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Abstract 

Urban heat exposure is intensifying due to climate change and urbanisation, with disproportionate impacts on vulnerable populations. 

Unfortunately, many urban areas, particularly informal settlements, lack sufficient data for detailed analysis to understand these 

impacts. Traditional air temperature measurement methods—such as meteorological stations—are sparsely distributed in African cities, 

typically located on city outskirts (e.g., airports), and fail to capture localized temperature variations. This study explores the use of 

low-cost sensors and citizen science initiatives to measure air temperature with higher spatial resolution in informal and surrounding 

formal settlements. A two-stage process is employed to evaluate data quality: first, statistically assessing biases in low-cost sensor 

(LCS) measurements, and second, employing Monte Carlo simulations to quantify uncertainties. The resulting data reveals significant 

temperature differences between informal settlements and surrounding formal areas, with informal settlements consistently exhibiting 

higher temperatures. This approach not only highlights the value of low-cost sensors and citizen science in generating high-resolution 

temperature data but also provides insights into thermal inequalities between different urban environments.  

1. Introduction

1.1 Urban Heat Exposure Disparities  

Global average temperatures have already risen by over 1°C 

(IPCC, 2023), resulting in an unprecedented intensification in 

frequency, magnitude and duration of heatwaves. A notable 

example is the 2003 European heatwave which claimed over 

30,000 lives (United Nations Environment Programme,2003), 

raising serious concerns about human wellbeing in cities (World 

Health Organization, 2021). Specifically in Africa, these 

extremes are projected to have increases in magnitudes and 

durations twice more relative to Europe (IPCC, 2023; World 

Cities Report 2022, n.d.; United Nations, 2018).  

Described as the ‘hotspots’ of climate change impacts by the 

IPCC, (2023), cities are particularly susceptible to higher 

temperatures as much of the impacts of heat exposure is recorded 

in cities (Koppe et al., 2004). Urbanization is causing an 

increasing proportion of impervious surfaces, which retain heat, 

causing higher temperatures in urban areas as compared to their 

surrounding semi-urban and rural areas. This phenomenon, 

referred to as the urban heat island, has been described by Ochola 

et al., (2020) as being one of the most extensive and significant 

signs of climate modification in the urban space.  

These hazards are not experienced similarly in urban areas 

(Kisters et al., 2022). Prior research reveals significant 

temperature variabilities indicating that deprived urban areas 

such as informal areas, are exposed to higher temperatures. These 

deprived urban areas, though varied across different contexts, are 

often predominantly inhabited by the urban poor who are lacking 

the adaptive capacities to deal with the impacts of heat exposure 

and heat stress. For example, Rathi et al., (2017) reports higher 

temperatures, heat-related mortality, and health risks in informal 

settlements compared to surrounding formal areas in Indian 

cities. Egondi et al., (2012) and Scott et al., (2017) reveal similar 

patterns of thermal inequality and heat stress in the slums of 

Nairobi, Kenya. Understanding these intra-urban temperature 

variations in deprived urban areas is pertinent and requires high 

spatial and temporal resolution data (Lehnert et al., 2023; Wang 

et al., 2023). 

1.2 Intra-Urban Temperature Measurement Techniques 

Traditionally, air temperature is measured by meteorological 

stations usually located on the outskirts of the city or at airports. 

These provide highly accurate measurements with high temporal 

resolution but limited by sparse distribution in space resulting in 

coarse spatial resolution. These point scale measurements make 

it difficult to analyse spatial variations of temperature between 

and within neighbourhoods.  

Current studies on intra-urban air temperature assessment 

propose leveraging low-cost, environmental sensors and citizen 

science initiatives to collect geolocated air temperature data at 

higher spatial and temporal resolutions, to supplement traditional 

measurements (Rajagopalan et al., 2020). Technological 

advancement has made available highly accurate portable 

environmental sensors at very affordable cost (widely referred to 

as low-cost sensors), thereby unearthing immense potential for 

high resolution near-surface measurement of atmospheric 

parameters (Gubler et al., 2021). Citizen science approaches 

contribute to data in research fields where traditional 

observations of a phenomena are sparsely located or there is 

reduced accessibility to information by traditional research 

institutions (Bouzguenda et al., 2019; Neset et al., 2021; Purtova 

& Pierce, 2024) Furthermore, citizen science approaches have 

been reported to improve relevance, rigor, and reach of scientific 

findings (Balazs & Morello-Frosch, 2013). Consequently, these 

approaches have been consistently employed together with low-

cost sensors in networks to maximise the spatial resolution of 

point-based air temperature measurements. Table 1 presents 

current literature on low-cost sensors (LCS) and citizen science 

applications for air temperature measurement. 
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Table 1: Overview of Existing Literature 

Author  Settlement  Sensors 

Used 

Citizen 

science 

Route/Site 

Selection  

Implement

ation  

(Wang et 

al., 2023) 

Formal, City 

scale 

LCS; 

Mobile  

Collaborat

ory; Data 

collection 

Predesigned, 

diverse 

LULC 

Walking  

(Romero 

Rodríguez 

et al., 

2020) 

Formal, 

City scale 

LCS; 

Mobile & 

fixed 

Collaborat

ory; Data 

collection 

Predesigned, 

representative 

sampling of 

city   

Bicycles  

(Liu et al., 

2017) 

Formal, City 

scale 

LCS: 

Mobile & 

fixed 

N/A Predesigned; 

city block 

division 

Bicycles  

(Rajkovich 

& Larsen, 

2016) 

Formal, City 

scale 

Research 

grade 

Met. 

Station  

N/A  Predesigned 

and 

randomised 

selection  

Bicycle  

(Clay et al., 

2016) 

Formal, City 

scale 

LCS; 

Mobile  

N/A Predesigned 

across 

diverse 

LULC   

Car 

(Gubler et 

al., 2021) 

Formal, City 

scale 

LCS; 

Fixed  

Collaborat

ory; Data 

collection  

Predesigned 

across 

diverse LCZ  

N/A 

(Scott et 

al., 2017) 

Formal, City 

scale 

LCS; 

Fixed 

N/A  Predesigned, 

diverse 

settlements  

N/A  

(Rajagopal

an et al., 

2020) 

Formal, 

Regional 

Scale 

LCS; 

Fixed 

Collaborat

ory; Data 

collection 

Predesigned, 

diverse 

locations 

N/A  

(Alonso, 

2019) 

Formal, City 

scale 

LCS; 

Mobile 

Participator

y; Design 

and 

collection 

Predesigned, 

diverse urban 

characters 

Walking 

(Rød & 

Maarse, 

2021) 

Formal, City 

scale 

LCS; 

Fixed 

Collaborat

ory; Data 

collection 

N/A N/A 

 

Previous research typically employs these sensors in a stationary 

network, (Leichtle et al., 2023; Ochola et al., 2020; Scott et al., 

2017) or in mobile transects (Clay et al., 2016; Rajagopalan et 

al., 2020; Wang et al., 2023). Whilst the former approach 

(stationary) may provide higher temporal resolution data of 

stationed points, the latter (mobile), ensures a much dense and 

extensive coverage thus higher spatial resolution data. Contrary 

to these methods that compromise between temporal and spatial 

resolution, few studies, (Liu et al., 2017; Romero Rodríguez et 

al., 2020) leveraged the advantages of both approaches, utilising 

both stationary and mobile network of sensors simultaneously in 

their surveys. These studies suggest the use of cars, bicycles or 

people, equipped with sensors travelling along predefined routes. 

These routes are traditionally predesigned before the study 

following detailed methodological procedures. Though different 

methods are prescribed based on the aims of the study, the 

running theme in all reviewed studies was a strict definition of 

the routes for surveys based on diverse spatial characters to allow 

a representative spatial coverage of the area. For example, Liu et 

al., (2017) and Rajkovich & Larsen, (2016), dictate that an 

effective mobile transect should pass through most of the city 

blocks with diverse urban patterns that exist, covering a variety 

of land covers, topographies, and land uses.   

The limitation in previous studies is the assumption of pre-

existing datasets on streets, land use etc; and open and secure 

entry and exit into these study areas, which is often not the case 

for informal settlements. None has conducted on-the-move 

measurements, or mobile transects, involving slum residents 

in the design and implementation of in situ and mobile air 

temperature collection. Given that informal settlements tend to 

lack clearly defined roads and are mainly connected by footpaths, 

bicycles, though more practical than cars are still not appropriate 

for this study environment. Equipping citizens with handheld 

sensors for on-foot transverses will allow access to most areas 

and thus ensuring a representative spatial coverage.  

Another deficit is the lack of in-depth assessment of 

measurement errors and data quality from low-cost sensors 

(Gubler et al., 2021; Meier et al., 2017) as well as characterising 

the uncertainties of citizen science generated data (Coney et al., 

2022).Understanding and addressing these potential data quality 

gaps ensures consistent input to remote-sensing based modelling 

of thermal environments, which is crucial for addressing climate-

related vulnerabilities in these communities. It enhances remote 

sensing by providing high-resolution ground-based air 

temperature measurements for use in exploring LST-air 

temperature relationships for more nuanced predictions of urban 

thermal conditions.   

To this effect, this study seeks to provide a replicable approach 

to measure intra-urban air temperature in data scarce 

environments such as slums using low-cost sensors whilst 

characterising and quantifying uncertainties. 

 

2. Methods and Materials   

2.1 Study Area   

The study is conducted in six informal settlements of Nairobi, the 

capital city of Kenya. With a subtropical highland climate under 

the Köppen–Geiger classification system, it experiences its 

warmest months between December and March, with mean max 

temperatures between 25.8 °C and 26.7 °C. Recent climate 

reports from the city’s meteorological department however 

suggest significant increasing temperature trends (NCCG, 2020). 

The city has a total population of 4,397,073 based on the nation’s 

2019 population census. Of this number, it is estimated that more 

than 60% reside in informal settlements that occupy less than 

10% of the city’s total land mass (UN-HABITAT, 2005). The 

Nairobi County government acknowledges the high 

vulnerabilities these settlements face especially in the context of 

climate change (NCCG, 2020). 

There exist several citizen-initiated community activist groups 

such as Kibera’s community mappers, that can be leveraged for 

collaborations on citizen science related initiatives such as this 

Figure 1: Study Area 
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study. Based on the availability of such organisations, six 

settlements were selected: Kibera, Mukuru, Kariobangi, 

Korogocho, Pumwani and Waruku,with boundaries defined by 

taking convex hulls of all air temperature routes (transects). 

These settlements form the area of interest shown in figure 1.   

 

2.2 Workflow   

The workflow of this research is structured into two main 

sections, as illustrated in the flowchart (Figure 2). The first 

outlines the methods for collecting air temperature data using 

low-cost sensors (LCS) and citizen science (CS) initiatives. It 

details out strategies for community engagement, and 

deployment of LCS for both mobile and stationary in-situ 

temperature data collection within informal settlements. The 

second section details the methods employed for preprocessing 

the collected LCS/CS data, including the quantification of 

associated uncertainties and biases.   

 

 
Figure 2:Flowchart 

2.3 LCS and Citizen science Tair Measurements design   

Instead of pre-designed transects as done in previous studies, a 

citizen-aided transect approach is used. This approach involves 

designing the transect with the community, because local 

knowledge is pertinent to navigate the street network. It should 

be noted that streets mapped in OSM may not be passable or may 

have changed. Considering security, citizens co-design the 

transect, passing through diverse urban characters such as 

morphology, land covers and land use based on their local 

knowledge of the settlements while aided by a printed high-

resolution satellite image as a reference.  This section details out 

the design and implementation of this approach.  

 

2.3.1 All Sensors Specification 

Portable, affordable and modest sensors were employed for this 

study to ensure ease of movement and prevent attracting crowds 

during the transect. Kestrel Drop D2 temperature data loggers 

(KestrelDrop2) were used to sense and record air temperature 

measurements whilst Garmin GNSS receivers (GarmineTrex10) 

were employed for GPS data logging. Aside these, a Kunak 

meteorological station (KunakLite) was used as a reference 

station. A total of 26 kestrel data loggers,10 Garmin GNSS 

receivers and 1 Kunak station were used for the entire project. In 

each settlement and surrounding formal areas, 10 Kestrels were 

employed for the mobile transect walks. The specifications of 

these sensors are given in Appendix 1.  

Before the start of the data collection campaign, the Kestrel and 

Garmin sensors were labelled from 1-26 and 1-10 respectively. 

All Kestrels except numbered 26 are configured to log data every 

10 seconds. The Garmin sensors on the other hand were set to log 

GPS data every 20 seconds. Plastic cable ties were used to attach 

each kestrel (1-10) at approximately 1metre on 1.2 metre wooden 

sticks. The Garmin sensor with matching label, was then attached 

at the top of the stick similarly. Thus, kestrel labelled 1 was 

matched with Garmin 1 and so forth. (See Appendix 2). At the 

start of every campaign, checks were carried out by clearing old 

logs, synchronizing the kestrels using the Kestrel-LINK 

application.  

  

2.3.2 Fixed Sensor 

 

The Kunak station was employed as a reference station to control 

for daily weather conditions and for temporal corrections and as 

such, was stationed at a fixed location throughout the transect 

period. Ideally, this sensor  should be located at a representative 

location as explained by Romero Rodríguez et al., (2020). 

However, the reference station was placed in the most secure 

location within the settlement due to insecurity situations within 

the slums. The sensor was positioned about 2 meters above the 

ground and as much as possible, away from any artificial 

influences of temperature.  

 

2.3.3 Mobile Sensors  

Measurements for each settlement was during 2 hours of a single 

day in each settlement. Participants were selected from each ward 

(neighbourhood) in the settlement and thus ensured 

representative distribution of sensors. Participants were invited 

to engage with a printed A1 size high-resolution satellite image 

of their settlement in delineating the routes and locations for the 

data collection campaign. Starting with the meeting location as a 

reference, each participant was guided in outlining on the map, 

4-8 kilometre (approximately 2 hours) transects within their 

representative wards. The routes were designed to cover diverse 

urban characters stated below, based on a qualitative assessment 

of participants local knowledge of the area;  

● Land cover and land uses.   

● Building densities.   

● Road types (major, minor, footpaths).  

● Building morphologies (high rise, low rise, size, shape 

etc).   

Participants assigned to walk routes along the boundaries of the 

settlement extended their routes approximately 50-100 metres 

into formal areas, to allow formal and informal temperature 

comparisons. The walks were scheduled between 15.00 and 

17.00 at which time peak temperatures are expected due to 

radiative heat loss. As such, at 14.30 each participant, equipped 

with the sensors, was transported to their starting point (homes) 

Figure  SEQ Figure \* ARABIC 1: Study Area 
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and instructed to start their walking routes at 15.00 

simultaneously. To ensure that the sensors were approximately at 

least 1.23 metres above ground level to avoid ground 

interference, participants were instructed to keep sticks at hip 

level during the walk as seen in (Figure 4). They were encouraged 

to walk non-stop at a slow pace within this period until 17.00 at 

which they walked back to the meeting point. Each participant 

was accompanied by another citizen to serve both as security and 

to engage curious community members on the project. By doing 

this, the likelihood of stopping was reduced significantly. During 

the transect, two additional participants were employed to 

oversee the activity by calling assigned security attendants 

occasionally and enquiring on the progress. They were also 

trained and tasked with solving any technical challenges reported 

during the routine checks.  

 

2.4 In situ Air Temperature Data Quality and Preprocessing   

2.4.1 Sensor Biases  

The collected data was evaluated through a two-stage approach 

to address uncertainties and ensure reliability. First, we remove 

all outliers greater than the average rate of change of each data 

file. Subsequently, statistical measures were applied to 

systematically assess biases within the sensor measurements and 

their agreement with reference station data. This study adopted 

the methodology utilized by Gubler et al., (2021), for evaluating 

the data quality of low-cost sensors in air quality studies, where;  

▫ Coefficient of Variation (CV): Used to assess the 

precision of measurements between sensors.  

▫ R²: Employed to measure the temporal agreement 

between reference and low-cost sensor data.  

Two  primary types of bias were addressed:  

▫ Internal Biases: These stem from inconsistencies 

inherent within the low-cost sensors. To evaluate this, 

a sample of Kestrel sensors was tested under controlled 

environmental conditions for a two-hour period. Data 

from the sensors was analysed using the statistical 

measures mentioned above to detect significant 

differences between measurements.  

▫ External Biases: These biases arise from variations 

between different types of temperature sensors. The 

measurement differences between low-cost sensors 

and reference-grade sensors were quantified.  

Monte Carlo Simulations: Monte Carlo simulations were then 

carried out on samples of the in-situ measurements following the 

sensor experiments explained above.  The mean bias μ and 

random error σ (standard deviation) values identified in the 

previous steps (for both internal and external) formed the error 

terms that were used in monte Carlo simulation following the 

model below;  

Tmeasured (i) = Ttrue  (i) + N (μ, σ2) (1) 

 

where; 

Tmeasured (i) = Measured Temperature at time i 

                Ttrue  (i)   = True Temperature at time i 

N (μ, σ2) = Total measurement error term modelled as 

a normal distribution with mean bias μ and standard 

deviation σ 

 

This method simulates Tmeasured by sampling random error terms 

from the defined error distribution. This is replicated 10,000 

times for each time point, generating a distribution of possible 

true temperature values. The resulting simulated errors were 

statistically analysed, and a 90% confidence interval was 

established to define a reliable range for true temperature 

estimates. 

 

2.4.2 Temporal Decline Modelling 

Temporally, due to the non-synchronous observation times for 

each location on the routes, there was inconsistent timing, thus 

making mobile measurements incomparable (Liu et al., 2017; 

Wang et al., 2023). Correcting the temporal influences on mobile 

temperature measurements ensures that spatial influences are 

highlighted therefore allowing the exploration of spatio-thermal 

relationships which is the purpose of the study. Following the 

single temporal correction modelling approach proposed by Fung 

et al., (2009) the Kunak stationary sensor was used as a reference 

in the temporal correction. For each settlement, the 

corresponding temperature measurements from the reference was 

used as the baseline dataset for temporal gradient modelling. 

Polynomial regression of varying degrees was used to model the 

temperature pattern over time. The model coefficients were then 

applied to the mobile temperature measurements thereby 

transposing them to the same time point (15.15) resulting in 

comparable temperature measurements analysis within each 

settlement.  

 

2.4.3 Daily Weather Variations 

A final preprocessing step was carried to ensure temperature 

comparability across all settlements. Temperature records from 

the official weather station of Nairobi (Wilson Airport) was used 

as the reference with the assumption that it is representative of 

the general weather patterns of the entire area of interest. For each 

day of the study period, a temperature anomaly (ΔTref) was 

calculated as the difference between the observed temperature at 

the reference station (Tref (d, t)) and the long-term average 

temperature for the same time (Tref,avg(t)) based on the entire 

study period average. This anomaly captures deviations from 

typical temperature conditions, accounting for daily weather 

variations. The measured temperature data from each settlement 

were then adjusted by subtracting the corresponding anomaly, 

Figure  SEQ Figure \* ARABIC 3: Mobile Route Design 

Figure  SEQ Figure \* ARABIC 4:Participant Engaged in 

Mobile Campaign 

Figure 4: Citizens engaging in mobile measurements 

Figure 3: Citizens Designing Transects 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-7-2025 
44th EARSeL Symposium, 26–29 May 2025, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-229-2025 | © Author(s) 2025. CC BY 4.0 License.

 
232



 

resulting in corrected temperatures (Tadjusted) that reflects 

standardized conditions. This approach normalizes the data, 

ensuring comparisons of air temperature across the different 

settlements despite the non-simultaneous data collection. 

 

3. Results  

3.1 LCS Data Quality Assessment  

3.1.1 LCS Internal Bias and Reliability    

The results from the co-location experiments involving 10 

Kestrel low-cost sensors (LCS) demonstrate a high level of 

consistency in temperature readings. With an average coefficient 

of variance (CV) of 0.5% and a standard deviation (std) of 0.1°C, 

the variability between sensor readings is minimal, indicating 

strong precision across the Kestrel sensors. Figure 5 below plots 

the temperature measurements from the 10 sampled Kestrel 

sensors over three days. The graph shows that the readings from 

all sensors are closely aligned throughout the period, with only 

minor deviations (< 0.10°C) that tend to converge during peak 

temperature periods. This high level of consistency suggests that, 

under controlled conditions, environmental factors influence the 

sensors uniformly. Therefore, it can be inferred that temperature 

variations recorded during field measurements are primarily 

driven by environmental factors rather than inherent biases or 

inconsistencies within the Kestrel sensors themselves. 

Figure 5: Internal Consistency of LCS 

 

3.1.2 LCS Bias and Reliability: Comparison with Reference   

Colocation experiments between the LCS (Kestrel) and the 

reference sensor (Kunak station) reveals that the kestrel sensors 

are generally able to follow the temperature trends captured by 

the reference (see figure 6), indicating that the LCS sensors have 

good temporal consistency and can reliably track changes in air 

temperature over time. There are, however, some notable 

deviations in magnitude of the temperature readings themselves. 

On average, the Kestrel sensors measure approximately 0.6°C 

below the reference reference with a standard deviation of 

0.39°C, indicating moderate variability in the differences 

between the two sensors. This relatively low variability suggests 

that the Kestrel sensors are reasonably consistent in their 

deviations from the reference, though a systematic negative bias 

is evident.  

However, in instances of rising temperatures, the Kestrel sensors 

appear to overestimate by up to 0.3°C compared to the reference 

station. Changes in environmental factors thus, affect the sensors 

differently, a discrepancy likely due to differences in protective 

shielding. The reference station, equipped with a protective 

casing, is shielded from direct sunlight and radiation, resulting in 

more stable readings. In contrast, the Kestrel sensors, lacking 

protective casings, are more susceptible to heat absorption due to 

external influences such as direct sunlight and radiation resulting 

in an overestimation during rising temperatures. 

   

 
Figure 6: External Sensor Consistency 

3.1.3 Uncertainty Quantification using Monte Carlo Simulation  

Using an average temperature difference of -0.59°C and standard 

deviation of 0.39°C, (calculated between the Kestrel and 

reference station colocation experiment from the previous steps.) 

the Monte Carlo simulation generated 100,000 iterations to 

model the potential range of true temperatures based on these 

observed errors. The simulations were conducted using a log-

normal distribution to account for the slight right skew seen in 

the error distribution. The results reveal low variability and high 

precision in the LCS measurements with a mean bias of -0.40°C, 

standard deviation of 0.24°C and 95% confidence interval. 

Simulated temperatures fall within the confidence interval range 

even during the peaks that recorded the highest deviation. This 

thus demonstrates the precision and reliability of the LCS in 

capturing not only the trends but true measurements. (see figure 

7)  

 
Figure 7: Simulated Errors and Uncertainty 

The CDF curve (figure 8) supports this, as seen in the steep rise 

of the curve at (mean error) 0.4 indicating most errors are 

concentrated around this range. Overall, 60% of the errors fall 

within ±0.5°C of the reference measurements, with decreasing 

probability of large errors occurring, (100% probability that 

errors will be ≤ 0.5°C). This is lower than the 95% expected for 

a normal distribution due to the right skew and heavier tails of 

the log-normal distribution as seen in the histogram of error 

distribution which shows an almost normal distribution with a 

slight right skew suggesting that though there is a systematic 

underestimation, LCS occasionally record larger positive errors 

(overestimations) compared to negative errors 

(underestimations).   

 

Figure  SEQ Figure \* ARABIC 5:Kestrel Sensor Internal 

Consistency 
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Figure 8: CDF of Simulated Errors 

3.2 Intra-Settlement Temperature Patterns   

The resulting dataset following the data quality assessments and 

preprocessing, we calculated mean and maximum temperatures 

in all settlements compared to the official weather station in 

Nairobi (Nairobi Wilson Airport weather station 

Nairobi_Met_Station ). We find that the slum settlements 

consistently have both higher mean and maximum temperatures 

compared to the nearest meteorological station measurement at 

the same time. The highest mean temperatures were recorded in 

Mukuru and Korogocho, both of which have very compact, dense 

buildings and least vegetative cover compared to the other 

settlements. Waruku, located on a significantly higher elevation, 

recorded the lowest mean and maximum temperatures, though 

still higher than the meteorological station measurements.  

 

Table 2: Measured Temperatures 

Settlement Km 

Covered  

Min Max Mean Met 

Station 

Kibera 368.5 25.3 33.5 28.3 26 

Mukuru 1308.4 28.1 36 30.9 26.2 

Koriogocho/

Kariobangi 

459 25.8 34.5 30.7 26.1 

Pumwani 587.9 25.5 36.1 29.9 27 

Waruku 646.8 25.5 31.5 27.3 26.6 

 

As mentioned previously (3.2) mobile measurements were taken 

about 50-100 metres outside the boundaries of the informal 

settlements. Air temperature data was thus compared within and 

outside the settlements as shown in the boxplots below (figure 9).  

Across all settlements, we find temperature differences between 

settlement types, with formal settlements experiencing 

approximately 1°C lower in both median and minimum 

temperature values compared to informal areas. With a p-value 

of 1.14×10−98 from the non-parametric Mann-Whitney U 

statistic, we assume a significant temperature difference between 

these two groups.  

Comparing these differences per settlement, informal areas 

consistently had higher mean and median temperatures than 

surrounding formal areas, despite being only 50-100 metres 

away. This presupposes potential lower temperatures in core 

formal settlements or further away from informal settlements.  

 

 
Figure 9: Temperature Differences Across Settlement Type 

4. Discussion And Conclusion  

This study advances intra-urban temperature measurement in 

informal settlements by integrating low-cost sensors (LCS) with 

a novel citizen science (CS) framework whilst addressing critical 

data gaps and uncertainty concerns. This section contextualises 

the findings within existing literature and concludes the study.  

The CS framework diverged fundamentally from prior 

approaches, as all reviewed literature relied on top-down 

methods predefined by researchers. This study on the other 

utilised a participatory co-design process which is better suited 

for data scarce environments providing evidence that integrating 

local knowledge can compensate for missing and outdated 

geospatial data. Again, this study embedded security protocols to 

mitigate insecurity risks and inaccessibility noted by Scott et al., 

(2017) — a solution absent in most citizen science studies and a 

novel adaptation not documented in prior literature.  

The study demonstrated that while LCS exhibit systematic biases 

(-0.6°C underestimation compared to reference sensors), they 

reliably capture temporal trends (R² > 0.9).  

However, the narrow confidence interval derived from Monte 

Carlo simulations demonstrates that, even with these limitations, 

LCS can reliably provide valuable information when error 

margins are defined such that temperature variabilities can be 

contextualised within confidence intervals ensuring robust 

analysis despite sensor limitations. This ultimately provides a 

practical alternative for generating high-resolution thermal 

datasets in informal settlements. 

 

The study identified statistically significant temperature 

disparities (Mann-Whitney U statistic p-value of 1.14×10−98): 

informal settlements averaged 1°C warmer than adjacent formal 

areas, with peaks exceeding 36°C in high-density zones like 

Mukuru. These findings echoes Rathi et al., (2017) observations 

in Mumbai’s slums and align with Scott et al., (2017) study that 

documented similar thermal inequities in Nairobi’s informal 

settlements, although using different methodologies. 

While this study advances low-cost sensor (LCS) and citizen 

science applications, limitations persist. The lack of sensor 

shielding remains the most critical hindrance, as unshielded 

devices are prone to microenvironmental interference (e.g., direct 

sunlight or wind gusts). Additionally, the reference sensor’s 

placement in secure but potentially unrepresentative locations 

could introduce spatial biases. In this study, while insecurity 

concerns necessitated securing the reference station in a safe area, 

experiments confirmed the reference station still captured general 

temperature trends. However, this assumption may not hold 

universally; future works must prioritize representative sensor 
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placement where feasible. Furthermore, uncertainties derived 

from colocation experiments were applied to field measurements, 

though unaccounted variables—such as citizen scientists' 

influences could introduce additional biases. These gaps reveal 

the need for studies quantifying uncertainties inherent to citizen 

science methodologies. 

This study contributes to intra-urban heat island assessments in 

informal settlements by merging LCS affordability with citizen 

science adaptability to overcome data scarcity and 

methodological rigidity. By validating the reliability of LCS and 

citizen-generated data, we demonstrate that participatory, low-

cost methods can serve as pragmatic alternatives for intra-urban 

thermal assessments, particularly in data-scarce environments. 

  

While satellite-derived land surface temperature (LST) is widely 

used to study urban heat, its relationship to near-surface air 

temperature (which directly impacts human health) remains 

complex particularly in heterogeneous informal settlements. By 

providing methods for high resolution air temperature 

measurements, this work could enable robust calibration of LST-

air temperature models, improving their predictive accuracy in 

underserved urban areas. For instance, integrating these datasets 

with RS covariates can enhance machine learning models that 

predict microclimatic variations. 
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    Appendices  

Appendix 1  

 

Table 3:Sensor Specifications 

Sensor Resolution  Accuracy Setting Purpose 

Kestrel 0.1 °C ± 0.5 °C  10 secs Temperature 
logger 

Garmin  3 metres 3metres 20 secs Location 

logger  

Kunak 
Station  

0.01 ºC ± 0.9 ºC 10 secs  Reference 
Station  

 

Appendix 2 

 

Figure 10: Sensors Used  

 

Appendix 3 

  

Figure 10: Sensor Preparation 

 

 

Figure  SEQ Figure \* ARABIC 11: Sensor Preparation 

and Placements 
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