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Abstract 

 

Forests play a pivotal role in global ecosystems by sequestering carbon, preserving biodiversity, and providing valuable resources for 

both humans and wildlife. Monitoring and management of these forests require accurate, up-to-date information on individual trees 

and species composition—challenges that can be addressed with advanced remote sensing and deep learning. This paper presents a 

multi-season, multi-year approach to automatic tree detection and species classification in heterogeneous forests. Using over 5,000 

high-resolution (0.25 m) RGB orthophoto tiles from the Wallonia region (spanning 2018–2023), we annotated more than 100,000 

individual trees representing 14 classes of deciduous and coniferous species. A Faster R-CNN model trained for tree detection achieved 

a F1 score of 0.828 and a mAP@50 of 0.827, effectively locating tree crowns under varying illumination and phenological conditions. 

Meanwhile, a convolutional neural network (CNN) for species classification attained an overall accuracy of 0.937, accurately 

distinguishing most species and age classes. Despite strong performance, limitations persist, particularly in identifying small saplings 

and visually similar species (e.g., oak vs. beech). These findings highlight the potential of multi-temporal aerial imagery and deep 

learning to enhance forest inventories, reduce field survey costs, and inform targeted management. 

 

 

1. Introduction 

 Forests serve as critical ecosystems, regulating local and global 

climates through carbon sequestration and sustaining 

biodiversity by providing habitats for countless species (Harris et 

al., 2021). As anthropogenic pressures like deforestation, land-

use change, and climate variability intensify, precise and up-to-

date forest inventories are essential for effective conservation 

strategies and sustainable resource management. Tree-level 

information—encompassing species composition, tree 

dimensions, and health status—offers especially valuable 

insights into forest dynamics and resilience (Fassnacht et al., 

2016). Traditionally, field surveys have constituted the gold 

standard for such detailed inventories, but their high cost and 

labour intensity limit their scalability, particularly in large or 

remote forest expanses. 

 

Against this backdrop, the surge in high-resolution remote 

sensing data and advanced machine learning techniques has 

created new avenues for forest monitoring. Many existing 

methods rely on single-season or single-year imagery, often at 

coarser resolutions (e.g., satellite platforms) that may be 

insufficient for delineating individual crowns or differentiating 

visually similar species (Michez et al., 2016; Thapa et al., 2024). 

Although these approaches have demonstrated success in 

detecting broad forest patterns, they often fall short when forest 

stands are diverse, phenological stages vary significantly, or 

spatial resolution is inadequate for capturing fine-grained canopy 

differences (Immitzer et al., 2012; Bolyn et al., 2022). 

Additionally, single-date analyses fail to account for how tree 

appearance and canopy reflectance may shift across phenological 

phases, such as the transition from leaf-off to leaf-on conditions 

in deciduous species. 

 

To address these challenges, we propose a multi-season and 

multi-year tree detection and classification framework rooted in 

deep learning with high-resolution aerial orthophotos. By 

integrating imagery from 2018 to 2023, our method captures 

subtle spectral-textural variations that arise under changing 

phenological states and lighting conditions—a key gap in many 

prior studies focused on single-season acquisitions. Specifically, 

we combine a Faster R-CNN architecture (Ren et al., 2015) for 

robust tree-crown delineation with a specialized convolutional 

neural network for classifying 14 tree classes, including mature 

and young coniferous and deciduous species. This approach 

provides comprehensive tree-level data in heterogeneous forest 

parcels, a notoriously difficult environment where overlapping 

canopies and variable crown shapes frequently hinder traditional 

classification models. 

 

In doing so, our framework offers three principal contributions. 

First, we assemble a large, annotated dataset (over 100,000 

labelled trees) reflecting diverse stand types and phenological 

stages across multiple years, ensuring broad coverage of the 

Wallonia region in Belgium. Second, we show how multi-year 

imagery can alleviate species confusion by capturing seasonal 

colour changes, facilitating clearer distinctions between visually 

similar species (e.g., oak vs. beech). Finally, we present an in-

depth evaluation on large, real-world forest parcels, highlighting 

not only the overall accuracy gains but also the persistent 

challenges in dense canopies and small saplings that future 

research must address. By advancing tree-level detection and 

classification in multi-season contexts, this work lays the 

groundwork for more accurate, scalable forest inventories and 

targeted management interventions. 

 

The contributions of this work are as follows: 

 

1. Development of a high-resolution tree detection 

framework using Faster R-CNN, trained on extensive 

annotated datasets. 

2. Implementation of a species classification model 

capable of distinguishing between 14 tree classes, 

including young and mature trees. 

3. Analysis of multi-seasonal and multi-year imagery to 

assess the impact of temporal variations on model 

performance. 
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4. Validation of the proposed approach on diverse forest 

parcels across the Wallonia region to assess its 

applicability in real-world forestry management. 

 

2. Methodology 

2.1 Dataset Creation  

We built our dataset using high-resolution (0.25 m) RGB 

orthophotos of Wallonia. A total of 5,098 non-overlapping tiles, 

each measuring 50 × 50 meters (covering 1,274.5 ha), were 

selected to represent diverse forest conditions across multiple 

seasons from 2018 to 2023. Expert annotators used QGIS to draw 

bounding boxes around individual tree crowns (in mono-species 

parcels provided by local stakeholders), assigning each to a 

predefined species label. To reduce inter-annotator variability, 

multiple reviewers cross-verified ambiguous cases. The final 

dataset comprised over 100,000 labelled instances, each 

reflecting a distinct tree. We then split the data into training 

(70%), validation (15%), and test (15%) sets, ensuring all species 

appeared in each subset and maintaining geographical diversity 

where possible. 

 

2.2 Data Augmentation Techniques 

2.2.1 Tree Detection: For the Faster R-CNN tree detection 

model, random horizontal and vertical flips were applied, with 

bounding box coordinates updated accordingly. Colour jitter was 

also introduced by adjusting brightness, contrast, hue, and 

saturation by ±10%, helping the model learn to handle variations 

in canopy appearance due to changing light conditions. 

 

2.2.2 Tree Species Classification: The model employed two 

key augmentations: random brightness and random contrast, both 

at ±10%. Although hue and saturation adjustments can be useful, 

preliminary experiments indicated these two augmentations were 

sufficient to address typical variations seen in aerial imagery. By 

applying these transformations, we mitigated biases related to 

illumination and positional differences, ultimately enhancing the 

model’s generalization across different seasons. 

 

2.3 Model Architecture and Training 

2.3.1 Faster R-CNN for Tree Detection: The Faster R-CNN 

model comprises three key components: a convolutional feature 

extractor, a Region Proposal Network (RPN), and a classification 

head. We used a ResNet-50 backbone pretrained on ImageNet for 

feature extraction, as it balances accuracy and computational 

efficiency. The anchor sizes and aspect ratios in the RPN were 

chosen to accommodate typical crown sizes observed in our 

dataset (e.g., small saplings to large mature trees), and images 

were resized to a fixed height and width 200×200 pixels while 

maintaining aspect ratio. 

We conducted an iterative hyperparameter tuning process to 

determine the optimal learning rate, weight decay, and batch size, 

experimenting with values that minimized validation loss without 

overfitting Table 1 presents the final selected hyperparameters. 

 

Hyper-parameter Selected values  

Batch size 1 

Epochs 150 

Learning rate 0.0001 

Optimizer SGD (Stochastic 

Gradient Descent)  

Weight decay 0.0005 

Table 1. Hyper-parameters of the Faster R-CNN 

2.3.2 CNN for Species Classification: A sequential CNN 

was implemented in Keras (Chollet, 2015). Each input image is 

cropped to 48×48×3 pixels. Data augmentation (random 

brightness and contrast at 10%, as well as horizontal/vertical 

flips) further increases robustness against illumination changes 

and viewpoint variations. 

The network consists of four convolutional blocks, each 

featuring: 

• A convolution layer (using a ReLU activation) 

• A max-pooling layer 

• Dropout (e.g., 0.2) 

• Batch normalization 

After flattening, four fully connected layers—with additional 

dropout and batch normalization—help the network generalize 

and avoid overfitting. The final output layer uses a SoftMax 

activation to produce class probabilities for our 14 total classes 

(Spruce, Douglas, Larch split into mature and young sub-

classes). The model summary is presented in Table 2. 

 

Layer (Type) Output Shape Parameters 

RandomBrightness (48, 48, 3) 0 

RandomContrast (48, 48, 3) 0 

Conv2D + ReLU (48, 48, 32) 896 

MaxPooling2D (24, 24, 32) 0 

Dropout + BatchNorm (24, 24, 32) 128 

Conv2D + ReLU (24, 24, 64) 18,496 

MaxPooling2D (12, 12, 64) 0 

Dropout + BatchNorm (12, 12, 64) 256 

Conv2D + ReLU (12, 12, 128) 73,856 

MaxPooling2D (6, 6, 128) 0 

Dropout + BatchNorm (6, 6, 128) 512 

Conv2D + ReLU (6, 6, 256) 295,168 

MaxPooling2D (3, 3, 256) 0 

Dropout + BatchNorm (3, 3, 256) 1,024 

Flatten (2304) 0 

Dropout (2304) 0 

Dense + ReLU (256) 590,08 

BatchNormalization (256) 1,024 

Dense + ReLU (128) 32,896 

BatchNormalization (128) 512 

Dense + ReLU (64) 8,256 

Dropout + BatchNorm (64) 256 

Dense (Softmax) (14) 910 

Total Parameters — 1,024,270 

Table 2 Summary of the Sequential model architecture used in 

this study. The model consists of four convolutional blocks with 

increasing depth, interleaved with pooling, dropout, and batch 

normalization layers, followed by fully connected layers for final 

classification into 14 classes. 

 

We train the model using the Adam optimizer and a categorical 

cross-entropy loss. Evaluation metrics include accuracy and 

weighted accuracy to address class imbalances. Table 3 

summarizes the key hyperparameters. 

 

Hyper-parameter Selected values  

Batch size 32 

Epochs 200 

Epochs 200 

Learning rate 0.001 

Optimizer Adam 

Table 3. Hyper-parameters for the tree classification model 
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2.4 Error analysis  

To gain deeper insights into model behaviour, we plotted learning 

and loss curves for each training run and compared them across 

different seasons. This allowed us to identify points of overfitting 

(e.g., diverging validation and training loss) and assess seasonal 

differences. For example, performance in spring imagery 

sometimes dipped due to partial leaf coverage, whereas summer 

imagery provided more distinct canopy features. By comparing 

error metrics (precision, recall, F1-score) in these seasonal 

subsets, we gleaned where our models excel and where further 

improvements may be necessary. 

 

A summary of the methodology is described in Figure 1. 

 

 
Figure 1. Graphical illustration of the methodology used for the 

multi model training for tree species classification. 

 

3. Results 

3.1 Tree Detection performance  

The tree detection model, based on the Faster R-CNN 

architecture (Ren et al., 2015) and trained using the 

hyperparameters in Table 1, achieved precision of 0.796, recall 

of 0.862, an F1 score of 0.828 (at IoU@0.5) illustrated in Figure 

2, and a mean Average Precision (mAP@50) of 0.827 as shown 

in Figure 3. These metrics were derived from the validation set 

using a confidence detection threshold of 0.1.  

 
Figure 2. Faster RCNN F1 score on train and validation 

 
Figure 3. Faster RCNN mAP_50 score on train and validation. 

 

Figure 4 illustrates sample detection outputs on a full parcel 

where trees are outlined with bounding boxes. 

 
Figure 4. Results of the Faster R-CNN predictions on a parcel 

near Arlon, Wallonia Belgium. 

 

The Figure 5 and Figure 6, show the tree detection in different 

scenarios and contexts:  
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Figure 5. Tree detection results on the validation set in a dense 

parcel with young spruce. 

 
Figure 6. Tree detection results on the validation set in a low 

populated tile with mature trees. 

 

3.1.1 Confidence Threshold and Detection Strategy: A low 

threshold (0.1) was deliberately chosen to ensure a high recall 

and reduce the risk of missing smaller or more ambiguous trees. 

This approach prioritizes a minimal omission error, which is 

critical when comprehensive forest inventories are desired. 

In scenarios where users desire fewer false positives (e.g., precise 

tree counts in urban parks), additional filtering can be applied 

post-inference based on detection score, bounding box 

dimensions, or object shape ratios. 

 

3.1.2 Error Patterns and Future Considerations. False 

positives tended to occur in dense canopies or at forest edges 

where shadows and overlapping tree crowns complicated 

detection. While the false negatives primarily involved small, 

closely spaced saplings or areas with homogeneous canopy cover 

lacking distinct boundaries. 

These results confirm that the chosen architecture (Faster-

RCNN) and hyperparameters, described in the Table 1, 

effectively locate individual trees under diverse conditions and 

across different year acquisitions. 

 

3.2 Tree species Classification and Validation Results   

Using the CNN described in Section 3.3.2, the global validation 

accuracy across all 14 classes was 0.937 as shown in Figure 7. 

This represents a high level of performance in distinguishing both 

mature and young trees for a broad range of species. Figure 2 

provides an example classification map, where each detected tree 

is color-coded by its predicted species. 

 
Figure 7. Sequential model accuracy on the train and validation 

sets. 

 

Table 4 lists the recall for each species, highlighting per-class 

performance. Recall values above 90% are observed for most 

classes, with some variability across different species. 

 

Class Precision Recall F1-score 

Birch 83,86 94,25 88,75 

Oak 93,24 88,24 90,67 

Douglas Fir 96,25 87,19 91,5 

Young Douglas Fir 98,64 97,98 98,31 

Beech 87,52 87,07 87,29 

Wild Cherry 81,33 95,31 87,77 

Larch 92,26 87,82 89,99 

Young Larch 99,87 98,5 99,18 

Poplar 92,97 92,68 92,82 

Scots Pine 96,93 94,19 95,54 

Spruce 94,49 98,09 96,25 

Young Spruce 98,88 99,58 99,23 

Maple 95,65 100 97,78 

Table 4. Recall per class for the species classification model 
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Figure 8. Results of the tree species classification map using the 

sequential model 

 

Figure 9 shows the confusion matrix for our 14-class species 

classification, capturing both correctly identified classes 

(diagonal entries) and misclassifications (off-diagonal entries). 

overall, most classes exhibit high diagonal counts—for instance, 

oak (2,645), Douglas fir (2,569), and spruce (2,863)—indicating 

strong performance in correctly recognizing these species. young 

conifers (e.g., young Douglas, young larch, and young spruce) 

also display notably large correct predictions (1,784; 2,665; and 

1,774, respectively), reflecting the model’s ability to handle 

different growth stages. however, there are some key 

misclassifications. for instance, oak occasionally appears as 

beech or other species, suggesting that subtle canopy similarities 

or seasonal variations might cause confusion. Douglas fir and 

larch similarly overlap, particularly when younger trees share 

comparable coloration or crown textures. although these off-

diagonal values are relatively small compared to the main 

diagonal counts, they underscore the challenge of distinguishing 

visually similar species—especially under changing 

phenological states. 

 

 
Figure 9. Confusion matrix showing the number of classified 

samples for each tree species pair. Rows represent actual species 

and columns represent predicted species. Values along the 

diagonal indicate correctly classified instances. 

 

3.2.1 Performance analysis: According to the species types 

and their level of maturity, various performances are observed. 

maple, young spruce, and young larch stand out with recall values 

near or exceeding 99%. these results suggest that the CNN 

effectively captures the visual cues (colour, texture, canopy 

structure) for these species, even across different seasonal image 

sets. beech (87.52%) and wild cherry (81.33%) show 

comparatively lower recall. this may be due to leaf-off conditions 

in some orthophotos for deciduous species like beech, or because 

larch needles and canopy structure share similarities with other 

conifers in certain imagery. 

misclassifications might also stem from the temporal variability 

(e.g., early spring vs. mid-summer) that alters leaf colour and 

canopy density. 

 

3.2.2 Service operationalization and reporting: To 

streamline the dissemination of model outputs across multiple 

parcels, we developed an automated reporting pipeline. This 

system generates comprehensive PDF reports containing key 

performance metrics, data visualizations (e.g., detection plots and 

classification maps), and summary tables. By automating these 

processes, results can be systematically and consistently shared 

with stakeholders, facilitating faster, data-driven decision-

making in diverse forest management contexts. 

 

4. Discussion and conclusion 

Our results suggest that the proposed deep learning framework 

for tree detection and species classification can serve as a 

valuable resource for forest stakeholders—ranging from regional 

forestry managers to researchers studying forest dynamics. By 

leveraging high-resolution orthophotos collected over multiple 
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seasons and years, we captured variations in canopy appearance 

and structure, thereby enhancing the temporal robustness of our 

model. The Faster R-CNN (Ren et al., 2015) achieved 

commendable precision and recall, affirming its suitability for 

identifying trees in diverse canopy conditions. Meanwhile, our 

species classification CNN showed high overall accuracy, 

demonstrating promise as a rapid and scalable approach to 

mapping forest composition. 

Despite these achievements, our investigation revealed several 

important limitations: 

4.1 Smooth Canopies and Dense Tree Cover 

In areas with uniform or smooth deciduous canopies, such as 

mature beech stands with little shadow contrast, the detection 

model struggled to correctly isolate individual tree crowns. 

Dense forest blocks often led to overlapping bounding boxes or 

omission errors. 

This issue underscores the need for multi-scale approaches or 

additional data sources (e.g., LiDAR) to better delineate tree 

crowns, especially in scenarios where aerial imagery alone 

provides insufficient texture cues. 

4.2 Species-Level Classification Variability 

While the classification model exhibited high accuracy for 

several species, there were discrepancies when applied to new 

study areas. Lower performance likely stems from factors such 

as overfitting to local conditions, seasonal variability, or different 

image acquisition geometries. Conifers generally performed 

better than deciduous species, potentially due to distinct canopy 

textures. However, early growth stages of conifers, especially 

small saplings, were often misclassified as other conifers. This 

highlights the need for more training examples capturing 

different developmental stages. 

4.3 Underrepresentation of Small Trees 

Trees with crown diameters under 2 meters frequently went 

undetected or unclassified, a limitation with implications for 

sustainable forest management if regenerating populations are 

overlooked. Addressing this would require higher spatial 

resolution imagery, improved annotation protocols, or 

complementary data from ground surveys. 

4.4 Confusion Among Similar Species 

Oak and beech were sometimes mistaken for one another, 

presumably due to their comparable leaf coloration and canopy 

shape in aerial imagery. Such confusions reduce the reliability of 

species-specific metrics and highlight the potential benefit of 

spectral data for better species separation. 

Despite these challenges, the overall performance of the 

detection and classification models is promising for large-scale, 

near-real-time forestry applications. When integrated into 

forestry management workflows, these models can streamline 

inventory processes, track changes in species composition over 

time, and inform more targeted interventions (e.g., pest 

management, planting efforts). 

5. Outlook

5.1 Multi-Spectral and Hyperspectral Data

Incorporating near-infrared (NIR) bands, or even hyperspectral 

images, can significantly improve species discrimination, partic-

ularly for deciduous species that appear visually similar in RGB 

imagery. NIR reflects leaf chemistry differences, aiding in sepa-

rating oak from beech or identifying subtle stress indicators. 

5.2 Enhanced Model Architectures 

Employing more complex or specialized deep learning architec-

tures—such as Vision Transformers or Swin Transformers—

could capture more nuanced canopy features and better handle 

complex forest structures. Increasing the model’s capacity (e.g., 

deeper networks, attention mechanisms) may help with challeng-

ing tasks like detecting very young saplings or distinguishing 

species under variable seasonal conditions. 

5.3 Tree Height and Structural Information 

Integrating LiDAR or photogrammetric data would provide 3D 

information on canopy height and structure, enabling more robust 

tree detection. This is particularly beneficial for underrepresented 

small trees, whose limited vertical extent might go unnoticed in 

2D imagery alone. 

5.4 Health and Stress Indicators 

Including Normalized Difference Vegetation Index (NDVI) or 

similar spectral indices can offer timely insights into tree health, 

water stress, or pest infestations. Early detection facilitates pro-

active management by allowing stakeholders to intervene before 

irreversible damage occurs. 

Integrating these health indicators directly into the model (e.g., 

multi-task learning approaches that predict both species type and 

health status) could further streamline decision-making. 

5.5 Scalability and Transferability 

Future efforts should focus on replicating these methods in other 

forest regions with different species compositions or manage-

ment practices. Demonstrating generalization across geographies 

would bolster confidence in the model’s utility and adaptability. 
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