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Abstract

This study addresses the challenge of accurately mapping informal settlements, which are home to over a billion people globally.
Current maps often simplify these areas into binary categories, ignoring the nuanced dimensions of deprivation. The research
focuses on “unplanned urbanization,” a key domain in informal settlement mapping, and proposes a method to classify morpholo-
gical informality into three deprivation levels (low, medium, and high) based on two subdomains: small, dense structures (SDS)
and irregular settlement layouts (ISL). The methodology involves analyzing building footprints and road network data using urban
morphometrics, clustering these metrics into subdomains with k-means, and validating results with community-sourced reference
data. Tested in Nairobi, Kenya, and Lagos, Nigeria, the model achieves good performance (F1 > 65 for indicator maps) but faces
challenges in the medium informality class, particularly in Nairobi, where community feedback diverges significantly. Despite
an overall accuracy of 48 % for Nairobi and 60 % for Lagos, the model offers a framework for continuous improvement. This
work highlights the value of integrating local perspectives into mapping efforts and provides a scalable, transferable approach for

identifying levels of morphological informality.

1. Introduction

Over one billion people globally are estimated to reside in
slums, informal settlements, or other deprived areas. In Sub-
Saharan Africa, UN-Habitat estimates that approximately half
of the population lived in slums in 2020, with this propor-
tion expected to rise. Despite the critical need for accur-
ate mapping of deprived areas, available maps are often out-
dated or overly simplistic, typically offering a binary distinc-
tion between slums and formal areas (Kuffer et al., 2024).
However, mapping informal settlements beyond this dichotomy
is challenging (Kamalipour, 2016). In particular, while most
formal and informal morphologies are relatively easily identi-
fied, mixed morphologies are far more problematic to differen-
tiate (Dovey and Kamalipour, 2017).

Contributing to the challenge of deprived area mapping is that
various terms aimed at the settlements of the urban poor are
used inconsistently in the literature (e.g., slum, informal set-
tlement, and ghettos). This has led to imprecise target classes
and varying measurement methods for deprived area mapping
(Taubenbock et al., 2018). In particular, due to the complex-
ity and multidimensionality of the concept of deprivation, it is
important to use precise definitions for what is being mapped.
Abascal et al. (2022b) disentangled deprivation into nine dis-
tinctive domains based on a large scoping review (Abascal et
al., 2022b). This framework developed by the Integrated De-
prived Area Mapping System (IDEAMAPS) Network calls for

specialized mapping efforts focusing on individual domains of
deprivation, acknowledging that data requirements vary signi-
ficantly across the domains.

The unplanned urbanization domain of deprivation is associated
with rapid and unplanned in-migration to an area. Unplanned
urbanization can result in tightly packed and unplanned hous-
ing, limited green space, and a lack of roads (Abascal et al.,
2022b). Therefore, the domain is also associated with the mor-
phology of informal settlements which are generally charac-
terized by dense, small-grain, and irregular urban morphology
(Kamalipour and Dovey, 2019). The unplanned urbanization
domain can be measured with volunteered geographic informa-
tion such as OpenStreetMap (OSM) or Earth observation (EO)
data. Indeed, several works utilized open building footprint
data, sourced from OSM or extracted from EO data via deep
learning techniques, to analyze the morphology of urban areas
in Sub-Saharan Africa (Abascal et al., 2022a; Wang et al., 2023;
Li et al., 2023). These approaches employ urban morphomet-
rics to numerically describe the form, structure, and arrange-
ment of buildings. Morphometrics clusters characterized by
small, dense buildings or compact, organic layouts were asso-
ciated with informal settlements (Wang et al., 2023; Li et al.,
2023).

While these data-driven studies provide valuable insights, other
research emphasizes bottom-up approaches informed by locally
relevant subdomains of unplanned urbanization (Kuffer et al.,
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2024). These subdomains have been collaboratively developed
with stakeholders from Nigeria (Lagos and Kano) and Kenya
(Nairobi), ensuring alignment with local priorities (Kuffer et
al., 2024). Moreover, they address themes identified through
workshops involving diverse participants, including community
members and representatives from local and national govern-
ments.

In this study, we propose mapping morphological informality
levels (low, medium, and high) based on two subdomains of
unplanned urbanization: small, dense structures (SDS) and ir-
regular settlement layouts (ISL). Both subdomains are modeled
using urban morphometrics applied to open building footprint
data (Fleischmann, 2019; Sirko et al., 2021).

The following are the main contributions of our study:

e We model morphological informality based on a concep-
tual framework of interpretable indicators for unplanned
urbanization that respond to local priority themes.

e The model addresses the limitations of dichotomous in-
formal settlement mapping approaches by introducing
three levels of morphological informality: low, medium,
and high.

e The morphological informality model is evaluated using
community-sourced reference data in Nairobi, Kenya, and
Lagos, Nigeria.

2. Related Work

Multiple studies have focused on mapping the settlements of
the urban poor based on their physical characteristics and mor-
phologies. Remote sensing is a popular tool for morphology-
based slum mapping since satellite imagery provides detailed
information on the physical elements of landscapes, includ-
ing the physical characteristics of slums (Kuffer et al., 2016;
Mahabir et al., 2018). In particular, numerous studies used
textual features extracted from high and very-high-resolution
(VHR) imagery for informal settlement mapping (Duque et al.,
2015; Engstrom et al., 2015; Matarira et al., 2022; Owusu et
al., 2024). More recent work also combined EO data with
a morphometric approach, delivering a systematic numerical
characterization of urban form (Wang et al., 2023; Dibble et al.,
2019). For the identification of urban patterns, a set of morpho-
logical characters was derived from building footprints extrac-
ted from VHR satellite imagery via a deep learning model. The
characters were summarized at the building level using an un-
supervised clustering approach, resulting in 15 morphological
clusters. Clusters characterized by small, dense buildings or
compact, organic layouts were associated with informal settle-
ments in Nairobi, Kenya (Wang et al., 2023). Li et al. (2023)
mapped slums in 95 cities across Sub-Saharan Africa based on
morphological and socio-economic indicators, integrated into
an unsupervised classification and tree-based clustering frame-
work. Their findings indicate that features such as building cov-
erage, ratio, density, and size correspond to a high prevalence
of slums.

Several studies introduced degrees of morphological informal-
ity to account for settlement morphologies characterized by a
mixture of formal and informal elements (Duque et al., 2015;
Dovey and Kamalipour, 2017; Taubenbock et al., 2018; Abas-
cal et al., 2022a; Debray et al., 2023). In the conceptual work

of Dovey and Kamalipour (2017), a two-dimensional typology
of informal morphologies is introduced. The typology dis-
tinguishes three degrees of informality (informal, mixed, and
formal) based on architecture and urban design, which refer to
the morphology of buildings and the street network, respect-
ively. In both cases, the key criterion for informality is evid-
ence of bottom-up organization, whereas formal morphologies
are associated with top-down organization. In the data-driven
work by Taubenbdck et al. (2018), on the other hand, the spa-
tial structures of 44 arrival cities were measured based on the
spatial pattern of settlements (building density, building orient-
ation, and heterogeneity of the pattern) and the morphology of
individual buildings (building size and height). These features
were used to develop a continuous index for morphological set-
tlement types. The findings show a large morphologic variety of
built environments, with slums having similar physical features
across the globe. Morphological building features were also
linked to a scale of deprivation in Abascal et al. (2022a). Mor-
phological characters related to urban deprivation were derived
from building footprints obtained from VHR satellite imagery
via a deep learning model. The morphological characters were
clustered into three degrees of deprivation in deprived urban
areas. Noteworthy, unlike in Wang et al. (2023), the build-
ing footprints were not vectorized but morphological characters
were directly derived from the raster data. Another study intro-
duced a continuum of Intensity of Plannedness to account for
intermediate categories between planned and unplanned areas
(Debray et al., 2023). The Urban structure was operationalized
by three structural elements: buildings, morphological units,
and streets.

3. Study Areas and Grid

The study areas of this research are Nairobi, Kenya, and Lagos,
Nigeria (Figure 1). The administrative area of Nairobi spans
695 km? with an estimated population of 4.4 million (Kenya
National Bureau of Statistics, 2019). Approximately two-thirds
of the city’s urban population resides in deprived areas as of
2014 (Wamukoya et al., 2020). Nairobi is also home to Kibera,
often regarded as the largest informal settlement in Africa. La-
gos is the largest metropolitan area and most urbanized state in
Nigeria. Its administrative area covering 3,577 km? is home to
a population of approximately 26 million, making it the second
largest city in Africa (The Lagos Resilience Office, 2020).

To define the study area extents for this research, administrat-
ive boundaries can be limiting since they are usually determ-
ined by historical, political, or administrative decisions and may
not necessarily reflect the actual patterns of human settlement
or economic activity. For example, the administrative bound-
ary of Nairobi has remained unchanged since 1963 and is con-
sidered outdated due to its urban expansion (Abascal et al.,
2022a). Likewise, Lagos has expanded significantly beyond
its city administrative boundary and is spreading to its neigh-
boring administrative area (Oyalowo, 2022). Instead, we adopt
functional urban areas (FUAs) as extents since they are defined
by actual urban sprawl and human activities, encompassing the
core city and economically or socially integrated surrounding
regions (Dijkstra et al., 2019). We apply a uniform buffer (1
km) to FUAs, ensuring peripheral urban zones are included.

Morphological informality is modeled for the FUAs of Nairobi
and Lagos at an approximate 100 x 100 m grid. The grid sys-
tem is based on the Mollweide projection system, an equal-area
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Figure 1. Overview of the study areas.

projection displaying the globe as an ellipse with an axes pro-
portion of 2:1. Due to its suitability for global applications re-
quiring accurate area representations, the grid system is also
used by the global human settlement layer (GHSL) data suite.
Consequently, this grid facilitates an analysis of gridded popu-
lation statistics, sourced from the GHSL data suite, within mor-
phological informal areas.

4. Morphological Informality Model

The proposed model identifies three morphological informal-
ity levels, low, medium, and high, based on domain indicators
(i.e., subdomains of deprivation) for unplanned urbanization.
The morphological informality model, including the generation
of the indicators, can be summarized in four main steps (Fig-
ure 2). Step 1 creates basic urban form elements from open
building footprint and road network data. Then, multiple met-
rics are calculated for the elements to obtain a numerical de-
scription of urban form patterns. These element-level metrics
are aggregated into a 100 m x 100 m grid using mathematical
operators (sum, median, and standard deviation). In Step 3, two
sets of aggregated grid-level morphometrics corresponding to
the subdomains (SDS and ISL) are selected and clustered using
k-means. The resulting morphological clusters are reviewed by
local and community experts and categorized as representing
either the presence or absence of each subdomain. Finally, Step
4 applies a simple logic to classify cells into three levels of mor-
phological informality: low, medium, and high. The following
subsections describe each step in detail.

4.1 Definitions of indicators

Two indicators, SDS (small, dense structures) and ISL (ir-
regular settlement layout), are utilized to map morphological
deprivation. These indicators were co-designed with local com-
munities and correspond to subdomains of deprivation that re-
spond to local priority themes and ease communication with
stakeholders (Kuffer et al., 2024).

Irregular settlement layout The ISL subdomain focuses on
areas characterized by spontaneous, non-linear development,
contrasting with more regularly planned areas. Buildings may
have unconventional shapes that do not adhere to standard geo-
metric forms often seen in planned developments. Additionally,
while buildings are systematically aligned in planned neighbor-
hoods, buildings may be positioned haphazardly with varying
distances and orientations to neighboring structures.
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Figure 2. Proposed workflow for the indicator-based
morphological informality model.

Small, dense structures The SDS subdomain of depriva-
tion focuses on areas characterized by compact, closely spaced
buildings, typically seen in densely populated urban environ-
ments. Buildings in these areas may be small and very close
to neighboring structures, while buildings in planned neighbor-
hoods are spaced with larger distances.

4.2 Urban form elements

We consider three fundamental urban elements: buildings, mor-
phological tessellation cells, and urban blocks. These elements
are often considered to be fundamental categories of morpholo-
gical analysis (Marshall, 2009).

Buildings The Open Buildings (V3) dataset provided by
Google is used as building footprint data (Sirko et al., 2021).
This dataset is used as it has greater coverage and completeness
within urban areas compared to other openly accessible datasets
such as Ecopia, OSM and Microsoft (Chamberlain et al., 2024).
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Furthermore, the Open Buildings dataset focuses primarily on
classifying buildings within the continent of Africa (and the
Global South at large) and is therefore suitable for current and
future pilot cities (Sirko et al., 2021).

Tessellation cells Morphological tessellation is a method for
consistently partitioning space. Using building footprints and
applying the principles of Voronoi tessellation (Fleischmann
et al., 2020), morphological tessellations define spatial units
called tessellation cells. These are formed considering the influ-
ence that each building has on the space surrounding it, through
an algorithmic method that captures the spatial configuration of
urban form derived from the building footprints (Fleischmann
et al., 2022).

Urban blocks Urban blocks are generated based on build-
ings, their tessellation cells, and the road network. By dis-
solving the tessellation cells, the blocks serve as an urban form
element with a higher-scale aggregation (Fleischmann, 2019).
The road networks were retrieved from OpenStreetMap (OSM)
(Haklay and Weber, 2008). All accessible pathways and roads
available in OSM are included in the road network. It should
also be noted that while OSM is a crowdsourced database,
its completeness for roads is generally good at a global level
(above 80 %), which is also the case for several developing
countries (Barrington-Leigh and Millard-Ball, 2017).

4.3 Urban morphometrics

We characterize urban form using a morphological approach
by computing a set of urban morphometrics for buildings, tes-
sellation cells, and blocks (Dibble et al., 2019). The selected
morphometrics represent urban characters related to the ISL
and SDS subdomains of unplanned urbanization. An analysis
was performed to determine a comprehensive set of metrics rel-
evant to unplanned urbanization. Specifically, candidates for
metrics were first determined based on their ability to capture
distinct morphological characteristics of informal settlements
using a combination of statistical approaches and a dataset of
slum boundaries in Nairobi as references. Thereafter, a mul-
tivariate correlation analysis was performed to avoid multiple
metrics capturing similar morphological characteristics. Fi-
nally, the remaining metrics were rated based on their explain-
ability. The selected metrics, including descriptions and ref-
erences, are listed in Table 1. A total of 15 parameters were
used across the two subdomains, where ISL and SDS are char-
acterized by 7 and 11 parameters, respectively. Three paramet-
ers (building adjacency, tessellation cell neighbors, and block
count) are shared across the subdomains. For the ISL subdo-
main, building parameters on orientation, alignment, and adja-
cency of buildings were selected, as well as the standard devi-
ation of distances between the building centroid and its corners.
ISL parameters for the tessellation cells provide information on
the neighbors and orientation of the cells. Block count was also
used for ISL. On the other hand, for the SDS subdomain, para-
meters on the area, elongation, neighbor distance, interbuilding
distance, and adjacency were used for buildings. For tessella-
tion cells, several area-related parameters (cell area, area ratio,
covered area, and equivalent rectangular index) were used, in
addition to the number of neighbors.

Since morphometrics are computed at the element level (build-
ing, tessellation cell), an aggregation strategy is required to ob-
tain urban morphometrics at the grid level. Figure 3 visualizes
the aggregation workflow. Elements are aggregated based on

Grid-level
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Legend
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Sum /Mdn/SD

Morphometrics
value

Centroid
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Centroid
outside grid cell
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® @ W O

Figure 3. Workflow to aggregate urban morphological metrics
calculated at the element level to the grid level. The aggregation
is demonstrated for the median operator.

the location of their centroids, where the centroid of the cor-
responding building is considered for parameters computed for
tessellation cells. This is possible due to the one-to-one cor-
respondence between buildings and tessellation cells. It should
be noted that since block count is computed at the tessellation
level, it can be aggregated via the building correspondence, like
the other tessellation-level parameters. Once elements are as-
signed to a grid cell, different operators, i.e., sum, median, and
standard deviation, are used to aggregate parameters (see Table
1). Most parameters are aggregated using the median operator.
However, for building area, median and sum are used to get
descriptors for not only building size but also the area covered
by buildings within the grid cell. The third operator, standard
deviation, is exclusively used for the orientation parameter (for
buildings and tessellation cells) to describe the regularity of the
settlement layout in the ISL subdomain.

4.4 Clustering and remapping of morphometrics

The morphometrics aggregated at the grid level are grouped us-
ing a clustering approach to obtain regions with similar urban
morphological patterns. K-means with ten clusters was used
to cluster the two sets of morphometrics, where the optimal
number of clusters was determined using the elbow method.
Clusters were then visually interpreted in a co-design activity
involving modelers with local knowledge. Each cluster was as-
signed to either the foreground class (i.e., presence of the sub-
domain) or background class (i.e., absence of the subdomain).
For both subdomains, the foreground class is represented by a
single cluster, whereas the other clusters constitute the back-
ground.

4.5 Indicator-based typology of informal morphologies

Three morphological informality levels, i.e., low, medium, and
high, are derived from the indicators using a simple rule-based
model. Figure 4 visualizes the concept of the indicator-based
morphological informality model. If the urban morphology is
associated with neither of the indicators, the area is modeled
as having a low informality level. Notably, a low informality
level is also used for areas with no built-up area (i.e., back-
ground). On the other hand, areas with one of the indicators
present have a medium morphological informality level. Con-
sequently, areas characterized by an irregular settlement layout
but with no small, dense structures and areas with small, dense
structures but a regular settlement layout are both modeled as
medium. Finally, areas characterized by both indicators have a
high morphological informality level.

4.6 Model evaluation

The model and indicators are evaluated based on community-
sourced reference data, which is available for a limited num-
ber of grid cells. This validation data was collected using the
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Elem. Parameter Description References Agg Indicator
ISL SDS
Area Area of building - Sum&Mdn X
Elongation Elongation of the minimum bounding rectangle of a building Gil et al. (2012) Mdn X v
Centroid Standard deviation of the centroid-corner distances of a build- Schirmer and Axhausen (2016), Mdn v X
corners ing Cimburova (2017)
Orientation Orientation deviation of building from cardinal directions in Schirmer and Axhausen (2016) SD v X
20 range 0 — 45 degrees
% Alignment Median deviation of solar orientation of buildings on adjacent Schirmer and Axhausen (2016) Mdn v X
M cells from a building
Neighbor Mean distance to adjacent buildings based on spatial weights ~Schirmer and Axhausen (2016) Mdn X v
distance
Interbuilding ~ Mean distance between buildings on adjacent cells based on Fleischmann (2019) Mdn X Vv
distance spatial weights
Building Ratio of how much buildings tend to join together into larger Fleischmann (2019) Mdn v /
adjacency structures
Area Area of tessellation cell - Mdn X v
_ Equivalent rect- Measure the deviation of a tessellation cell from an equivalent Basaraner and Cetinkaya (2017) Mdn X v
] angular index  rectangle
§ Area ratio Area ratio of building to tessellation cell Schirmer and Axhausen (2016) Mdn X Vv
% Neighbors Number of neighbors captured by spatial weights Hermosilla et al. (2012) Mdn v  /
é Covered area  Area covered by neighbors defined by spatial weights - Mdn X v
Orientation Orientation deviation of tessellation cell from cardinal direc- Schirmer and Axhausen (2016) SD v X
tions in range 0 — 45 degrees
"Eg Count Ratio of number of blocks within neighbors defined by spatial Dibble et al. (2019) Mdn v o/
) weights to the area covered by neighbors

Table 1. Urban morphometrics at the grid level comprising the morphological indicators small and dense structures (SDS) and
irregular settlement layout (ISL).
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Figure 4. The indicator-based typology of informal
morphologies used in our model: (bottom-left) Low informality,
due to the absence of ISL and SDS, (bottom-right)
informality, related to the presence of SDS but the absence of
ISL, (top-left) informality, related to the presence of
ISL but the absence of SDS, and (top-right) high, characterized
by the presence of ISL and SDS

IDEAMAPS Data Ecosystem platform®, enabling local com-
munities to validate models for different domains of depriva-
tion. Table 2 lists the number of validated grid cells for the
indicators and morphological informality. Grid cells with con-

! http://www.ideamapsdataecosystem.org/

tradictory validations from multiple participants were removed
from the reference data to ensure the reliability and consistency
of the ground truth, as conflicting responses could indicate un-
certainty or disagreement about the level of deprivation in those
locations.

Indicator Morphological Informality
ISL  SDS Low Medium High

Nairobi 464 282 56 58 84
Lagos 210 168 50 110 39

Table 2. Number of validation grid cells for the indicators (SDS:
small, dense structures and ISL: irregular settlement layout) and
the morphological informality levels (low, medium, and high).

Based on this reference data, model outputs are evaluated using
the metrics F1 score, intersection over union (IoU), and overall
accuracy (Acc), defined as follows:

Fl1= - rr M
TP+ 1 x (FP+FN)
TP
IoU = Sy FPT FN 2)
Ao TP + TN 3

T TP+TN+FP+FN’

where TP, TN, FP, and FN denote the number of true positive,
true negative, false positive, and false negative pixels, respect-
ively.
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4.7 Implementation details

To calculate the metrics, the momepy package in Python was
used (Fleischmann, 2019). This library is part of PySAL (Py-
thon Spatial Analysis Library) and is built on top of GeoPandas.
OSM data is retrieved using the OSMnx package. The code for
the morphological informality model (Version 1) is available on
Zenodo®.

5. Results

We deploy the proposed model in Nairobi, Kenya, and trans-
fer it to Lagos, Nigeria, using Google Open Buildings (v3) data
(Sirko et al., 2021). We present model outputs for Nairobi and
Lagos in Figures 5a and 5b, respectively. In Nairobi, the vast
majority of grid cells were mapped as morphologically formal
(96.7 %). Although areas with a medium (1.4 %) or high (1.9
%) level of morphological informality are rare compared to
formal areas, the model identified major informal settlements
across the city. For example, the model correctly classified Kib-
era, located towards the southwest of the center of the study
site, as an informal settlement. For Lagos, the majority class
for grid cells is also low morphological informality (82.5 %).
However, a considerable proportion of grid cells are depicted
as the medium class (12.9 %), representing a mixture of formal
and informal morphologies. Furthermore, more grid cells than
in Nairobi are assigned a high morphological informality level
(4.6 %). Consequently, large areas of Lagos exhibit non-formal
settlement morphologies.

To assess the morphological informality model and the indic-
ators, we used reference data annotated by local community
members. The quantitative results are listed in Table 3, and con-
fusion matrices for the informality levels are shown in Figure 6.
Indicator maps (ISL and SDS) achieve good performance (F1
> 65) in both cities when compared against the reference data.
The morphological informality model (low, medium, and high)
also achieves good performance (F1 > 53) for all levels in both
cities, except for the medium informality level in Nairobi (F1 =
6). The confusion matrices reveal that most grid cells identified
by local communities as medium were incorrectly classified as
low by the model (42 grid cells out of the 58 reference cells
for medium morphological informality). In Nairobi, many grid
cells identified as high informality were also incorrectly classi-
fied as low informality (39 grid cells out of 84 reference cells
for high morphological informality). In terms of overall accur-
acy, the models achieve values of 48 % and 60 % for Nairobi
and Lagos, respectively.

Nairobi Lagos
F11t TIoUT Acct FI1T TIToUT Acct
ISL 66.0 49.2 63.6 788 65.1 69.0
SDS 79.8 66.4 745 749 59.8 74.4
Low 55.0 38.0 57.1 535 36.6 70.4
Medium 6.3 33 70.2  66.0 49.3 65.8
High 58.3 412 69.7 563 39.2 84.4

Table 3. Quantitative results for indicators (SDS: small, dense
structures and ISL: irregular settlement layout) and the
morphological informality levels (low, medium, and high)
derived from the indicators.

2 https://doi.org/10.5281/zenodo.15120032

6. Discussion

The qualitative and quantitative modeling results demonstrate
that the proposed indicator-based morphological informality
mapping method is capable of capturing spatial patterns of in-
formality related to unplanned urbanization (Figure 5 and Table
3). Specifically, three levels of morphological informality were
distinguished based on the indicators ISL (irregular settlement
layout) and SDS (small, dense structures). Our findings are in
with several studies reporting that informal settlements can be
generally characterized by small, dense buildings or compact,
organic layouts (Abascal et al., 2022a; Wang et al., 2023; Li et
al., 2023).

6.1 Limitations

While the model generally achieved promising results across
morphological informality levels and indicators, poor perform-
ance was obtained for the medium informality level in Nairobi
due to confusion with low informality (Figure 6a), which can
also be observed in Lagos (Figure 6b). These results indic-
ate that our model underestimates morphological informality
levels. Another limitation encountered in this study is using
the road network merely as a count of the blocks. Specifically,
for the ISL indicator, incorporating analyses that capture the
irregularities within the road network could yield more com-
prehensive insights. The results generally show the challenge
of mapping mixed morphologies that are neither completely
formal nor informal. These findings are in line with other stud-
ies highlighting the challenge of mapping informal settlements
beyond the formal-slum dichotomy (Kamalipour, 2016; Dovey
and Kamalipour, 2017).

6.2 Perspectives

Since the proposed morphological informality model uses open
building and road network data, the data quality of these under-
lying products can have an impact on the model results. With
the quality of open data continuously improving, future work
will rerun this model with data from Overture Maps, a collabor-
ative open-data initiative launched in 2022. Furthermore, since
geographical coverage of informal settlement mapping studies
is scarce across the world (Matarira et al., 2022), the model will
also be deployed to new cities in Sub-Saharan Africa, South-
east and South Asia, Latin America, and other Global South
countries. Finally, the reference data collection efforts using
the IDEAMAPS Data Ecosystem Platform will continue and
also be scaled up. Consequently, future research should also be
able to use these data as labels for deep learning model training
since deep learning is emerging as an important technology for
slum mapping from EO data.

7. Conclusion

This study presents a first step towards a morphological inform-
ality model adhering to conceptually designed subdomains of
unplanned urbanization. Furthermore, the model acknowledges
the continuous concept of morphological informality by intro-
ducing three levels of informality. Our results demonstrate the
effectiveness of the proposed model in Nairobi, Kenya, and
Lagos, Nigeria, based on community-sourced reference data.
However, our results also highlight the challenge of mapping
urban areas with mixed morphologies, characterized by both in-
formal and formal elements. Future work will refine the mod-
eling of medium informality, particularly in Nairobi, to better
align with local community perspectives.
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