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Abstract 
 
Monitoring change in informal settlements remains a critical challenge, particularly in data-scarce contexts across the Global South. 
While satellite remote sensing provides strong temporal coverage, conventional approaches for mapping the built environment often 
rely on very high-resolution imagery or LiDAR, which lack consistent temporal availability and are costly to scale especially for 
capturing vertical growth. This study leverages Google’s Open Buildings 2.5D Temporal Dataset (2016-2023), which offers annual 
estimates of building presence, count, and height, to detect structural change in Nairobi, Kenya. By analysing differences in building 
count and average height across 100-meter grid cells, we developed a rule-based framework to identify four key transformation types: 
vertical densification, horizontal densification, combined densification (increase in both count and height), and decline. To our 
knowledge, this is the first study to use this dataset to assess vertical change within informal settlements. Validation was conducted 
through a two-source approach using historical satellite imagery (Google Earth Pro) and archival street-level imagery (Google Street 
View). A total of 154 grid cells across 13 slum areas were manually assessed, yielding an overall accuracy of 96.75%. Horizontal and 
combined densification showed perfect agreement, while vertical densification and decline categories had over 80% accuracy. Spatial 
analysis across slums, adjacent buffer areas, and the broader city revealed horizontal densification as the dominant trend within 
informal settlements, while vertical and combined growth were more prominent in surrounding zones. These results demonstrate the 
potential of Google’s 2.5D dataset for scalable, interpretable urban monitoring in rapidly changing environments.  
 
 

1. Introduction 

Rapid urbanization is transforming cities across globe, with the 
most dramatic growth in the Global South. By 2050, the world’s 
urban population is projected to increase by 2.5 billion people, 
and nearly 90% of this growth will occur in cities in Asia and 
Africa (Sirko et al., 2023). This surge has strained the capacity of 
cities to provide adequate housing and infrastructure. In many 
countries, formal housing production cannot keep up, leading to 
a proliferation of informal settlements. As of 2018, over one 
billion people lived in slums or informal settlements worldwide 
(Aboulnaga et al., 2021). Such settlements often expand rapidly 
and organically, outpacing official data collection. Planners and 
policymakers require up-to-date information on these changes to 
guide sustainable urban development, but many regions in the 
Global South lack access to reliable data on building stocks and 
their evolution (Sirko et al., 2023). This data gap hampers 
effective planning, disaster risk management, and service 
provision in the very places experiencing the fastest urban 
growth. 
 
Informal settlements present unique challenges for urban 
monitoring. They are typically high-density, self-built 
environments, growing incrementally in ways that defy formal 
planning regulations. Their ever-changing nature is a defining 
feature: structures are continually added or modified, sometimes 
expanding vertically when no more land is available (Georganos 
et al., 2021; Samper et al., 2020). Yet these communities are often 
under-mapped – at present, there is no comprehensive global 
inventory of informal settlement footprints or morphologies. The 
lack of consistent, longitudinal data on informal urban growth is 
problematic. Variation over time in the extent and density of 
these settlements creates challenges for city management and 
humanitarian response (Samper et al., 2020). Understanding not 

just where informal settlements are, but how they are changing – 
including vertical densification (additional floors or taller 
structures) is critical for addressing issues from overcrowding to 
infrastructure delivery. Tracking such change, however, is 
inherently difficult: informal construction is usually unpermitted 
and often falls outside official surveys and censuses. 
 
Earth Observation data offer a promising avenue to close this 
information gap. Satellite imagery has long been used to detect 
urban expansion, but traditionally this required very high-
resolution images or LiDAR to identify individual buildings. 
Such data can be prohibitively expensive and infrequent for 
large-scale analyses in the Global South. In practice, the scarcity 
of up-to-date very high-resolution imagery has limited our ability 
to systematically study urban changes over time – especially in 
informal settlements where change is continuous (Sirko et al., 
2023). Recent advances in remote sensing analytics, however, are 
overcoming these hurdles. Google’s Open Buildings initiative 
has provided new data resources for mapping urban areas even in 
data-sparse regions. In 2021, the first Open Buildings dataset was 
released, mapping millions of building footprints across Africa 
and later parts of Asia and Latin America (Sirko et al., 2021). 
This effort significantly increased public knowledge of built-up 
structures in those regions and has been used by UN agencies and 
NGOs for applications such as electrification planning and 
disaster response. However, this initial dataset was essentially a 
static snapshot. Users quickly identified the need for temporal 
data – information on how building patterns change year by year 
and for approximate building heights to estimate densities. Both 
aspects are crucial for understanding urban dynamics but were 
lacking in existing open datasets. 
 
To address these gaps, Google recently introduced the Open 
Buildings 2.5D Temporal dataset, a novel source of multi-
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temporal building information. This dataset provides annual 
maps of building presence, counts, and estimated heights from 
2016 to 2023 across roughly 58 million square kilometres of the 
Global South. It leverages the high revisit frequency of the ESA’s 
Sentinel-2 satellite (with ~5-day coverage at 10m resolution) to 
derive building data at an effective spatial resolution of about 4 
meters (Sirko et al., 2023). In essence, machine learning models 
aggregate numerous low-resolution images to produce a sharper 
view of urban development over time. The result is a first-of-its-
kind open dataset capturing both where buildings are appearing 
and how tall they are growing, year by year. This represents a 
significant advance for urban remote sensing: it adds a vertical 
dimension (2.5D) to temporal change detection at large scale. 
With this data, researchers and practitioners can, for the first 
time, systematically track vertical growth in informal settlements 
alongside horizontal expansion. Such capabilities can improve 
population estimates (by accounting for multi-storey housing), 
enhance disaster impact models (tall, crowded structures can 
exacerbate risks), and inform upgrading interventions by 
pinpointing areas of rapid densification. 
 
Despite the promise of the Open Buildings 2.5D dataset, its 
application to real-world urban challenges is still being explored. 
In particular, no prior studies have systematically assessed its 
potential to detect different forms of densification – especially 
vertical change within informal settlements. This study addresses 
that gap by applying the dataset to Nairobi, Kenya, a city where 
over 60% of the population lives in informal settlements with 
limited infrastructure and fast-changing built environments 
(Georganos et al., 2021). By focusing on both horizontal and 
vertical transformation patterns, and validating these patterns 
using satellite and Google Street View imagery, we offer one of 
the first empirical demonstrations of the dataset’s utility for 
scalable urban change monitoring in data-scarce informal 
contexts. 
 
1.1 Research Aim & Objectives 

The overarching aim of this study is to assess the potential of 
Google’s 2.5D building dataset for detecting and validating urban 
change within informal settlements in Nairobi, with a focus on 
leveraging both building count and height information for 
scalable, interpretable analysis. The two research objectives are: 

1. To develop a grid-based framework for classifying 
urban change using building count and height 
differences derived from Google 2.5D dataset (2016-
2023), focusing on key categories such as vertical 
densification, horizontal densification, high 
densification, and decline. 

2. To validate the classified urban change patterns within 
informal settlement regions using satellite and street 
view imagery, and to analyse the spatial distribution of 
these patterns across informal settlements, surrounding 
buffer zones, and other city regions to assess the 
potential of the dataset for broader urban monitoring.  
 

2. Material and Methods 

2.1 Data Sources 

This study relies on four key datasets: Google’s 2.5D building 
dataset, slum boundaries from IDEAtlas, the Nairobi 
administrative boundary from the Humanitarian Data Exchange 
(HDX), and historical imagery from Google Earth and Google 
Street View platforms. These datasets enable temporal urban 
change detection and spatial validation of patterns within 
informal settlement contexts. 

The Google Open Buildings 2.5D Temporal Dataset provides 
annual building footprint and height estimates from 2016 to 2023 
across Africa, South Asia, South-East Asia, Latin America, and 
the Caribbean. It is generated using open-source, Sentinel-2 
imagery and offers building presence, fractional count, and 
average building height at an effective resolution of 4 meters 
(distributed at 0.5-meter raster resolution) (Sirko et al., 2023). 
For this study, only the data from 2016 and 2023 were used, 
focusing on the earliest and most recent temporal snapshots to 
assess structural changes. The dataset was accessed and 
downloaded from Google Earth Engine at 0.5-meter resolution. 
 
The slum boundary data were obtained from the IDEAtlas 
platform and the IDEAMAPS Network (Thomson et al., 2020), 
which provide curated reference datasets of informal settlements 
across multiple cities. The slum boundaries for Nairobi serve as 
a reliable spatial reference for identifying and analysing patterns 
of urban change specific to informal settlements. To define 
broader urban context, the administrative boundary for Nairobi 
was sourced from the Kenya Administrative Level 0-2 
Boundaries (COD-AB) dataset, hosted on the HDX platform 
(https://data.humdata.org/dataset/cod-ab-ken).  
 
For ground-truth validation, this study used historical imagery 
from Google Earth Pro (for satellite views) and Google Street 
View (for panoramic, ground-level images). These tools enabled 
manual inspection of physical changes in building presence and 
structure over time, supporting the qualitative verification of 
urban change categories.  
 
2.2 Urban Change Classification 

To detect and classify urban change across Nairobi, a 100 x 100 
meter reference grid provided by IDEAtlas was used as the 
analytical unit. Using Google’s 2.5D building dataset, zonal 
statistics were computed to extract the total building count and 
average building height within each grid cell for the years 2016 
and 2023. The raster layers representing building presence and 
height were processed using spatial masking, and statistical 
summaries were assigned to each grid polygon. These statistics 
formed the foundation for identifying structural changes over 
time. 
 
Following this, the difference in building count and average 
height between 2016 and 2023 was calculated for each grid. To 
interpret the changes meaningfully, each difference metric was 
categorized into one of the three classes: decrease, stable, or 
increase. For building count, thresholds were derived using the 
interquartile range (IQR) method, with a minor adjustment to the 
lower bound to account for noise associated with the synthetic 
nature of the dataset. The resulting classification was as follows: 

• Decrease: count difference < -1.0 
• Stable: -1.0 < count difference < 6.34 
• Increase: count difference > 6.34 

 
For average building height, a fixed threshold of ±1.8 meters was 
applied, informed by literature suggesting that one floor in 
informal settlements typically equates to approximately 1.8 
meters in height (Kraff et al., 2019). Accordingly: 

• Decrease: height difference < -1.8 meters 
• Stable: -1.8 meters < height difference < 1.8 meters 
• Increase: height difference > 1.8 meters 

 
By combining the classified changes in both metrics, each grid 
cell was assigned to one of the eight urban change categories, 
capturing diverse patterns of growth or decline. These include 
stable areas, various forms of densification (horizontal, vertical, 
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and high), decline, and mixed trends (e.g., more buildings but 
shorter structures). Table 1 summarizes the rule-based logic used 
to derive these categories. 
 
This study focuses on four categories of particular interest due to 
their relevance in the context of informal settlements and urban 
transformation: Vertical Densification, Horizontal Densification, 
High Densification, and Decline. These categories capture the 
most salient patterns of upward and outward growth, as well as 
declining or structural loss, within the city’s built environment.  
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Table 1. Rule-based classification logic for urban change 
categories 

2.3 Spatial Zone Delineation 

To contextualize the spatial distribution of urban change across 
different parts of the city, three distinct spatial zones were 
delineated: slum areas, a 100-meter buffer ring surrounding 
slums, and the remaining urban areas within the city boundary 
(Friesen et al., 2018). These zones provide a comparative 
framework to assess the concentration and nature of change 
across informal and formal urban contexts. 

 
The Nairobi city boundary, sourced from the HDX platform, 
served as the outer boundary encompassing all slum and buffer 
regions. The informal settlement boundaries were clipped to this 
city boundary to include only those portions of slums that fall 
within the administrative limits of Nairobi. To represent regions 
adjacent to informal settlements, a 100-meter buffer was 
generated around the slum boundaries. These buffer polygons 
were dissolved into a single contiguous geometry. To avoid 
double counting, areas overlapping with the original slum 
boundaries were subtracted from the buffer. The resulting buffer 
ring captures areas immediately surrounding the slums, 
excluding those already designated as slum areas. 
 
Finally, the remaining city regions were derived by subtracting 
both the clipped slum boundaries and the clipped buffer ring from 
the Nairobi city boundary. This step ensured that all three spatial 
zones – slums, buffer ring, and other regions – were mutually 
exclusive and entirely contained within the city. 
 
All subsequent area calculations and visualizations of the four 
urban change categories were performed across these three 
spatial zones. 
 
2.4 Validation process 

To assess the reliability of the urban change classifications, a 
manual validation procedure was conducted at the grid level, 
focusing exclusively on grid cells located within informal 
settlement boundaries. For each of the four targeted change 
categories – Vertical densification, Horizontal densification, 
High densification, and decline – the five slums with the largest 
area of corresponding classified grids were selected for 
validation. 
 
Validation was carried out through visual interpretation of 
historical satellite imagery accessed via Google Earth Pro and 
street-level imagery accessed via Google Street View, depending 
on availability. Both tools allowed for a comparison of building 
presence and structural characteristics between 2016 and 2023, 
the two temporal endpoints used in this study.  
 
The validation involved comparing the predicted urban change 
category with the observed change based on visual inspection, for 
a selected set of grids within each slum. This comparison formed 
the basis for constructing a confusion matrix, from which 
accuracy metrics such as overall accuracy, user’s accuracy, and 
producer’s accuracy were derived.  
 
It is important to note that the validation of the classification 
model in this study is limited to four change categories and does 
not include validation of a ‘Stable’ class. However, the validation 
process allowed for the inclusion of ‘Stable’ as a reference class 
to capture potential overclassifications. 
 

3. Results and Discussion 

3.1 Building count and height change patterns 

As illustrated in Figure 1, the majority of grid cells across Nairobi 
remained stable between 2016 and 2023, with 67.9% showing no 
significant change in building count and 82.1% remaining stable 
in average building height. This suggests that a large portion of 
the city’s built environment has not undergone substantial 
structural transformation during this period, at least not while 
using a spatial resolution of 100 x 100 meters.  
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Figure 1. Distribution of change classes for building count and 

average height (2016-2023). 
Notably, 25% of the grids showed an increase in building count, 
indicating a clear trend of horizontal expansion through the 
addition of new structures. In contrast, only 12% of grids 
exhibited an increase in average building height, pointing to a 
more limited extent of vertical growth. This disparity implies that 
horizontal densification is more prevalent than vertical 
densification during the study period. 
 
The share of grids exhibiting a decrease in either indicator was 
relatively small – 7.1% for building count and 5.9% which may 
reflect localized processes of demolition or gradual structural 
decline. However, such decreases must be interpreted with 
caution, as they could also result from artefacts in the synthetic 
dataset or from noise along grid boundaries. 
 
These underlying trends highlight the dominant spatial logic of 
change across Nairobi, where growth is occurring more 
frequently through increased footprint coverage rather than 
upward vertical extension. These patterns provide the structural 
basis for the more nuanced urban change typology discussed in 
the following section. 
 
3.2 Urban change categories: Citywide and within Informal 
settlements 

Figure 2 presents the citywide distribution of grid cells across all 
eight defined urban change categories. A majority of the city’s 
grid cells (57.9%) were classified as stable, indicating limited or 
no detectable change in both building count and average height 
between 2016 and 2023. 
 

 
Figure 2. Distribution of classified urban change categories 

across all 100m grid cells in Nairobi (2016-2023). 

Among the changing categories, horizontal densification is the 
most prevalent, observed in 19.2% grids. This reflects the city’s 
dominant mode of urban growth through the addition of new 

structures without significant increases in building height. 
Vertical densification and partial decline are observed in 7.5% 
and 7.4% of grids respectively, indicating moderate levels of 
structural transformation through vertical extension or partial 
loss of built volume. 
 
More intensive forms of change, such as high densification – an 
increase in both count and height are relatively limited, making 
up 3.4% of the grid cells. The declining category is even less 
common, accounting for only 1.2% while mixed categories are 
rare, each constituting less than 2.5% of the total. 
 
Figure 3 focuses specifically on grid cells located within informal 
settlements. In contrast to the citywide pattern of broad structural 
stability, horizontal densification emerges as the overwhelmingly 
dominant category in slums, accounting for 52.2% of all 
classified grids. Stability, by comparison, accounts for only 
20.9%, while partial decline and other categories appear in lower 
proportions. This suggests that while much of the broader urban 
fabric remains unchanged, informal settlements are experiencing 
significant physical transformation – primarily through lateral 
expansion of built structures. These findings reinforce the need 
for localized analysis of urban change processes, especially in 
informal areas where citywide summaries may obscure 
underlying dynamics. 
 

 
Figure 3. Distribution of classified urban change categories 

within informal settlements of Nairobi (2016-2023) 
 

3.3 Validation in selected slum areas 

To assess the reliability of the urban change classifications, a 
structured validation was conducted across a subset of slum 
areas. For each of the four focus categories – vertical 
densification (VD), horizontal densification (HorD), high 
densification (HigD), and decline (Dec) – the five slum 
boundaries with the largest area of classified grids were selected 
for manual inspection. This selection resulted in 13 unique slum 
polygons, many of which exhibited multiple categories 
simultaneously (Figure 4). 
 
Validation was performed at the grid-cell level using two 
complementary sources: historical satellite imagery (via Google 
Earth Pro) and archival street-level imagery (via Google Street 
View). This dual-source approach enabled verification of both 
horizontal and vertical changes. Google Street View proved 
indispensable for confirming the addition of new floors or 
structural extensions that are often difficult to discern from 
satellite imagery. While the reference years for analysis were 
2016 and 2023, the available street view imagery varied by 
location, with the actual timestamps ranging from 2016 to 2024. 
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Figure 5 presents representative before-and-after snapshots from 
selected locations, annotated with their respective capture dates. 
 

 Stable Dec VD HigD HorD Sum UA (%) 

Stable 0 0 0 0 0 0 NaN 
Dec 1 5 0 0 0 6 83.33 
VD 4 0 19 0 0 23 82.61 
HigD 0 0 0 26 0 26 100 
HorD 0 0 0 0 99 99 100 
Sum 5 5 19 26 99 154 NaN 
PA 
(%) 

0 100 100 100 100 NaN 96.75 

Table 2. Confusion matrix comparing predicted and validated 
urban change categories. 

Notes: Rows represent the predicted class (model output), and 
columns represent the validated classes from imagery 
interpretation. UA: Users Accuracy (commission error). PA: 
Producers Accuracy (omission error). 
Of the 154 grid cells evaluated, 149 were found to be correctly 
classified, yielding an overall accuracy of 96.75% (Table 2). Both 
horizontal and high densification categories showed perfect 
validation agreement (100%), while decline and vertical 
densification exhibited slightly lower agreement rates of 83.3% 
and 82.6% respectively. Misclassifications observed in the 
decline and vertical densification categories highlight the 
inherent difficulty to confirming subtle structural changes using 
satellite and street-level imagery. These cases may reflect actual 
limitations in the classification model, uncertainty in the visual 
evidence, or a combination of both – underscoring the need for 
cautious interpretation and more systematic validation protocols. 
For decline, satellite imagery did not show any noticeable change 
in structure presence between 2016 and 2023, suggesting those 
grid cells may have remained stable. In the case of vertical 

densification, validation was impeded by the absence of Google 
Street View imagery, particularly in core slum regions where 
vertical changes were expected. Without ground-level views, it 
was difficult to verify subtle height increases, leading to a few 
instances where predicted VD grids were found to be stable upon 
satellite inspection. These errors, while few, highlight the 
importance of incorporating a ‘Stable’ reference class in 
confusion matrix even when it is not a direct focus of the 
classification. 
 
Figure 6 summarizes the breakdown of validation sources used 
across categories. Notably, the reliance on Google Street View 
imagery increased for categories involving vertical growth (VD, 
HigD), whereas decline validations relied solely on satellite 
imagery due to the absence of street-level data in core slum 
regions.  
 

 
Figure 6. Validation sources by urban change category, showing 

grid counts validated using satellite and street view imagery. 
Together, these results not only confirm the feasibility of using 
Google’s 2.5D dataset for change detection in informal 
settlements, but also underscore the unique value of street-level 

Figure 4: Top five slums per urban change category (by area), showing spatial overlap and diversity of change types across 13 slum 
boundaries in Nairobi. 
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imagery as a supplementary validation source for vertical 
transformations. 
 
3.4 Spatial distribution across zones 

The spatial distribution of the four focus urban change categories 
reveals distinct patterns across three delineated zones: slum 
boundaries, buffer ring around slums, and other regions within 
the city. As shown in Figure 7, horizontal densification is the 
dominant form of urban change within slums, accounting for 
25.4% (2,741 hectares) of the total horizontal densification area. 
This indicates widespread infill development and structural 
expansion in already dense informal environments. 
 
In contrast, vertical densification and high densification 
categories involving building height increase are less prevalent 
(though not negligible) in slums, accounting for 1.8% (80 
hectares) and 6.0% (114 hectares) of their total area respectively. 
These findings suggest structural limitations within slum areas 
that constrain vertical expansion, such as informal construction 
practices, lack of materials, or regulatory restrictions. 
 
The buffer zone surrounding slums, however, exhibits a more 
balanced pattern across densification categories, particularly for 
vertical densification (5.8%, 256 hectares) and high densification 
(8.7%, 166 hectares), indicating a spillover effect of growth into 
adjacent areas. This ring may represent transitional zones with 
more flexibility in development patterns, infrastructure upgrades, 
or informal-to-formal conversion processes. 
 
Meanwhile, the vast majority of urban change for all categories 
occurs in other city regions outside the slum and buffer zones. 
For example, over 85% of both vertical and high densification 
occurs in these areas, which reflects the broader urban 
intensification trends in Nairobi beyond informal settlements. 
 
While areas classified as ‘Declining’ represent the smallest share 
across all zones, their notably low presence within slums (1.0%, 
7 hectares) and buffer zones (5.3%, 34 hectares) warrants careful 
interpretation. These patterns may point to actual instances of 
structural decay or demolition but could also stem from the 
synthetic nature of the dataset or subtle classification noise. As 
such, declining areas should be examined cautiously, especially 
in low-density or transitional zones where minor temporal 
inconsistencies may be amplified. 

 
4. Conclusion and Limitations 

This study explored the use of Google’s 2.5D temporal building 
dataset to detect and validate urban change patterns in Nairobi, 
focusing on informal settlements. By combining changes in 
building count and height across 100-meter grid cells, we 
developed a classification framework capable of capturing 
diverse transformation types – most notably vertical 
densification, horizontal densification, high (combined) 
densification, and decline. The results demonstrate the utility of 
this approach for tracking both footprint expansion and vertical 
growth in resource-constrained urban settings. 
 
Validation conducted through a combination of historical 
satellite imagery and Google Street View confirmed strong 
agreement between predicted and observed change types, with an 
overall accuracy of 96.75%. This underscores the value of fusing 
remote sensing and street-level perspectives, particularly for 
verifying vertical changes that are otherwise difficult to capture. 
Spatial analysis across slum boundaries, adjacent buffer zones, 
and other urban areas revealed that while horizontal densification 
is dominant in informal settlements, vertical and high-density are 
transformations are more prevalent in surrounding zones and 
across the broader city. 
 
While this study presents a robust first step in validating urban 
change patterns using Google’s 2.5D dataset, it does not adopt a 
formal sampling strategy such as random or stratified sampling. 
Instead, the validation focused on top-ranking slum areas for each 
category, prioritizing interpretability and feasibility given the 
exploratory nature of the work. This may introduce bias by 
favouring grids that are more readily interpretable, potentially 
inflating reported accuracy values. Future studies will 
incorporate systematic sampling to support broader 
generalizability and statistical rigor. Additionally, the lack of 
Google Street View coverage in dense core slum regions limited 
the ability to validate some vertical changes – a challenge that 
remains inherent to current data availability. 
 
 

Figure 5: Example pairs of earlier and recent Google Street View imagery used for validation across different slum locations. The 
images illustrate observable structural changes such as building additions or vertical extensions. (© Google 2025, Used here for 

academic research under fair use) 
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The full codebase developed for this study is publicly available 
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https://doi.org/10.5281/zenodo.15203081 
  
 
 

Figure 7: Urban change category distribution by spatial zone, represented as percentage of total area for each category 
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