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Abstract 

 

Forest monitoring through individual tree crown delineation is essential for sustainable management and carbon cycle assessment. 

This paper presents TreePseCo, an adaptation of the PseCo framework leveraging foundation models for automated tree crown 

segmentation in aerial imagery. Our approach implements a three-stage pipeline: (1) tree center detection using a modified Segment 

Anything Model (SAM) decoder that generates probability heatmaps, (2) instance mask generation through prompt-guided 

segmentation utilizing SAM's visual features, and (3) boundary refinement via specialized classification to eliminate false positives. 

We validate our method on two datasets: the extensive NEON dataset covering diverse U.S. forest ecosystems and the Valle d’Aosta 

dataset (VdA), a custom set of high-resolution RGB aerial images from northwestern Italian forests. Experiments against the popular 

DeepForest demonstrate that, while the baseline maintains excellent performance on its native NEON dataset, TreePseCo exhibits 

superior generalization capabilities when applied to new geographical contexts, achieving higher mAP scores on the VdA dataset. 

Our approach shows strength in detecting trees in densely clustered formations and identifying smaller tree instances, areas where 

existing methods often struggle. Overall, results suggest TreePseCo provides a robust foundation for comprehensive forest inventory 

applications across diverse environments. 

 

    

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Visualization of our tree detection and segmentation approach. From left to right: the original satellite image (a), the 

heatmap indicating tree locations with red crosses marking the peaks (b); the predicted bounding boxes (c); the segmentation masks 

generated by the TreePseCo model (d). This visualization demonstrates the progressive steps of our detection pipeline, from initial 

heat-based localization to precise object boundary delineation. 

 

1. Introduction 

Forest ecosystems require accurate monitoring for sustainable 

management, with tree crown delineation serving as a 

fundamental component in remote sensing applications 

(Wulder, 2012). Modern technologies, particularly aerial 

imagery, have in fact emerged as cost-effective alternatives for 

tree crown delineation, enabling large-scale forest mapping 

(Huang, 2018). 

High-resolution imagery allows for detailed analysis of forest 

structures, with tree crown dimensions demonstrating strong 

correlations with above-ground biomass and other biophysical 

parameters (Puliti, 2019). The accurate delineation of individual 

tree crowns from such imagery enables numerous forestry 

applications, including tree counting, species classification, 

forest health assessment, and growth monitoring. However, 

achieving precise segmentation of individual crowns presents 
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significant technical challenges, especially in dense, 

heterogeneous forest environments (Kandare, 2016). 

Traditional methods for tree crown delineation, such as 

watershed segmentation, or region growing algorithms (Huang, 

2018), often struggle with complex forest structures, 

particularly in dense, multi-layered canopies where crown 

boundaries overlap and are difficult to distinguish. Furthermore, 

they require extensive parameter tuning and expert knowledge, 

limiting their transferability across different forest types and 

imaging conditions (Shendryk, 2021). 

Recently, deep learning approaches have revolutionized image 

analysis tasks, including object detection and semantic 

segmentation (Ma, 2019). Latest advancements in foundation 

models, such as the Segment Anything Model (SAM) (Kirillov, 

2023), have further expanded the capabilities of deep learning in 

computer vision, thanks to their strong generalization abilities 

and adaptability to specialized domains with relatively small 

amounts of task-specific data. Despite the advances, scaling 

these models outside the domain of natural images is often 

challenging. The variability and the complex structure of forest 

canopies may create occlusion and shadowing effects, 

especially when observed from above, hindering the delineation 

process. Moreover, the limited availability of large-scale, 

annotated datasets specific to forestry applications further 

constrains the development of effective models (Davies, 2021). 

This paper aims to address these challenges by presenting an 

adaptation of the PseCo framework (Huang, 2023) for 

automated individual tree crown segmentation. Our approach 

leverages the capabilities of SAM in a three-stage pipeline that 

combines point-based detection, prompt-guided segmentation, 

and bounding box refinement. First, a heatmap decoder 

leverages SAM's rich feature representation to accurately 

localize tree centers. Second, SAM’s prompt-guided 

segmentation utilizes these centers as spatial cues for its mask 

decoder to generate initial crown boundary proposals. Last, a 

boundary refinement stage employs a specialized classifier to 

distinguish true tree crowns from similar vegetation or artifacts, 

significantly reducing false positives in complex forest 

environments. 

We validate our approach on two datasets, namely NEON 

(Weinstein, 2021), providing bounding boxes from 22 regions 

in the U.S., and VdA, a dataset of 80 manually annotated high-

resolution RGB aerial images from northwestern Italian forests, 

demonstrating improved accuracy and robustness compared to 

existing methods, particularly in challenging canopy 

environments. Our experimental results show that the proposed 

method provides more generalized results than DeepForest 

(Weinstein, 2019), the de facto standard for tree detection in 

remote sensing, especially in terms of recall in areas with high 

tree density. 

The remainder of this paper is organized as follows: Section 2 

reviews related works in tree crown delineation and deep 

learning approaches for forestry applications. Section 3 provides 

a brief description of the datasets employed, Section 4 describes 

our TreePseCo methodology, detailing the three-stage pipeline 

for tree crown segmentation. Section 5 describes the 

experimental setup, and discusses the results obtained. Section 6 

concludes the paper, discussing limitations, and outlining 

directions for future research. 

 

2. Related Work 

Traditional approaches for tree crown segmentation typically 

rely on image processing techniques such as watershed 

segmentation, region growing, and valley-following algorithms 

to identify individual tree crowns (Huang, 2018)(Zhou, 

2020)(Zörner, 2018). In particular, local maxima in Canopy 

Height Models (CHM) derived from LiDAR data have been 

widely employed for tree mapping (Zörner, 2018), with various 

methods using small-footprint airborne laser scanning explored 

for forest inventory data extraction in boreal forests (Hyyppä, 

2008). LiDAR has proven particularly valuable for quantifying 

forest carbon pools and monitoring changes over time (Hudak, 

2012)(Wulder, 2012). Combined approaches using 

hyperspectral and LiDAR data have improved individual tree 

crown delineation and species classification (Dalponte, 2019). 

However, LiDAR acquisitions require more specific expensive 

hardware that is not always available for large-scale forest 

monitoring. 

As a cost-effective alternative, high-resolution RGB aerial 

imagery has emerged as a promising data source. High-

resolution UAV data has been proven valuable for estimating 

biophysical properties in forest stands, providing advantages for 

accurate tree density and canopy height estimation (Puliti, 

2019). However, traditional image processing approaches often 

struggle with dense canopies and require extensive tuning based 

on forest type and image resolution. 

Recent advances in deep learning have revolutionized tree 

detection in remote sensing imagery, enabling for instance the 

creation of extensive datasets of individual tree crowns, such as 

the National Ecological Observatory Network (NEON) sites 

(Weinstein, 2021). The DeepForest framework (Weinstein, 

2019) has established itself as a benchmark in forestry remote 

sensing applications by employing RetinaNet (Lin, 2018) and a 

Feature Pyramid Network (FPN) (Lin, 2017) as backbones for 

multi-scale tree detection. Modern object detection frameworks 

have evolved from region-based approaches like Fast R-CNN 

(Girshick, 2015) and Faster R-CNN (Ren, 2015) to single-stage 

detectors like RetinaNet (Lin, 2018), or end-to-end solutions 

like DETR (Carion, 2020), demonstrating superior performance 

compared to traditional image processing techniques. 

More recently, foundation models such as Segment Anything 

(SAM) offer prompt-based segmentation capabilities that 

generalize well across various image types (Kirillov, 2023). 

Other foundation models like the DINO family (Oquab, 2024) 

have also demonstrated robust visual feature learning without 

supervision, allowing effective transfer learning to more 

specialized domains. These models can be fine-tuned with 

relatively small domain-specific datasets while maintaining 

their strong generalization capabilities. An example is the 

PseCo framework, that introduces a novel approach combining 

point-based detection with segmentation capabilities of 

foundation models, demonstrating superior performance in 

object counting tasks (Huang, 2023). 

Our work builds upon these advances by adapting the PseCo 

framework specifically for tree crown segmentation, leveraging 

the capabilities of SAM to generate accurate instance masks 

from point-based detections, and demonstrating improved 

performance in complex forest environments compared to 

established methods such as DeepForest. 

 

3. Datasets 

We focus on two complementary datasets to develop and 

evaluate our tree crown segmentation methodology. The first 

dataset, NEON, provides extensive coverage across diverse 

forest ecosystems in the United States for model development, 

while the second offers a focused test case in a forested Alpine 

environment. Both datasets provide comparable inputs, with 

aerial VHR RGB imagery in similar conditions and resolutions. 

 

NEON Dataset. In our study, we first utilize data from the 

National Ecological Observatory Network (NEON), a 

continental-scale ecological observation facility providing open 
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data on ecosystem dynamics across the United States 

(Weinstein, 2021). For the heatmap model training, we used 

high-resolution RGB aerial imagery (0.15 m/pixel) acquired by 

NEON's Airborne Observation Platform (AOP) across 22 sites 

covering diverse forest types. These images are orthorectified 

and capture 1 km² areas of forest landscapes collected during 

2018-2019. The dataset contains more than 30,000 annotated 

tree crowns with bounding box delineations. Each NEON site 

represents different forest ecosystems, from temperate 

deciduous forests of the eastern United States to coniferous 

forests of the Pacific Northwest, providing essential diversity 

for generalizable model training. The sites span various 

ecological domains, elevations, and forest densities, allowing 

our model to learn robust representations across these 

variations. 

Concerning heatmaps, we made instead use of the 

corresponding Canopy Height Models (CHMs) derived from 

co-registered LiDAR data (NEON ID: DP3.30015.001), which 

provided height information at 1-meter resolution. Similar to 

DeepForest, we extract estimated tree centers from these 

LiDAR acquisitions to use as noisy targets for our training. 

 
Figure 2. Localization and visual examples of our custom VdA 

dataset, providing VHR aerial images acquired in Valle d'Aosta, 

Italy. 

 

VdA Dataset. For our case study implementation, we used a 

custom dataset of aerial imagery from the Valle d'Aosta region 

(VdA) in Northwestern Italy (Figure 2). This dataset consists of 

22 large-scale RGB orthorectified cm/pixel resolution, each 

50.000×50.000 pixels large. Among these areas, we selected 80 

high-resolution crops, capturing forest landscapes in a 

mountainous alpine environment. Each 600×600 pixel image 

patch was manually annotated with bounding boxes for 

individual trees, creating a regional and specific ground truth 

dataset. 

These images were collected as part of the NODES (Nord Ovest 

Digitale e Sostenibile) project, with particular emphasis on 

forest monitoring and carbon cycle assessment. The Valle 

d'Aosta region represents a challenging environment for tree 

crown detection due to its varied topography, mixed forest 

compositions, and altitudinal gradients. Testing our model on 

this independent regional dataset allowed us to evaluate the 

transferability of our approach beyond the NEON training sites 

to European forest systems, which represent different ecological 

conditions and environments. 

 

4. Methodology 

4.1 Problem Statement 

Tree crown segmentation involves the delineation of the spatial 

extent of individual tree crowns from remote sensing imagery. 

Formally, given an aerial RGB image I ∈ ℝ^(H×W×3), the task 

is to predict a set of instance masks M = {M₁, M₂, ..., Mₙ} where 

each Mᵢ ∈ {0,1}^(H×W) represents the binary segmentation 

mask of a single tree crown. This task can be effectively 

decomposed into three distinct phases: (i) tree center estimation, 

(ii) center-based mask and box generation, (iii) boundary 

refinement. The first step identifies the approximate centers of 

individual trees within the image through a point detection task 

that outputs a probability heatmap H ∈ [0,1]^(H×W), where 

peaks correspond to likely tree center locations. 

Adopting the standard SAM decoder, the second step uses the 

detected center points as prompts to generate initial instance 

segmentation masks for each tree, producing both pixel-wise 

masks and corresponding axis-aligned bounding boxes B = {B₁, 

B₂, ..., Bₙ} where each Bᵢ = (x₁, y₁, x₂, y₂) represents the 

coordinates of the top-left and bottom-right corners of the 

bounding box. 

The last step refines instead the initial mask predictions to better 

capture the true boundaries of each tree crown, particularly in 

challenging scenarios with overlapping canopies, through 

classification and non-maximum suppression techniques that 

eliminate redundant or low-confidence detections, and box 

regression to adjust the position of the tree. 

This multi-phase approach allows for more robust delineation of 

individual trees compared to direct methods, especially in 

different domains and forest environments. 

 

4.2 Segment Anything 

SAM (Kirillov, 2023) represents a paradigm shift in computer 

vision as the first foundation model for image segmentation 

capable of generalizing across diverse domains. It enables users 

to specify segmentation targets through various input prompts, 

including points and bounding boxes. Its architecture comprises 

three principal components: a Vision Transformer-based 

(Dosovitskiy, 2021) image encoder that processes input images 

to create rich feature maps; a prompt encoder that transforms 

different types of user inputs into standardized representations; 

and a lightweight mask decoder that integrates these 

representations to generate final segmentation masks. A notable 

feature of SAM's architecture is its ability to produce multiple 

potential segmentations for ambiguous prompts, each 

representing a different interpretation. Furthermore, SAM's 

design allows the computationally intensive image encoding to 

be performed just once per image, regardless of the number of 

subsequent prompts, significantly enhancing efficiency in 

interactive scenarios. The development of SAM was made 

possible by an innovative data collection methodology that 

progressively leveraged the model's own capabilities—evolving 

from model-assisted manual annotations to semi-automatic 

labelling, and ultimately to fully automatic mask generation. 

This iterative approach yielded a large-scale dataset comprising 

over one billion masks across 11 million diverse images (SA-

1B), enabling the model to generalize effectively to unseen 

domains without fine-tuning. 

4.3 PseCo 

PseCo is a generalized framework for both few-shot and zero-

shot object counting and detection. The model leverages the 

complementary strengths of two foundation models: SAM for 

segmentation capabilities and Contrastive Language-Image Pre-

Training (CLIP) (Radford, 2021) for classification. The 

framework follows three key steps: (1) a class-agnostic object 

localization that provides accurate point prompts for SAM, 

reducing computation costs while ensuring small objects aren't 

missed; (2) SAM-based segmentation to generate mask 

proposals from these points; and (3) a generalized object 

classification using CLIP embeddings to identify target objects.  
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Figure 3. Overview of the TreePseCo framework: heatmap and peak generation to estimate tree centers (a), mask and box generation 

using SAM (b), classification and box refinement stage using a RCNN-like box regression and classification (c). 

 

PseCo demonstrates state-of-the-art performance across 

multiple benchmarks including FSC-147 (Ranjan, 2021), 

COCO (Lin, 2015), and LVIS (Gupta, 2019) datasets. Unlike 

density-based counting methods, PseCo offers interpretable 

detection results while maintaining competitive accuracy, even 

in crowded scenes with small objects that traditional methods 

struggle to detect. Our architecture’s initial stages are inspired 

by steps 1 and 2 of PseCo, however they have been specifically 

finetuned to localize tree centers rather than agnostic objects. 

 

4.4 TreePseCo 

Our framework consists of two primary components: a modified 

SAM model for generating bounding box proposals (referred to 

as point decoder) and a classification network for refinement 

and final detection. Following the approach established in 

PseCo, the finetuned mask decoder of SAM generates a 

heatmap that highlights the presence probability of a tree across 

the input image. We identify peak values within this heatmap 

and leverage such locations as prompt points for a standard 

SAM model, reusing the already computed features. These 

prompts generate multiple mask proposals per detected peak, 

from which we extract circumscribing boxes. A modified Faster 

R-CNN (Ren, 2015) architecture then processes these proposals 

through a ResNet50-FPN backbone, performing classification 

and bounding box regression to produce the final tree detections 

with refined localization. 

Heatmap generation and peak detection. As illustrated in 

Figure 3 (a), an input satellite image is processed through a 

frozen SAM encoder, which extracts rich visual features. These 

are fed to a trainable heatmap decoder that has been specifically 

fine-tuned for tree detection tasks. The decoder produces a 

heatmap where brighter regions indicate higher probability of 

tree presence. This design leverages SAM's powerful feature 

extraction capabilities while allowing task-specific adaptation 

through the decoder. 

Mask and box proposal generation. Leveraging the already 

computed features, we prompt SAM's original mask decoder to 

generate proposals for each detected heatmap peak, as shown in 

Figure 3 (b), without further training. Specifically, each peak 

location is used as a prompt point, along with a small and a 

larger surrounding box, resulting in six distinct masks. Using 

multiple prompts per peak increases robustness, providing 

additional mask proposals. From each of them, we extract the 

circumscribing box to create proposals for the subsequent 

classification stage. 

Classification and box refinement. As depicted in Figure 3 

(c), our classification component follows a modified Faster R-

CNN architecture. Unlike traditional implementations that rely 

on a Region Proposal Network, our approach leverages the 

SAM-generated proposals directly, which provides better initial 

localization for tree instances. The ResNet backbone processes 

the input image once to extract feature maps, which are then 

enhanced through a Feature Pyramid Network (FPN) to create 

multi-scale representations. This multi-scale approach is 

particularly important for tree detection in aerial imagery, where 

trees can appear at various sizes depending on species and age. 

For each proposal, a multiscale RoI Align (He, 2018) operation 

extracts fixed-size feature map from the appropriate FPN level. 

Subsequent fully connected heads perform two primary tasks: 

assigns a classification score indicating tree confidence and 

generates four bounding box offset values to optimize alignment 

with ground truth boxes. This refinement stage is crucial for 

improving the precision of the initial SAM-based proposals. 

The final output, shown on the right side of Figure 3 (c), 

consists of predicted boxes and associated SAM’s masks. 

 

5. Experiments 

5.1 Implementation Details 

Considering the point decoder, we implement a two-stage 

training approach, beginning with pretraining on the NEON 

dataset. Because of our focus on tree centers for prompting, we 

did not employ the CHM directly as ground truth map. Given its 

noisy appearance, this could result in suboptimal model 

convergence due to the complexity of the raw data. To address 

this limitation, we adopt a simplified heatmap representation by 

modelling each tree as a 2D Gaussian distribution. Tree 

locations within the CHM were identified using the PyCrown 

library1, which includes raster smoothing, peak detection 

through 2×2 max pooling, and a minimum height threshold to 

eliminate peaks below 5 meters. From the original 

10,000×10,000-pixel NEON images, we extract random 

600×600-pixel crops to maintain consistent resolution with the 

downstream datasets. At each detected peak location, we 

 
1 https://github.com/manaakiwhenua/pycrown 
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generate a 2D Gaussian distribution with fixed extent σ=5, 

creating an easier target to learn from. We utilize the SAM ViT-

H encoder as our foundation model, freezing it during the 

training phase to preserve its robust representation capabilities  

while exclusively updating the mask decoder. 

Second, we perform two finetuning passes on the NEON dataset 

annotations and on our VdA annotations respectively. During 

finetuning, ground truth heatmaps are generated from bounding 

box annotations by placing a comparable 2D Gaussian (i.e., 

σ=5) at each box center, maintaining consistency with our 

pretraining. Throughout the phases, we monitor the component 

independently from the subsequent refinement steps: we assume 

to have an oracle, a perfect classifier able to maximize our 

downstream metrics. In practice, this classifier assigned a 

perfect score of 1.0 to the proposal with the highest IoU (if 

greater than 0.5) for each ground truth box, allowing us to 

quantify the theoretical maximum mean Average Precision 

(mAP) achievable with our proposal generation mechanism. 

The extraction of the heatmap peaks is instead controlled by 

three main hyperparameters: smoothing window size, pooling 

size, and minimum height threshold. Their tuning required 

careful balance between two competing objectives: (1) 

generating sufficient point proposals to achieve a high 

theoretical maximum mAP, and (2) limiting the number of 

proposals to simplify the classification task. Considering the last 

refining step, we train the classification head separately for each 

dataset, initialized from a pretrained RN50 backbone. Following 

previous works, we maintain the default Faster R-CNN 

parameters for this phase. 

 

5.2 Baseline 

We adopt the DeepForest framework as strong baseline, being 

the de facto standard for individual tree crown localization. The 

model employs RetinaNet with a ResNet50 backbone and 

Feature Pyramid Network to generate bounding boxes around 

individual trees. A key advantage of DeepForest is its pretrained 

model, which has been trained on over 30 million 

algorithmically generated crowns from 22 National Ecological 

Observatory Network (NEON) sites and fine-tuned using 

10,000 hand-labeled crowns. This extensive pretraining allows 

DeepForest to perform well across diverse forest types without 

additional training, achieving an average recall of 72% and 

precision of 64% across NEON evaluation sites. 

The DeepForest library also supports transfer learning out of the 

box, enabling users to fine-tune the pretrained model with 

relatively small amounts of local data (approximately 1,000 

annotations) to improve performance for specific forest types.  

Despite its ease of use, DeepForest still presents some 

limitations. Performance degrades in densely forested areas with 

high crown overlap and in forest types significantly different 

from the training data. Additionally, the framework struggles 

with high recall, where closely growing trees are detected as a 

single entity, particularly in RGB data where height information 

is unavailable. These limitations create an opportunity for 

improved approaches that can better handle dense canopy 

environments and complex forest structures while maintaining 

the accessibility and scalability of RGB-based detection. 

 

5.3 Results 

We test the model on the NEON test set and VdA test 

annotations comparing DeepForest (DF), DeepForest finetuned 

(DF FT) and TreePseCo (TP) respectively. We evaluate our 

models using object detection metrics, specifically mean 

average precision under different Intersection over Union (IoU) 

thresholds (mAP@IoU), different box sizes (small, medium, 

large), and mean average recall given 100 instances (mAR@100), 

or small and medium objects. 

 
 NEON VdA 

Metric DF TP DF DF (FT)  TP 

mAP 18,04 15,43 6,54 9,10 14,76 

mAP@IoU=50 49,89 41,68 19,19 26,37 37,55 

mAP@ IoU=75 7,92 7,07 3,06 5,57 8,94 

mAPsmall 12,08 3,21 3,56 4,47 5,42 

mAPmedium 23,67 16,09 12,07 17,16 15,66 

mAPlarge 32,00 25,48 0,00 0,00 23,35 

mAR@100 25,75 24,50 9,49 14,89 21,52 

mARsmall 19,08 6,48 4,13 7,05 11,34 

mARmedium 32,14 26,20 18,78 28,13 22,09 

Table 1. Overall results in terms of mAP and mAR on the 

NEON and VdA datasets, comparing DeepForest (DF) and 

TreePseCo (TP). 

 

Dataset Extraction Refinement mAP 

NEON ✔ ✔ 27.09 

NEON trained ✔ 22.03 

NEON trained trained 15.43 

VdA trained ✔ 17.06 

VdA trained trained 14.76 

Table 2. Hyperparameter study results on the point extraction 

phase. 

 

Loss Bilinear Ups. Transposed C. 

SSIM 13.48 19.00 

MSE 12.91 12.09 

Table 3. Comparison between different losses (SSIM, MSE) 

and upsampling techniques (bilinear, transposed). 

 

As shown in Table 1, on the NEON dataset TreePseCo presents 

similar performance to DeepForest, which however outperforms 

our solution numerically. The latter achieves in fact a mAP of 

18.04, while our TreePseCo model attains 15.43. This is 

observable in every metric, such as mAP@IoU=50, where 

DeepForest reaches 49.89 while TreePseco sits at 41.68. 

However, we note that DeepForest was specifically optimized 

on the NEON dataset, potentially benefiting from dataset 

familiarity. Furthermore, our comparison methodology 

introduces an inherent disadvantage for TreePseCo, as we are 

forced to evaluate a model designed to generate precise instance 

masks using bounding box metrics, which naturally favors 

DeepForest's native detection approach. 

In fact, on the VdA dataset, our approach often outperforms 

both the original DeepForest (6.54 mAP) and its finetuned 

version (9.10 mAP), reaching a mAP of 14.76. This 

performance gap widens at mAP@IoU=50, where our solution 

achieves 37.55, compared to 19.19 and 26.37 for the original 

and finetuned DeepForest models, respectively. Notably, 

TreePseCo excels in detecting trees across all size categories in 

the VdA dataset, particularly for large trees (23.35 mAP) where 

both DeepForest variants failed to detect any instances (0.00 

mAP). These results suggest that while DeepForest remains a 

valid solution on data like its training distribution, TreePseCo 

demonstrates superior generalization capabilities when applied 

to new geographical contexts. 

Figure 4 illustrates the qualitative improvements of our 

TreePseCo approach over the baseline. In the top-row example, 

the baseline model identifies numerous trees while overlooking 
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smaller crowns, whereas TreePseCo provides more 

comprehensive detection coverage. The bottom row showcases 

challenging terrain where DeepForest mainly captures larger, 

isolated trees but struggles with heterogeneous environments, 

while TreePseCo demonstrates superior performance in these 

complex conditions. Ground truth comparisons confirm that 

while both models occasionally miss smaller instances, 

TreePseCo substantially reduces false negatives, particularly in 

complex canopy structures. 

 

5.4 Hyperparameter studies 

We further conduct a comprehensive set of experiments on 

critical architectural components and training parameters to 

optimize our framework. With the aim of obtaining smoother 

outputs, we first evaluate upsampling techniques in the SAM 

heatmap decoder, comparing bilinear interpolation against 

transposed convolution. We then examine the efficacy of Mean 

Squared Error (MSE) versus Structural Similarity Index 

Measure (SSIM) as loss function (Wang, 2004). We restrict our 

SSIM loss evaluations to the fine-tuning phase exclusively, 

driven by the observation that pretraining data contained 

imprecise tree locations derived from CHM, making SSIM's 

strict structural matching properties counterproductive at this 

stage. 

Concerning upsampling techniques, we find that the latter 

consistently produced more defined peaks in the heatmap, albeit 

with some additional noise patterns. This sharper peak 

definition translates to improved detection performance in our 

quantitative evaluation. Considering loss functions, SSIM loss 

demonstrates superior performance by generating more 

precisely defined maps in the heatmap, leading to more accurate 

prompt point generation, as visible in Table 3. Given the 

versatility of the SAM decoder, we also explore several prompt 

formats, including direct point coordinates, rectangular boxes 

with negative corner points, and plain bounding boxes. Given 

the negligible performance differences observed between these 

approaches, we select the plain box representation for its 

simplicity and computational efficiency. 

In order to optimize the tree peaks extraction phase, we conduct 

a hyperparameter search focusing on heatmap generation. 

During this phase, we substitute the refinement component with 

an oracle classifier to establish theoretical performance bounds. 

When using ground truth centers as prompts, we obtain a 

theoretical upper bound on the NEON dataset at 27.09 mAP, as 

shown in Table 2. Through these experiments, we identify 

optimal hyperparameter conditions for peaks extraction: 

window size detection = 2, window size smoothing = 0, and 

height minimum threshold = 0.3. With these parameters, the 

maximum theoretical mAP achievable was 22.03 on NEON and 

17.06 on VdA (both assuming a perfect classifier). We then 

integrated the actual refinement module using these optimal 

parameters, resulting in the final scores displayed in both Table 

3 and Table 1. It's worth noting that while retrieving numerous 

peaks from the heatmap increases the theoretical maximum 

performance, an excessive number of proposals adversely 

affects the classification network's discriminative capability, 

resulting in diminished overall performance. 

 

6. Conclusions 

This paper introduces TreePseCo, an adaptation of the PseCo 

framework for individual tree crown segmentation in aerial 

imagery. By leveraging the SAM foundation model in a three-

stage pipeline, our approach demonstrates improved 

generalization capabilities, especially when tested on 

geographically diverse datasets, including our custom VdA set. 
While state of the art approaches such as DeepForest remain a 

viable alternative, our approach shows superior performance on 

new environments without extensive retraining. TreePseCo 

performs particularly well in two challenging scenarios: densely 

clustered tree formations and detection of smaller tree instances. 
Despite these advantages, several limitations should be 

acknowledged. First, TreePseCo introduces a higher 

computational overhead compared to frameworks like 

DeepForest, potentially limiting its deployment in resource-

constrained scenarios where processing speed is crucial. 

Second, the custom VdA dataset remains limited in scope and 

extension. Future work should focus on these key aspects, 

providing further validation across more diverse forest types 

and geographic regions, developing an end-to-end trainable 

architecture, or reducing model size through distillation or 

alternative foundation models such as DINO (Oquab, 2024). 
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Figure 4. Qualitative results : input image (a), DeepForest output (b), TreePseCo outputs (c), and manual ground truth (d). 
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