for the entire area of interest, and dynamic thresholding 

(Tom Broeg, 2024), i.e. different threshold for each pixel, were 

tested. Different thresholds for the indices were tested and 

different compositing methods i.e., mean (Anis Gasmi, 2021), 

median (José Alexandre Melo Demattê, 2018), min NDVI, min 

NBR2, min S2WI or max BSI (Emmanuelle Vaudour C. G.-S., 

2021), (Sanne Diek, 2017), (Fabio Castaldi, 2023). Additionally, 

we investigated the optimal maximum cloud cover threshold for 

filtering the image time series and whether setting a minimum 

number of BS instances (Tom Broeg, 2024) for the pixels 

included in the BSC improves the results. Finally, all approaches 

were tested for a 1-year (Castaldi, 2021) or a 6-year (Diego 

Urbina-Salazar, 2023) long time series. 

 

2.4.1 Experimental setup   

 

After the creation of L8 time series over the study area, for each 

cloud-free, quality and land cover masked L8 image the four 

spectral indices were computed and added to the collection. Then 

the L8 time series was masked to identify BS. To this end, two 

different thresholding methodologies were tested; first the fixed 

thresholding method was tested where one threshold is applied to 

the entire time series. Fixed thresholding was tested with 

different combinations of the four spectral indices. Three 

commonly used thresholds were examined for the NDVI and 

NBR2 spectral indices, respectively (Nélida Elizabet Quiñonez 

Silvero, 2021),  (José Lucas Safanelli, 2020),  (José Alexandre 

Melo Demattê, 2018),  (Castaldi, 2021),  (Cécile Gomez, 2022). 

For BSI and S2WI there are not widely used thresholds in the 

literature, instead they are often used in a maximum BSI or 

minimum S2WI set up (Fabio Castaldi, 2023), (Emmanuelle 

Vaudour, 2021), (Sanne Diek, 2017) and  (Emmanuelle Vaudour 

C. G., 2019). The maximum BSI and minimum S2WI values 

across the entire study area exhibited substantial variability upon 

visual inspection. Therefore, to prevent the unintentional 

exclusion of specific soil types, the absolute threshold values 

were deliberately set to be lenient. 

 

Second, dynamic thresholding was tested with different 

combinations of the four spectral indices to evaluate its ability to 

detect BS pixels without significant reduction of the BSC’s 

coverage or exclusion of specific soil types and conditions. First, 

the fixed thresholding was applied, and then the 40th and 60th 

percentiles of each pixel’s band values were computed. For 

NBR2 and S2WI, pixels in the time series with values below the 

40th percentile were kept and for BSI, pixels with values over the 

60th percentile were kept. Pixels that passed both fixed and 

dynamic thresholding constitute the BS instances time series. 

 

Regarding BS compositing, minimum BS instance thresholding 

was tested, wherein pixels with only a single BS observation 

were excluded from the final BSC. Then the different 

compositing methodologies were tested. From each BS instances 

time series, different BSCs were created computing the mean or 

median of all BS instances for each pixel. Also, only for the BS 

instances time series that were created with fixed thresholding the 

min NDVI, min NBR2, min S2WI, max BSI pixels were selected 

to create the final BSC.  

 

The BS time series and BSCs created for the experiments were 

sampled with the LUCAS 2015 sampling points in GEE. The 

evaluation of the BSCs and the soil OC prediction models were 

developed locally in a python environment.  

 

2.4.2 Evaluation 

 

To evaluate the resulting BSCs two approaches were used; first 

the spectral reflectance of the BSC for each L8 band was 

compared to the spectral reflectance of the LUCAS 2015 spectral 

reference data in terms of Pearson’s correlation coefficient, Root 

Mean Square Error (RMSE) and unbiased Root Mean Square 

Error (ubRMSE). Second, the BSCs were tested in their ability to 

predict soil OC content by employing four Machine Learning 

(ML) algorithms (Linear Regressor (LR), Kernel Ridge 

Regressor (KR), Random Forest Regressor (RF) and Support 

Vector Regressor (SVR)) using the BSC’s L8 bands and 6 
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spectral indices as training features and the LUCAS 2015 soil OC 

content as reference training and validation data.  

 

NDVI, NBR2, BSI and S2WI were calculated from the BSC’s 

reflectance and were used as predictors for the soil OC regression 

models. Plus, PVBlue and PVIR2 spectral indices (Simone Zepp, 

2023) were calculated from the BSC reflectance and were also 

used as predictors. The best hyper parameters for the ML models 

were identified using grid search. The validation was performed 

assuming a 0.8-0.2 train-test split.  

 

3. Results 

First, the evaluation of different parameters for the BSC creation 

is performed by comparing the resulting 1-year BSCs in terms of 

correlation with LUCAS 2015 spectral reflectance. Next, we 

evaluate dynamic thresholding performance for 1-year and 6-

year BSCs in terms of correlation with LUCAS 2015 spectral 

reflectance. Lastly, we evaluate the 6-year BSCs’ ability to 

predict soil OC employing four ML models.  

 

3.1 BSC spectral reflectance 

First the use of different fixed threshold values for the indices 

NDVI and NBR2 to identify BS pixels is evaluated along with 

the use of minimum number of BS instances to include a pixel in 

the final BSC (i.e. BS frequency). Results indicated that by 

increasing BS frequency, through low-frequency pixel 

elimination, yielded substantially better correlation with the 

reference data. In Table 1, all BSCs with minimum frequency set 

to 2, for each pixel to be included in the BSC, systematically yield 

higher correlation with the reference reflectance data. In addition, 

in Table 1 it is shown that best results are achieved with NBR2 

threshold value 0.10, compared to higher values (0.20 or 0.30) in 

accordance with (José Alexandre Melo Demattê, 2018), while 

setting the NDVI threshold value lower than 0.30, results to 

decreased BSC coverage with no substantial increase in the 

correlation values. 

 

 

Table 1: Pearson's Correlation Coefficient between BSC and 

reference reflectance values and number of samples, for 

different NDVI and NBR2 fixed threshold values and different 

minimum number of BS instances. The BSCs resulted from 1-

year long L8 time series (2015). Indices used for masking: 

NDVI+NBR2+BSI, where -1<BSI<1, maximum 30% cloud 

cover. 

 

Next, setting the values 0.30 and 0.10 for the NDVI and NBR2 

threshold values, accordingly, the different indices combination 

used for BS masking, maximum cloud coverage and compositing 

methods are evaluated. In Table 2, correlation between BSC 

reflectance and reference data reflectance using different 

combinations of indices to perform the BS pixels masking is 

presented. Although adding NBR2 thresholding, decreases the 

coverage (support: number of samples from LUCAS 2015 

database that overlap with the resulting BSC), the quality of the 

BSC is drastically improved. The additional application of BSI 

thresholding marginally enhances the quality of the BSC, as 

reflected by slightly higher correlation values. The marginal 

improvement is likely due to the BSI threshold being very 

lenient. Adding S2WI to the thresholding process did not 

improve the corelation with the reference data but that is likely 

due to the S2WI threshold values being lenient. 

 

 

Table 2: Pearson's Correlation Coefficient between BSC and 

reference reflectance values and number of samples, for 

different indices combinations used for the thresholding. The 

BSCs resulted from 1-year long L8 time series (2015). 

Minimum number of BS instances was set to 2. Fixed threshold 

values: 0<NDVI< 0.30, 0<NBR2 < 0.1, -1 <BSI <1,                    

-0.8<S2WI<0, maximum 30% cloud cover. 

 

The use of different maximum cloud coverage values to filter the 

L8 images that are included in the time series is also evaluated. 

The increase of maximum image cloud coverage from 30% to 

50%, to include more input images to the BSC, did not improve 

the BSC’s coverage, and further increase to 70% reduced the 

quality of the BSC due to residual errors in cloud masking 

algorithms (Table 3). 

 

 

Table 3: Pearson's Correlation Coefficient between BSC and 

reference reflectance values and number of samples, for 

different maximum cloud cover values. The BSCs resulted from 

1-year long L8 time series (2015). Minimum number of BS 

instances was set to 2. Fixed threshold values: 0<NDVI< 0.30, 

0<NBR2 < 0.1, -1 <BSI <1, -0.8<S2WI<0, maximum 30% 

cloud cover. 

 

In Table 4 the use of different compositing methods is evaluated. 

The highest correlation between BSC and reference reflectance 

is achieved using BSCs based on the mean and median 

compositing methods of all BS appearances in the time series. 

Calculating the mean or median of all BS appearances reduces 

the influence of extreme values in surface reflectance over time, 

which are typically caused by factors such as soil moisture, 

surface roughness, and residual vegetation that were not fully 

removed through index thresholding (Castaldi, 2021).  

 

Creating a BSC by choosing the reflectance of the date with the 

minimum value of the S2WI, yielded the lowest correlation with 

the reference data. These results may be due to the low sensitivity 

of S2WI with the change in soil moisture conditions in time and 

are in accordance with (Emmanuelle Vaudour, 2021). Although 

mean and median methods yielded similar results, we opted for 

the mean compositing method, as visual inspection revealed it 

produced smoother results with limited appearance of salt and 

pepper noise. 

NDVI 

NBR2 Blue Green Red NIR SWIR1 SWIR2 Support Blue Green Red NIR SWIR1 SWIR2 Support

0.30 0.23 0.27 0.32 0.43 0.54 0.52 193 0.47 0.51 0.49 0.56 0.61 0.60 178

0.20 0.23 0.28 0.32 0.43 0.54 0.52 192 0.47 0.51 0.50 0.58 0.62 0.59 176

0.10 0.42 0.49 0.54 0.60 0.74 0.70 101 0.71 0.72 0.71 0.73 0.82 0.79 80

NDVI 

NBR2 Blue Green Red NIR SWIR1 SWIR2 Support Blue Green Red NIR SWIR1 SWIR2 Support

0.30 0.24 0.30 0.35 0.47 0.58 0.56 158 0.42 0.50 0.50 0.60 0.65 0.62 131

0.20 0.25 0.30 0.35 0.47 0.58 0.56 157 0.43 0.50 0.50 0.60 0.65 0.62 129

0.10 0.42 0.48 0.53 0.61 0.74 0.72 95 0.74 0.73 0.72 0.75 0.84 0.81 71

NDVI 

NBR2 Blue Green Red NIR SWIR1 SWIR2 Support Blue Green Red NIR SWIR1 SWIR2 Support

0.30 0.20 0.23 0.30 0.44 0.62 0.57 90 0.43 0.47 0.49 0.58 0.65 0.62 60

0.20 0.20 0.23 0.30 0.44 0.62 0.57 90 0.43 0.47 0.49 0.58 0.65 0.62 60

0.10 0.40 0.45 0.51 0.61 0.75 0.71 61 0.67 0.65 0.66 0.73 0.82 0.76 45

0.20

Minimum number of BS instances (frequency)

1 2

0.30

0.25

Indices combination Blue Green Red NIR SWIR1 SWIR2 Support

NDVI 0.44 0.49 0.48 0.56 0.61 0.59 178

NDVI+NBR2 0.67 0.69 0.69 0.71 0.81 0.79 80

NDVI+NBR2+BSI 0.71 0.72 0.71 0.73 0.82 0.79 80

NDVI+NBR2+BSI+S2WI 0.71 0.72 0.71 0.73 0.82 0.79 80

Maximum cloud 

coverage [%]
Blue Green Red NIR SWIR1 SWIR2 Support

30 0.71 0.72 0.71 0.73 0.82 0.79 80

50 0.72 0.73 0.72 0.74 0.82 0.80 80

70 0.67 0.69 0.69 0.71 0.81 0.78 82

NDVI+NBR2+BSI
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Table 4: Pearson's Correlation Coefficient between BSC and 

reference reflectance values, for different compositing methods. 

The BSCs resulted from 1-year long L8 time series (2015). 

Minimum number of BS instances was set to 2. Fixed threshold 

values: 0<NDVI< 0.30, 0<NBR2 < 0.1, -1 <BSI <1,                   

-0.8<S2WI<0, maximum 30% cloud cover. 

 

Next the use of dynamic (Dy) thresholding to differentiate BS 

while employing 1-year or 6-year long L8 time series is 

evaluated. In Table 5 comparison of BSC’s reflectance with the 

reference data for BSCs with or without dynamic thresholding 

with different indices and combinations of them is presented (1-

year BSC). The fixed threshold for NDVI is set to 0.30. While no 

dynamic thresholding (fixed thresholding applied only) yielded 

good results, the application of it (fixed thresholding and then 

dynamic thresholding applied) with either index or combination 

of indices did not improve the correlation with the reference data 

and significantly reduced the coverage.  That is due to the 

minimum number of BS instances constraint applied after the 

dynamic thresholding. It is worth noting that the RMSE is lower 

for the BSCs with DyBSI (fixed thresholding and then dynamic 

thresholding with BSI applied) and higher for the BSCs with 

DyS2WI, compared to the fixed thresholding BSC. Upon visual 

investigation, we observed that high BSI values generally 

correspond to pixels with higher reflectance values (brighter), 

while low S2WI values correspond to pixels with lower 

reflectance values (darker) in our study area.  

 

Similarly, in Table 6 comparison of BSC’s reflectance with the 

reference data for BSCs with or without dynamic thresholding 

with different indices and combinations of them is presented (6-

year BSC). The fixed threshold for NDVI is set to 0.30. When 

dynamic thresholding is applied for each of the three indices 

alone (i.e. DyBSI, DyNBR2, DyS2WI) the coverage of the BSC 

is moderately reduced but in some cases the correlation and 

RMSE are improved. DyBSI yielded better correlation with the 

reference data on the NIR and SWIR part of the spectrum and 

overall lower RMSE. With the exception of a lower correlation 

in the visible-near-infrared (VNIR) part of the spectrum, 

DyNBR2 achieved results that were generally comparable to 

those of the fixed thresholding. DyS2WI achieved higher 

correlation than the fixed thresholding method for most of the 

bands but RMSE values are generally higher.  

 

Using dynamic thresholding on two or more indices 

simultaneously significantly reduced the coverage of the BSC 

without improving correlation or RMSE. Especially the 

combination of DyBSI and DyS2WI, yielded the lowest 

correlation and has the lowest coverage. These two indices 

highlight the pixels with highest and lowest reflectance values 

respectively, so their combination resulted in the elimination of 

many pixels.  

 

Most of the experiments achieved ubRMSE around 0.03 for the 

RGB bands and 0.05 for the infrared bands, indicating the 

residual effect of crop residue and soil moisture. 

 

 

Table 5: Pearson's Correlation Coefficient, RMSE and ubRMSE 

between BSC and reference reflectance values, for dynamic 

thresholding with different indices. The BSCs resulted from 1-

year long L8 time series (2015). Minimum number of BS 

instances was set to 2. Fixed threshold values: 0<NDVI< 0.30, 

0<NBR2 < 0.1, -1 <BSI <1, maximum 30% cloud cover. 

 

 

Table 6: Pearson's Correlation Coefficient, RMSE and ubRMSE 

between BSC and reference reflectance values, for dynamic 

thresholding with different indices. The BSCs resulted from 6-

year long L8 time series (2015-2020). Minimum number of BS 

instances was set to 2. Fixed threshold values: 0<NDVI< 0.30, 

0<NBR2 < 0.1, -1 <BSI <1, maximum 30% cloud cover. 

 

In Table 7 metrics for the 6-year BSCs with fixed threshold for 

NDVI set to 0.25 are presented. In this case the relative 

performance differences between the composites derived with 

fixed thresholding versus with dynamic thresholding is 

comparable to those observed with more lenient NDVI threshold 

(Table 6) but overall, the results are slightly lower.  

 

Comparing the results for the BSC with no dynamic thresholding 

and stricter NDVI threshold (0.25) to the BSCs with dynamic 

thresholding and more lenient NDVI threshold (0.30) , it is worth 

noting that the coverage is similar in both cases (114 and 111 

support) but metrics values are improved in the latter case 

(lenient NDVI threshold, dynamic thresholding), especially in 

the NIR and SWIR part of the spectrum. 

Compositing 

method
Blue Green Red NIR SWIR1 SWIR2

Mean 0.71 0.72 0.71 0.73 0.82 0.79

Median 0.72 0.73 0.71 0.71 0.81 0.78

Min BSI 0.63 0.64 0.65 0.62 0.73 0.70

Min NBR2 0.63 0.65 0.63 0.64 0.74 0.72

Min NDVI 0.61 0.61 0.62 0.66 0.77 0.74

Min S2WI 0.63 0.63 0.62 0.59 0.71 0.68

Metrics Blue Green Red NIR SWIR1 SWIR2 Support

r
2 0.71 0.72 0.71 0.73 0.82 0.79

RMSE 0.05 0.07 0.09 0.10 0.16 0.18

ubRMSE 0.02 0.03 0.04 0.05 0.05 0.05

r
2 0.74 0.73 0.67 0.73 0.82 0.78

RMSE 0.04 0.05 0.07 0.07 0.13 0.15

ubRMSE 0.02 0.03 0.04 0.04 0.05 0.05

r
2 0.67 0.66 0.60 0.63 0.74 0.72

RMSE 0.05 0.07 0.09 0.11 0.16 0.18

ubRMSE 0.02 0.03 0.04 0.05 0.06 0.05

r
2 0.68 0.68 0.63 0.64 0.78 0.75

RMSE 0.06 0.08 0.10 0.12 0.18 0.19

ubRMSE 0.02 0.03 0.03 0.05 0.05 0.05

r
2 0.85 0.82 0.72 0.72 0.84 0.79

RMSE 0.05 0.07 0.09 0.10 0.14 0.16

ubRMSE 0.01 0.02 0.03 0.04 0.04 0.04

r
2 0.74 0.74 0.68 0.67 0.79 0.74

RMSE 0.04 0.05 0.07 0.08 0.12 0.14

ubRMSE 0.02 0.03 0.04 0.05 0.05 0.05

r
2 0.72 0.71 0.66 0.68 0.81 0.78

RMSE 0.06 0.08 0.11 0.13 0.19 0.20

ubRMSE 0.02 0.03 0.04 0.05 0.05 0.05

NDVI+NBR2+BSI + Dy(S2WI) 56

NDVI+NBR2+BSI                   

(No Dynamic Thresholding)
80

NDVI+NBR2+BSI + Dy(BSI) 56

NDVI+NBR2+BSI + Dy(NBR2) 56

NDVI+NBR2+BSI + 

Dy(BSI+S2WI)
9

NDVI+NBR2+BSI + 

Dy(NBR2+BSI)
28

NDVI+NBR2+BSI + 

Dy(NBR2+S2WI)
30

Metrics Blue Green Red NIR SWIR1 SWIR2 Support

r
2 0.75 0.76 0.74 0.76 0.82 0.80

RMSE 0.06 0.07 0.10 0.10 0.16 0.18

ubRMSE 0.02 0.03 0.03 0.04 0.05 0.04

r
2 0.73 0.74 0.73 0.78 0.85 0.81

RMSE 0.05 0.06 0.07 0.07 0.12 0.14

ubRMSE 0.02 0.03 0.04 0.04 0.05 0.05

r
2 0.71 0.71 0.71 0.73 0.82 0.78

RMSE 0.06 0.07 0.09 0.10 0.16 0.17

ubRMSE 0.02 0.03 0.04 0.05 0.05 0.05

r
2 0.75 0.78 0.78 0.76 0.83 0.79

RMSE 0.06 0.08 0.11 0.12 0.18 0.19

ubRMSE 0.02 0.03 0.03 0.04 0.05 0.04

r
2 0.62 0.62 0.61 0.63 0.77 0.75

RMSE 0.05 0.06 0.08 0.09 0.13 0.15

ubRMSE 0.02 0.03 0.03 0.05 0.05 0.05

r
2 0.68 0.69 0.69 0.76 0.83 0.78

RMSE 0.04 0.05 0.07 0.07 0.12 0.14

ubRMSE 0.02 0.03 0.04 0.04 0.05 0.05

r
2 0.73 0.73 0.71 0.69 0.81 0.79

RMSE 0.06 0.08 0.11 0.12 0.18 0.19

ubRMSE 0.02 0.03 0.03 0.04 0.05 0.05

NDVI+NBR2+BSI                   

(No Dynamic Thresholding )
122

NDVI+NBR2+BSI + Dy(BSI) 111

NDVI+NBR2+BSI + Dy(NBR2) 111

111

NDVI+NBR2+BSI + 

Dy(BSI+S2WI)
58

NDVI+NBR2+BSI + 

Dy(NBR2+BSI)
83

NDVI+NBR2+BSI + 

Dy(NBR2+S2WI)
84

NDVI+NBR2+BSI + Dy(S2WI)
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Table 7: Pearson's Correlation Coefficient, RMSE and ubRMSE 

between BSC and reference reflectance values, for dynamic 

thresholding with different indices. The BSCs resulted from 6-

year long L8 time series (2015-2020). Minimum number of BS 

instances was set to 2. Fixed threshold values: 0<NDVI< 0.25, 

0<NBR2 < 0.1, -1 <BSI <1, maximum 30% cloud cover. 

 

3.2 Soil OC prediction  

The resulting BSCs from the 6-year long L8 time series, with 

fixed thresholding values: 0<NDVI< 0.30, 0<NBR2 < 0.1, -1 

<BSI <1, maximum 30% cloud cover, minimum number of BS 

instances set to 2, and LUCAS 2015 database were selected to 

create regression models for soil OC prediction, in order to assess 

how the various indices, via dynamic thresholding, influenced the 

quality of the BSC. In Table 8 R2 and RMSE for LR, KR, RF and 

SVR regression models with the BSCs are presented. A large 

variability in the results is observed.  

 

 

Table 8: Validation results of the soil OC prediction models. 

The statistics used: R2 = coefficient of determination; RMSE = 

root mean square error. LR: Linear Regression, KR: Kernel 

Ridge Regressor, RF: Random Forest Regressor, SVR: Support 

Vectors Regressor. 

 

Models based on the BSCs created with DyBSI and DyNBR2 

yielded significantly better results compared to the model based 

on the BSC with fixed thresholding. BSC with DyBSI yielded 

substantially higher R2 and lower RMSE than the BSC with fixed 

thresholding with all models and was the one that had the most 

stable performance. BSC with DyNBR2 yielded higher R2 and 

lower RMSE than the BSC with fixed thresholding with all 

models, except LR. However, the results were dependent on the 

regressor used (i.e. R2 0.73 with the KR regressor but 0.17 with 

the RF). BSC with DyS2WI yielded moderate R2 and RMSE 

when KR or SVR were employed but still these results were 

better than the BSC with fixed thresholding.  

 

The models derived from the dynamic thresholding with 

combinations of the indices have lower support and thus are not 

directly comparable. It is noted that the models based on the Dy 

NBR2+BSI yielded good results with the KR algorithm, but the 

performance was not good for the rest of the regressors. 

 

Overall, LR models appeared insufficient to capture the 

complexity of the problem, as evidenced by their comparatively 

lower performance. KR and SVR yielded the best performances 

amongst all BSCs.  

 

A

 

B

 

C

 

D

 

Figure 1: Frequency of Organic Carbon values from the 

LUCAS 2015 database. The samples that overlay with each 

BSC. A) NDVI+NBR2+BSI (No Dynamic Thresholding), B) 

NDVI+NBR2+BSI + Dy(BSI), C) NDVI+NBR2+BSI + 

Dy(NBR2), D) NDVI+NBR2+BSI + Dy(S2WI). 

 

In Figure 1 the distribution of OC in-situ values of the samples 

that overlap with each BSC are presented for the experiments 

with minimally adequate number of samples. The distributions 

are right skewed with very few samples having OC values greater 

that 25 g Kg-1. The BSCs created with DyBSI, DyNBR2 or 

DyS2WI respectively have the same distribution of target values 

(Figure 1 B, C and D), thus they are directly comparable using 

R2 and RMSE. BSC with fixed thresholding includes more 

samples (122 compared to 111 with the dynamic thresholding) 

with low values of OC in the in-situ dataset (0-10 g Kg-1). 

 

In Figure 2 the scatterplots of the KR regression experiments with 

minimally adequate number of samples are presented. All models 

tend to overestimate low OC values, a pattern that is commonly 

reported in the literature (Klara Dvorakova P. S., 2020), (Diego 

Urbina-Salazar, 2023). Notably, the BSC generated with fixed 

thresholding (Figure 2A) exhibited the most significant 

overestimation of low OC values among all methods which may 

indicate insufficient BS masking. While BSC generated with 

DyBSI (Figure 2B) exhibited the least overestimation of low OC 

values. Samples with large OC values on the other hand tend to 

be significantly underestimated for all models, which is also 

reported by (Tom Broeg, 2024), except when DyBSI or DyNBR2 

was used (Figure 2 B and C). Underestimation of larger OC 

values was observed by (Fabio Castaldi S. C., 2019) when NBR2 

threshold value was increased by 0.05 to 0.10. BSCs derived 

using DyNBR2 or DyBSI facilitated improved performance in 

Metrics Blue Green Red NIR SWIR1 SWIR2 Support

r
2 0.75 0.74 0.73 0.76 0.82 0.79

RMSE 0.06 0.07 0.10 0.11 0.16 0.18

ubRMSE 0.02 0.03 0.03 0.04 0.05 0.05

r
2 0.71 0.72 0.71 0.77 0.84 0.80

RMSE 0.05 0.06 0.07 0.08 0.12 0.14

ubRMSE 0.02 0.03 0.04 0.04 0.05 0.05

r
2 0.68 0.67 0.67 0.70 0.81 0.77

RMSE 0.05 0.07 0.09 0.10 0.15 0.17

ubRMSE 0.02 0.03 0.04 0.05 0.05 0.05

r
2 0.73 0.76 0.76 0.75 0.82 0.79

RMSE 0.06 0.08 0.11 0.12 0.18 0.19

ubRMSE 0.02 0.03 0.03 0.04 0.05 0.04

r
2 0.62 0.60 0.58 0.61 0.75 0.72

RMSE 0.05 0.06 0.08 0.09 0.13 0.15

ubRMSE 0.02 0.03 0.04 0.05 0.05 0.05

r
2 0.68 0.69 0.70 0.74 0.82 0.76

RMSE 0.04 0.05 0.07 0.07 0.12 0.14

ubRMSE 0.02 0.03 0.04 0.04 0.05 0.05

r
2 0.70 0.68 0.66 0.65 0.78 0.77

RMSE 0.06 0.08 0.11 0.12 0.18 0.19

ubRMSE 0.02 0.03 0.03 0.05 0.05 0.05

NDVI+NBR2+BSI + 

Dy(NBR2+S2WI)
76

NDVI+NBR2+BSI + Dy(S2WI) 101

NDVI+NBR2+BSI + 

Dy(BSI+S2WI)
55

NDVI+NBR2+BSI + 

Dy(NBR2+BSI)
75

NDVI+NBR2+BSI                   

(No Dynamic Thresholding)
114

NDVI+NBR2+BSI + Dy(BSI) 101

NDVI+NBR2+BSI + Dy(NBR2) 101

Regression Algorithm

Metrics R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE

NDVI+NBR2+BSI                           

(No Dynamic Thresholding)
0.01 10.55 -0.27 11.94 -0.77 14.13 -0.09 11.09 122

NDVI+NBR2+BSI + Dy(BSI) 0.07 10.38 0.69 6.01 0.65 6.34 0.45 7.96 111

NDVI+NBR2+BSI + Dy(NBR2) -0.08 11.20 0.73 5.56 0.17 9.81 0.55 7.23 111

NDVI+NBR2+BSI + Dy(S2WI) -0.20 11.79 0.29 9.07 -0.80 14.43 0.33 8.78 111

NDVI+NBR2+BSI + 

Dy(BSI+S2WI)
-0.53 17.07 -0.10 14.48 0.02 13.70 0.03 13.57 58

NDVI+NBR2+BSI + 

Dy(NBR2+BSI)
0.39 9.37 0.81 5.23 0.08 11.51 0.25 10.37 83

NDVI+NBR2+BSI + 

Dy(NBR2+S2WI)
-5.48 9.68 -7.33 10.98 -3.50 8.06 -19.22 17.10 84

Support
LR KR RF SVR
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this context; however, the limited number of samples with high 

OC content is constraining.  

 

A

 

B

 

C

 

D

 

Figure 2: The Kernel Ridge regression scatter plots for each 

BSC. The samples that overlay with each BSC. A) 

NDVI+NBR2+BSI (No Dynamic Thresholding), B) NDVI+NBR2+BSI 

+ Dy(BSI), C) NDVI+NBR2+BSI + Dy(NBR2), D) NDVI+NBR2+BSI 

+ Dy(S2WI). 

 

In Figure 3 the Days of Year (DOY) when each thresholding 

methodology detected BS, for each BSC, is presented. For all 

methodologies the majority of BS instances is detected in late 

spring, when fields are prepared for sowing.  Fewer BS instances 

are detected in the summer when most crops are growing, and 

fields are covered in vegetation.  DyBSI (Figure 3 B) detects the 

least amount of BS instances in autumn, when crops are 

harvested and a lot of crop residue is present, and in the winter, 

when soil moisture is high. This may explain the good 

performance of this methodology regarding correlation with 

reference data and soil OC prediction models. DyNBR2+BSI 

methodology (Figure 3 F) also detects very few BS instances in 

autumn and in winter which may explain the good performance 

with KR regressor but since the sampling points where few, due 

to limited coverage, the performance was unstable when 

considering all regressors. Overall BSCs with prevalent late 

spring reflectance seems to have the best correlation with 

LUCAS 2015 database data.  

 

DyNBR2 (Figure 3 C) detects more instances in early spring 

which may indicate the ability of NBR2 to detect crop residue-

free BS pixels but also detects more instances in the winter when 

soil moisture is prevalent. It also detects very few in the summer 

which may indicate the ability of the method to also detect green 

vegetation. Fixed thresholding methodology (Figure 3 A) detects 

more BS instances in the summer than any other methodology, 

which indicates that fixed thresholding alone may not be 

adequate to identify BS pixels with no green vegetation. It also 

detects a lot of BS pixels in the winter when soil moisture is 

prevalent. These may explain the low performance of the fixed 

thresholding BSC in the soil OC prediction models (Table 8). 

DyS2WI methodology detects the most amount of BS pixels in 

the winter which may explain the lower performance compared 

to DyBSI or DyNBR2, since LUCAS 2015 in-situ data represent 

soil reflectance without disturbing factors such as soil moisture 

(Gergely Tóth, 2013).  

A 

 

B 

 

C 

 

D 

 
E 

 

F 

 
G 

 

Figure 3: Dates, in DOY form, when BS was detected by every 

methodology. A) NDVI+NBR2+BSI (No Dynamic 

Thresholding), B) NDVI+NBR2+BSI + Dy(BSI), C) 

NDVI+NBR2+BSI + Dy(NBR2), D) NDVI+NBR2+BSI + 

Dy(S2WI), E) NDVI+NBR2+BSI + Dy(BSI+S2WI), F) 

NDVI+NBR2+BSI + Dy(NBR2+BSI) and G) 

NDVI+NBR2+BSI + Dy(NBR2+S2WI). 

 

DyBSI+S2WI (Figure 3 E) detects very few BS pixels in the 

winter but relatively large amount of BS pixels in the summer. It 

is possible that it can detect low soil moisture pixels but misses 

the green vegetation information. In any case the number of 

samples is too low to accurately explain the performance of this 

BSC regarding soil OC prediction. DyNBR2+S2WI (Figure 3 G) 

displays a very similar DOY distribution to DyNBR2 but detects 

more BS pixels during the winter. It is also the one with the most 

spread distribution of DOYs in the year.  

 

In Figure 4 the NDVI+NBR2+BSI+DyBSI BSC for the entire 

country is presented (6-year long L8 time series, with fixed 

thresholding values: 0<NDVI< 0.30, 0<NBR2 < 0.1, -1<BSI <1, 

maximum 30% cloud cover, minimum number of BS instances 

set to 2). All the main agricultural plains of Greece are covered 

by the BSC and are visible in the top map. Grey denotes areas 

where no BS was detected, and this is mainly due to forests or 

built-up areas. It is also noted that areas where mainly olive grove 

trees or fruit trees are cultivated have very little coverage as 

expected. 

                                                                                                    

In the bottom part of Figure 4, parts of two large agricultural 

plains (Thessalian plain and Thessaloniki plain) are presented. 

The agricultural fields have good coverage while the no data 

areas are mainly built-up areas, forests and rivers. The resulting 
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BSC has a uniform appearance and localized colour variations 

across different areas and regions are visible. 

 

 

 
Figure 4: Bare Soil Composite (BSC), natural colour composite 

(RGB-432), Greece (top), Thessalian agricultural plain (bottom 

left) and Thessaloniki agricultural plain (bottom right). Grey 

denotes no data (pixels where no BS was detected).  

 

4. Conclusions 

This study highlights that careful selection of the parameters used 

to create a Bare Soil Composite can significantly improve its 

quality and performance for accurate soil mapping. We tested the 

performance of various widely used spectral indices for BS 

identification and results showed that simultaneous use of indices 

yielded better results. Setting a minimum number of BS 

observations had great impact on the quality of the resulting BSC. 

Dynamic thresholding demonstrated significant potential for 

accurately identifying bare soil (BS) while maintaining high 

coverage. The use of different spectral indices in a dynamic 

thresholding setting, led to the dominance of different seasons in 

the resulting BSCs, thereby influencing the prevailing reflectance 

characteristics, which is crucial for effective BS mapping. 

(Emmanuelle Vaudour C. G., 2019),  (Klara Dvorakova U. H., 

2021). Dynamic thresholding did not improve the accuracy when 

1-year of L8 data was used, possibly due to very low bare soil 

frequency but proved beneficial when 6 years were used. The 

best compositing methods in terms of correlation with the 

reference data, were the mean and median methods. These BSCs 

had also minimum salt and pepper noise which is a known issue 

(José Alexandre Melo Demattê, 2018). Maximum cloud cover 

threshold applied for filtering L8 timeseries did not notably 

increased the coverage of the BSCs.  

Although the number of usable in-situ measurements in the 

LUCAS 2015 database was low for modelling soil OC over the 

entire Greece which is characterized by very diverse conditions, 

a lot of different soil groups, where many different crops are 

cultivated with different cultivation technics, a preliminary 

evaluation of the performance of the BSCs for such task was 

attempted. Aim of this study was to find whether the resulting 

BSCs can potentially contain valuable information towards OC 

estimation. Results showed the improvement of the model’s 

performance when dynamic thresholding with certain spectral 

indices was used and common issues like over/under estimation 

of OC predicted values were mitigated but further investigation 

with more exhaustive training dataset is needed in the future.  

 

All in all, this work targeted the accurate bare soil reflectance 

mapping in Greece at medium spatial resolution by 

benchmarking the performance of various compositing 

approaches, while providing a thorough assessment of the 

contribution of different techniques. We demonstrated that 

estimating bare soil reflectance from multispectral satellite image 

time series can be significantly improved through careful 

selection and optimization of a wide range of parameters. The 

results offer a strong basis for refining methodologies in bare soil 

reflectance estimation over large heterogeneous areas and 

provide insightful information for future monitoring efforts 

aimed at supporting sustainable soil management and combating 

soil degradation globally. 
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