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Abstract

Remote sensing (RS) imagery is important for applications ranging from land cover and land use (LCLU) mapping to agriculture
and forest monitoring. However, there is a limited availability of high-quality labeled data to use as a reference to train supervised
learning (SL) models. Semi-supervised learning (SSL) frameworks, such as UniMatch (Yang et al., 2023), use pseudo-labeling and
consistency regularization methods to address this limitation. Similar works have been adapted to RS: LSST (Lu et al., 2022) re-
fines pseudo-labels with adaptive class-specific thresholds, while RS-DWL (Huang et al., 2024) mitigates noise and class imbalance
through decoupled learning and confidence-based weighting. Despite these advances, SSL applications to multimodal RS imagery
remain underexplored. We address this gap by adapting the SSL framework UniMatch to incorporate diverse encoders and mul-
timodal remote sensing data for LCLU segmentation. We experimented on FLAIR-2 (Garioud et al., 2023), a dataset that combines
very high-resolution aerial imagery (RGB) with near-infrared (NIR) data and elevation measurements (above-ground height). Key
findings reveal that we achieved the best segmentation results using a transformer encoder for SL and SSL scenarios. When com-
paring RGB-only data and multimodal data, we observed that some classes, like “buildings”, “water”, and “coniferous”, benefited
from the inclusion of NIR and elevation information. In the semi-supervised experiments, where only half of the data was labeled,
and the remaining half was used as unlabeled (simulating a real-world scenario), the multimodal SSL approach outperformed the
fully supervised learning (FSL) approach using only the labeled subset (1/2). These results highlight the strong potential of data
fusion in RS applications with limited labeled data.

1. Introduction

Land cover refers to the physical materials on the Earth’s sur-
face, like vegetation, bare soil, and water, while land use is used
to describe human activities like agriculture and urban areas.
Timely and consistent land cover and land use classification
(LCLU) maps are essential to monitor rapid urbanization, de-
forestation, and agricultural expansion. Remote Sensing (RS)
allows us to obtain images of the Earth -typically through satel-
lites, aircraft, or drones- making it easier to perform large-scale
and cost-effective LCLU (Read and Torrado, 2009). Long-term
satellite missions like NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS) have allowed the annual produc-
tion of global land cover maps (e.g., MCD12Q1) since 2001,
although at a coarse spatial resolution of 500 meters (Friedl
and Sulla-Menashe, 2019). More recently, the European Space
Agency (ESA) delivered WorldCover with a spatial resolution
of 10 m based on Sentinel-1 and Sentinel-2 data (Zanaga et
al., 2021). In parallel, countries strive to create country-scale
submeter-level LCLU maps at 0.25–0.5 m spatial resolution
derived from national aerial survey programs (Yokoya et al.,
2024).

Deep Learning (DL) for image processing and data analysis has
provided innovative solutions to detect and classify objects on
Earth. Its ability to learn directly from raw data reduces re-
liance on manual feature engineering. Although raw data is
generally abundant, insufficient high-quality human-labeled in-
formation makes classifying large reference datasets a persist-
ent challenge. Some promising techniques that aim to bypass
this barrier include transfer learning, self-supervised learning,
semi-supervised learning, few-shot learning, active learning,
weakly supervised learning, and more (Safonova et al., 2023).

In order to reduce the costly and labor-intensive process of
manual pixel annotations on high-resolution imagery, some
studies have developed workflows that use OpenStreetMap
(OSM)(Wan et al., 2017), which provides information concern-
ing roads and building footprints worldwide. Also, RS work-
flows often incorporate Vegetation indices (VI), such as the
widely used Normalized Difference Vegetation Index (NDVI),
to improve classification accuracy. VIs are combinations of red
and near-infrared reflectance and help monitor green vegeta-
tion (Rojas et al., 2011). Furthermore, the fusion of RS images
and digital surface model (DSM) data has the potential to de-
tect changes in urban areas (Tian et al., 2022). Although mul-
timodal data fusion has been widely explored to improve LCLU
classification, its integration with SSL remains significantly un-
derexplored, thus motivating our research.

This study addresses these gaps by integrating SSL with mul-
timodal data and assessing its efficacy in remote sensing seg-
mentation tasks. We adapt UniMatch (Yang et al., 2023), a
state-of-the-art SSL framework, to process multimodal remote
sensing data, enabling more effective segmentation by lever-
aging both labeled and unlabeled samples. To evaluate its ef-
fectiveness, we benchmark five encoder architectures, compar-
ing their performance in supervised and semi-supervised set-
tings. Our experiments demonstrate that SSL significantly im-
proves segmentation accuracy, especially in scenarios with lim-
ited labeled data, underscoring its potential for large-scale re-
mote sensing applications.

Our contributions are as follows:

• Multimodal SSL Adaptation – We extend UniMatch
to incorporate multimodal inputs, integrating additional
spectral bands (NIR) and elevation data to improve very
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high-resolution land cover classification based on sub-
meter aerial imagery. This integration enables richer fea-
ture learning for land cover segmentation and represents
one of the first applications of UniMatch to multimodal
RS data.

• Comprehensive Encoder Benchmarking – We perform
an extensive comparison of five encoder architectures
(ResNet, EfficientNet, and MiT variants) across super-
vised and semi-supervised settings, identifying MiT-B2 as
the most effective model for multimodal segmentation.

• SSL Performance in Label-Scarce Scenarios – We
assess SSL performance under different labeled-to-
unlabeled data ratios (50%, 25%, and 12.5%) to evalu-
ate how SSL scales with reduced supervision. Our res-
ults demonstrate that SSL significantly boosts segment-
ation accuracy, maintaining high segmentation accuracy
even when labeled data is minimal.

These findings highlight the potential of SSL and multimodal
data fusion for remote sensing applications, providing a scal-
able approach to LCLU in label-constrained scenarios.

2. Related work

Firstly, we investigate recent progress in image segmentation,
followed by a discussion on semi-supervised semantic segment-
ation, particularly emphasizing remote sensing images.

2.1 Deep Learning for Image Segmentation

Deep learning has significantly advanced image classification,
with convolutional neural networks (CNNs) forming the back-
bone of many state-of-the-art models. ResNet (He et al., 2016)
introduced deep residual learning to address vanishing gradi-
ents, enabling the training of very deep networks, while Effi-
cientNet (Tan and Le, 2019) proposed a compound scaling ap-
proach that optimally balances network depth, width, and res-
olution, improving both accuracy and efficiency.

Semantic segmentation extends image classification from
image-level to pixel-wise predictions. Fully convolutional net-
works (FCNs) (Long et al., 2015) pioneered this task by elim-
inating fully connected layers, enabling end-to-end dense clas-
sification. DeepLab (Chen et al., 2018a) improved upon FCN
by introducing atrous (dilated) convolutions, which expand the
receptive field without increasing computational cost, allowing
multi-scale context capture. To further enhance segmentation,
DeepLab introduced atrous spatial pyramid pooling (ASPP),
which applies multiple parallel atrous convolutions with differ-
ent rates, effectively capturing objects and contextual inform-
ation at multiple scales. Another major approach to semantic
segmentation involves encoder-decoder architectures such as
U-Net (Ronneberger et al., 2015), which gradually recover fine-
grained spatial details. Initially designed for biomedical image
segmentation, U-Net introduced skip connections that preserve
high-resolution features, making it highly effective for remote
sensing and other segmentation tasks. DeepLabV3+ (Chen et
al., 2018b) incorporates elements from both spatial pyramid
pooling and encoder-decoder structures, using a DeepLabV3
encoder with a lightweight decoder module to recover spatial
details lost in deep feature extraction, improving boundary de-
lineation.

Recent methods have proved the effectiveness of transformer-
based architectures. Vision transformers (ViTs) (Kolesnikov
et al., 2021) achieved state-of-the-art performance in image
classification by utilizing self-attention for global feature ex-
traction. However, traditional ViTs lack the inductive biases
of CNNs, making them data-hungry and computationally ex-
pensive. Hybrid approaches such as SegFormer (Xie et al.,
2021) addressed this by integrating a hierarchical transformer
encoder with a lightweight multi-layer perceptron (MLP) de-
coder, achieving efficient and accurate segmentation. It em-
ploys mix transformers (MiT), a series of encoders designed to
generate multi-level hierarchical features crucial for dense pre-
diction. These advancements highlight the ongoing shift from
purely convolutional architectures to hybrid and transformer-
based models, significantly improving semantic segmentation
across various domains, including remote sensing.

2.2 Semi-supervised semantic segmentation

Semantic segmentation requires labeling each pixel in an im-
age, which makes the task very time-consuming and labor-
intensive. Semi-supervised learning (SSL) helps solve this
problem by using a small set of labeled examples along with
a large amount of unlabeled data to improve segmentation per-
formance. Recent progress in SSL for segmentation is primarily
classified into two methodologies: consistency regularization
and pseudo-labeling (Huang et al., 2024).

Consistency regularization ensures that model predictions re-
main stable under image, feature, and network perturbations
by applying a regularization term to the final loss (e.g., cross-
entropy). CutMix (Yun et al., 2019) is an image perturbation
technique that enhances generalization by cutting and pasting
patches between images while mixing their labels proportion-
ally. Whereas cross-consistency training (CCT) (Ouali et al.,
2020) enforces consistency by training auxiliary decoders on
perturbed inputs and aligning their predictions with the main
decoder.

Pseudo-labeling and self-training iteratively refines high-
confidence predictions on unlabeled data to enhance learning.
ST++ (Yang et al., 2022) improves traditional self-training by
using strong data augmentations (SDA) to reduce overfitting
and selectively retraining on reliable unlabeled images. U2PL
(Wang et al., 2022) ensures that all pixels contribute to training
by classifying low-confidence predictions as negative samples
rather than discarding them. It dynamically adjusts reliability
thresholds, adapting to model evolution.

Hybrid methodologies enhance model robustness by integrat-
ing multiple techniques. FixMatch (Sohn et al., 2020) employs
weak-to-strong consistency regularization, generating pseudo-
labels from weakly augmented images and enforcing consist-
ency on strongly perturbed versions when predictions exceed
a 0.95 confidence threshold. CoMatch (Li et al., 2021) ex-
tends FixMatch by using weakly augmented images to gener-
ate pseudo-labels, which then guide class predictions on two
strongly augmented versions. It further integrates contrastive
and graph-based learning, leveraging InfoNCE loss (Oord et al.,
2019) to enforce consistency across augmented views while im-
proving feature separation across categories.

Although FixMatch and CoMatch’s primary goal is image clas-
sification, recent SSL frameworks incorporate these into im-
age segmentation. The Unified Dual-Stream Perturbations ap-
proach (UniMatch) (Yang et al., 2023) builds upon FixMatch
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Figure 1. Semi-supervised Semantic Segmentation Framewoks:
(a) FixMatch and (b) UniMatch.

by introducing dual-stream perturbations at both the image level
and the feature level. It enforces two strong augmented data to a
single weakly augmented data and uses unlabeled data for rep-
resentation learning. In figure 1, we can observe a comparison
between FixMatch and UniMatch. Given an unlabeled image
U , for UniMatch, there are four potential outcomes. First, they
apply a weak augmentation xw to resize, randomly crop, and
flip the image. Then, they apply a feature perturbation xfp to
the weakly augmented sample by introducing a channel dropout
with a 50% probability between the encoder and decoder. Fi-
nally, they apply two strong augmentations xs1 and xs2: one
using the ST++ augmentation strategy and the other using Cut-
Mix. Finally, they use consistency regularization between the
prediction pw of xw and the predictions pfp, ps1, and ps2 from
its augmented versions xfp, xs1 and xs2, respectively. In the
case of FixMatch, there’s only one weak augmentation xw and
one strong augmentation xs1, and the consistency regulariza-
tion is performed between pw and xs.

2.3 Remote sensing Semantic Image Segmentation

Some works apply SSL in the remote sensing domain and coin
the term remote sensing semi-supervised semantic segmenta-
tion (RS-SSS) (Huang et al., 2024).

Linear sampling selftraining (LSST) (Lu et al., 2022), whose
work is based on (Yang et al., 2022), investigated that the ap-
plication of strong data augmentations (SDA) to RS images
tends to corrupt data distribution and impair model perform-
ance. Therefore, they constructed SDA applicable to RS images
from the following three aspects: color transformation (CT),
geometric transformation (GT), and CutOut.When comparing
a baseline model without augmentations and models using dif-
ferent SDAs on unlabeled images, they found that using only
CT led to a 1.15 improvement in mIoU. Similarly, using GT
alone boosted the mIoU by 1.37. However, the best results were
achieved when combining all three augmentations —CT, GT,
and Cutout—resulting in the largest gain of 1.91 mIoU.

Other studies investigate pseudo-label confidence in remote
sensing data because performance can degrade due to the inevit-
able memorization of wrong pseudo-labeling of unlabeled data.
Decoupled weighting learning (DWL) (Huang et al., 2024)
proposes two modules: decoupled learning and ranking weight-
ing. During training, the decoupled learning module separates
the predictions of the labeled and unlabeled data to decrease

the negative impact of the self-training of the wrongly pseudo-
labeled unlabeled data on the supervised training of the labeled
data.

Because most of the studies on SSL are based on aerial datasets
for image classification, recent works have advanced RS-SSS
by creating datasets with dedicated partitions for labeled and
unlabeled data. MiniFrance (Castillo-Navarro et al., 2022) was
the first aerial semi-supervised dataset for semantic segment-
ation, but it only contemplated RGB data. The Data Fusion
Contest (DFC2022) (Hänsch et al., 2022) extended the data-
set by incorporating elevation bands. Nevertheless, the absence
of test set labels limits its utility for benchmarking. More re-
cently, the FLAIR-2 dataset (Garioud et al., 2023) integrates
very high-resolution (0.2m) mono-temporal aerial imagery with
high-resolution Sentinel-2 satellite time series for multimodal
remote sensing image segmentation.

3. Methodology

This section describes the remote sensing dataset used in our
study, focusing on the train/validation/test splits and the ra-
tio of labeled to unlabeled data. We also outline the semi-
supervised learning (SSL) training framework, including details
of the encoder-decoder strategy and the configurations required
for our experiments.

3.1 Training splits for supervised and semi-supervised

For semi-supervised learning (SSL) experiments, we created
labeled and unlabeled partitions of the training data, following
SSL protocols such as those in Unimatch (Yang et al., 2023) and
LSST (Lu et al., 2022). We experimented with three labeled-
to-unlabeled ratios: 50% labeled (1/2 split), where half of
the training dataset is labeled while the other half remains un-
labeled; 25% labeled (1/4 split); and 12.5% labeled (1/8 split),
maximizing the use of unlabeled data.

In the fully supervised learning (FSL) scenario, we use all
available labeled samples (100%). However, we also conduct
experiments using 50%, 25%, and 12.5% of the dataset in a
supervised manner, without an unlabeled portion. When dis-
cussing baselines, we differentiate between Baseline SL (su-
pervised learning), which refers to training with 100%, 50%,
25%, or 12.5% of the data in a supervised manner without any
unlabeled samples, and Baseline SSL (semi-supervised learn-
ing), which follows a semi-supervised approach.

3.2 SSL framework and encoder-decoder strategy

Framework. We employed the Unified Dual-Stream Perturba-
tions approach (UniMatch) (Yang et al., 2023), an SSL frame-
work designed for tasks like image segmentation.

The framework algorithm utilizes one weakly augmented
sample (xw), and two strongly augmented samples (xs1 and
xs2). Following the recommended configuration from (Yang et
al., 2023), the weakly augmented sample is generated by res-
izing the raw unlabeled image x within a scaling range of 0.5
to 2.0 for both height and width. For example, when resizing
images with an original size of 512×512, this modification res-
ults in new dimensions between 256 × 256 and 1024 × 1024.
The resized images are then randomly cropped to 128 × 128
and flipped to produce the weakly augmented sample xw. This
smaller crop reduces GPU memory usage and accelerates train-
ing.
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Figure 2. Multimodal encoder (ResNet (RN), EfficientNet (EN) or Mix Transformer (MIT) with DeepLabV3+ decoder

For strong augmentations, UniMatch adopts the strategy pro-
posed in ST++ (Yang et al., 2022), incorporating color trans-
formations along with CutMix (Yun et al., 2019) to enhance
model robustness. The augmentation pipeline includes color jit-
tering to introduce variations in brightness, contrast, saturation,
and hue, as well as Gaussian blur, applied with a 50% probab-
ility. Additionally, CutMix is employed by randomly selecting
a rectangular patch within an image and replacing it with a cor-
responding patch from another image. These transformations
introduce variations in color, texture, and spatial structure, this
diversity helps in improving the model’s generalization across
diverse data distributions.

The toolbox includes a segmentation model f , which can be
decomposed into an encoder g and a decoder h, both of which
have been modified as described in the following sections.

Encoder (g). We integrated the Segmentation Models PyT-
orch (SMP) (Iakubovskii, 2019) into the UniMatch toolbox.
This modification enabled the use of advanced encoders like
EfficientNet and Mix Vision Transformers. We conducted ex-
periments on the FLAIR-2 dataset (13 classes) to compare
RGB-only and multimodal configurations across five encoders:
ResNet50 (RN50), EfficientNet-B3 (ENB3), EfficientNet-B4
(ENB4), MIT-B2, and MIT-B3, with DeepLabV3+ as the de-
coder.

To adapt UniMatch for multimodal SSL, we modified the
first convolutional layer to accept five input channels: RGB,
near-infrared (NIR), and elevation. We adjusted augmentation
pipelines to ensure spatial transformations were uniformly ap-
plied across all bands while color transformations were restric-
ted to RGB. Preprocessing included min-max normalization for
NIR and elevation bands and standard ImageNet normalization
for RGB.

Decoder (h). Unimatch uses DeepLabV3+ (Chen et al., 2018b)
as its segmentation model. The high-level features (c4) extrac-
ted from the encoder move directly to the ASPP Module while
the low-level features (c1) go directly to the decoder, as can be
appreciated in 2.

We recreated the FLAIR-2 baseline for both supervised ( SL)
and semi-supervised ( SSL) learning with our training splits.
The Base SL was reproduced using ResNet34 (RN34) with a U-
Net decoder (Ronneberger et al., 2015). For the Base SSL, we
incorporated modifications to the U-Net, including the feature
dropout between the encoder and the decoder as done by (Yang
et al., 2023). Feature perturbation is applied at the encoder-
decoder intersection for the weakly augmented images. It is
implemented as channel dropout with a 50% probability in Py-
torch.

3.3 Implementation details

Dataset. In this study, we used the FLAIR-2 dataset (Garioud
et al., 2023), focusing exclusively on the georeferenced mul-
timodal aerial imagery, which consists of five spectral bands:
blue, green, red, near-infrared, and elevation. The dataset con-
sists of 77,762 image patches (512×512 pixels) annotated into
12 classes, plus an “other” category that we excluded from met-
ric computation due to its low representation (<1% of the data-
set). The training set contains 61,712 aerial imagery patches,
while the official test set includes 16,050 samples used ex-
clusively for inference. We followed the FLAIR-2 suggested
train/test split to maintain benchmark consistency. We parti-
tioned the training data into 80% (51,097 samples) for training
and 20% (10,615 samples) for validation while keeping the of-
ficial test dataset separate, as shown in table 1

Split Labeled Unlabeled Validation
FSL (100%) 51,097 0 10,615
SSL 1/2 (50%) 25,450 25,647 10,615
SSL 1/4 (25%) 12,775 38,322 10,615
SSL 1/8 (12.5%) 7,000 44,097 10,615

Table 1. Fully supervised learning (FSL) samples and the
labeled-unlabeled splits used for semi-supervised learning (SSL)

experiments.

Configuration To ensure a fair comparison, we doubled the
batch size to 20 for supervised experiments while keeping it at
10 for semi-supervised training. Since UniMatch applies two
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strong augmentations to each image, the larger batch size is
justified in supervised settings. We adopted training paramet-
ers from the Cityscapes setup, using an initial learning rate of
0.005 with the SGD optimizer and online hard example mining
(OHEM) loss (Shrivastava et al., 2016). We trained each model
for 100 epochs with a crop size of 128.

We evaluated both supervised and semi-supervised settings us-
ing mean Intersection over Union (mIoU) as the primary per-
formance metric, which quantifies the average overlap between
predicted and ground truth segmentation masks across all
classes.

4. Results

We evaluated the encoder’s performance when using RGB
versus multimodal inputs across two frameworks: super-
vised and semi-supervised, considering different labeled-to-
unlabeled data ratios.

4.1 Encoder evaluation on RGB and Multimodal data

Based on the evaluation of five different encoders (table 2), we
can observe that models using multimodal imagery consistently
outperform their RGB-only counterparts, particularly in semi-
supervised settings with limited labeled data. Among the tested
encoder architectures, MiT-B2 demonstrated the highest over-
all mean Intersection over Union (mIoU), achieving 56.28%
in fully supervised learning (100% of labels) and 55.65% in
the semi-supervised 1/2 scenario (50% labels). When com-
paring the FSL scenarios, MiT-B2 outperforms the baseline by
+3.65 percentage points. In the most label-scarce setting (1/8
- 12.5%), ENB4 ranked second with 45.68 mIoU and was the
top RGB-only performer. Additionally, while MiT-B3 demon-
strated strong performance, MiT-B2 was ultimately preferred
due to its balance between accuracy and computational effi-
ciency.

Type Encoder FSL 1/2 1/4 1/8

RGB

RN50 52.70 50.82 50.29 42.89
MITB2 54.37 52.76 48.33 41.59
MITB3 52.43 53.20 48.61 40.32
ENB3 49.44 48.55 46.28 38.38
ENB4 51.01 48.89 47.94 44.30

Multi

Base SL 52.63 50.61 46.20 40.57
Base SSL - 50.13 47.37 30.00
RN50 54.68 54.14 49.10 42.05
MITB2 56.28 55.65 52.69 45.98
MITB3 55.60 54.36 52.62 45.13
ENB3 53.94 49.77 47.37 42.94
ENB4 52.24 51.37 45.31 45.68

Table 2. Performance comparison of mIoU on the test dataset for
RGB and Multimodal under different supervision levels.

Note: Experiments trained with a crop of 128. The baseline is an RN34
encoder with a U-Net decoder, while all others use DeepLabV3+.

We observed that for both baseline models that use RN34 with
a U-Net, the semisupervised (Base SSL), which included a fea-
ture dropout at the intersection between encoder and decoder,
underperformed compared to the supervised Base SL under di-
verse labeled-to-unlabeled data ratios. We theorize that this is
due to U-Net’s reliance on skip connections for detailed feature
propagation, where dropout disrupts spatial consistency. Mean-
while, DeepLabV3+ benefits from such regularization due to

the atrous spatial pyramid pooling (ASPP) module’s ability to
retain multi-scale context.

Overall, multimodal data proves highly beneficial, especially
in low-label settings, helping models retain higher perform-
ance compared to RGB-only models. Semi-supervised training
configurations outperformed the supervised baseline (Base SL)
when labeled data was limited (1/2, 1/4, 1/8). This highlights
the value of semi-supervised learning, particularly in real-world
applications where labeled data is limited.

4.2 Quantitative and qualitative analysis of the best model

Quantitative. The table 3 compares the Intersection over
Union (IoU) scores per class of the best model MiT-B2 in a
fully supervised training (FSL) for RGB and multimodal. Then,
we also include its performance for semi-supervised learning
(SSL) with diverse labeled-to-unlabeled data splits but only us-
ing multimodal data. Additionally, we define ∆ RGB-MM as
the difference between class IoU from RGB and Multimodal
and ∆ SSL as the change between the lowest SSL setting (1/8)
and the highest (1/2). It’s important to mention that “other”
class is excluded from the final mIoU calculation, following
FLAIR-2 guidelines.

Class RGB Multimodal ∆
RGB-MM

∆
SSLFSL FSL 1/2 1/4 1/8

Building 73.52 81.64 80.46 74.24 76.84 +8.12 -3.62
Pervious 50.08 48.54 47.89 44.49 39.94 -1.54 -7.95
Impervious 68.3 70.84 70.47 66.68 66.18 +2.54 -4.29
Bare soil 49.81 52.77 51.86 38.33 25.11 +2.96 -26.75
Water 78.09 83.93 86.44 79.51 80.70 +5.84 -5.74
Coniferous 44.98 52.98 52.58 57.68 34.93 +8.00 -17.65
Deciduous 64.86 68.90 69.57 68.41 59.30 +4.04 -10.27
Brushwood 19.68 19.45 21.60 21.53 19.45 -0.23 -2.15
Vineyard 63.6 60.85 52.09 48.57 39.66 -2.75 -12.43
Herbaceous 49.03 47.06 44.83 44.57 34.65 -1.97 -10.18
Agricultural 57.67 54.70 52.94 53.25 46.35 -2.97 -6.59
Plowed land 32.81 33.67 37.03 35.02 28.66 +0.86 -8.37
Other 10.79 12.65 9.68 10.19 1.00 +1.86 -8.68
mIoU 54.37 56.28 55.65 52.69 45.98 +1.91 -9.67

Table 3. IoU per class for MiT-B2+DLV3+ considering RGB
and multimodal data and under fully supervised and

semi-supervised learning (1/2 to 1/8).

The three classes that had the most gains between RGB and
Multimodal were “Building” (+8.12), “Coniferous” (+8.00),
and “Water” (+5.84). This gain is expected as the eleva-
tion channel provides information on the above-ground height,
which is highly useful for distinguishing vertical structures like
buildings and trees (e.g., coniferous), which have characteristic
height profiles that RGB alone cannot capture (Wang et al.,
2021, Tian et al., 2022). On the other hand, water surfaces are
flat and typically return near-zero elevation values. While tradi-
tional water indices such as NDWI rely on SWIR bands, these
are often absent in high-resolution imagery, limiting their ef-
fectiveness. Instead, bands B1 (R), B2 (G), and B4 (NIR) allow
for better spectral distinction, as water typically appears dark
and saturated due to its low reflectivity (Chen et al., 2018c).

Moving on, we compare the performance of MiT-B2 in
the semi-supervised training with varying labeled-to-unlabeled
data ratios (1/2, 1/4, 1/8). When comparing the reduction from
1/8 against the 1/2 scenario (∆ SSL): “bare soil” (-26.75),
“coniferous” (-17.65) and “vineyard” (-12.43) experienced the
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Figure 3. Predictions over test set region D064-Z1-AA (10x10 patches of 512x512) using Supervised baseline RN34+UNet(c) and
MITB2+DLV3+ on Supervised (d) and semi-supervised scenarios (e-g).

largest declines. This demonstrates that some of the classes
are particularly sensitive to data scarcity. Part of this sensit-
ivity can be attributed to the variability introduced by sample
selection in SSL, where the quality of the examples received
from the labeled set can condition the training. Additionally,
the FLAIR-2 dataset itself reflects this imbalance: coniferous
represents only 2.74% of the labeled training data, followed by
vineyard (3.13%), bare soil (3.47%), and plowed land (3.88%).
Therefore, reducing the labeled data further disproportionately
affects these already underrepresented classes, amplifying the
challenge for the model to learn robust representations for them.

Qualitative. Based on Figure 3, the fully supervised MiT-B2
with DLV3+ model (d) provides a more accurate segmentation
than the reproduced baseline RN34+UNet (c). Nevertheless,
both models show confusion between “herbaceous vegetation”
and “agricultural land”. This overlap can be partly attributed to
the definition of the classes, where “herbaceous vegetation” in-
cludes non-cultivated grass in agricultural areas, and “agricul-
tural land” also includes permanent and temporary grasslands
with agricultural use (Garioud et al., 2023).

In contrast, semi-supervised models (e-g, from figure 3) pro-
gressively lose detail as labeled data decreases. SSL 1/2 (e) re-
tains much of the supervised model’s accuracy, while SSL 1/8
(g) introduces noticeable noise and misclassification. “Build-
ings” (vivid magenta) remain well-preserved but slightly de-
grade in SSL 1/8. As supervision diminishes, class boundar-
ies blur, partly due to class definitions and overlaps. For ex-
ample, “vineyards”, while it is an agricultural use, are treated as
a distinct class due to their unique land cover structure. How-
ever, they represent only a tiny portion of the dataset (3.13%),
making them more prone to misclassification, especially in low-
label regimes.

5. Conclusions

This study demonstrates the effectiveness of semi-supervised
learning (SSL) in multimodal land cover classification, partic-
ularly in scenarios with limited labeled data. We enhance seg-
mentation accuracy through multimodal fusion by adapting Un-
iMatch to process aerial imagery, near-infrared (NIR), and el-
evation data. Among the five encoder architectures evaluated,
MiT-B2 consistently achieved the highest segmentation accur-
acy, striking a balance between computational efficiency and
performance. The semi-supervised models outperformed their
supervised counterparts when labeled data was limited, con-
firming the value of SSL in remote sensing applications.

Future work should explore extending SSL techniques to ad-
ditional remote sensing datasets and refining augmentation
strategies to enhance model robustness. Additionally, integ-
rating advanced self-training methods and contrastive learning
could improve performance, particularly in challenging envir-
onments with highly imbalanced class distributions. By con-
tinuing to develop and optimize SSL frameworks for remote
sensing, we can make large-scale land cover classification more
efficient, accurate, and accessible in real-world applications.
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