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Abstract

Satellite time series data enable continuous land cover change detection, classification, and monitoring across large geographical

areas. Time series-based statistical methods for abrupt change detection remain widely used in understanding and monitoring

environmental dynamics but face limitations, including sensitivity to noise, challenges in differentiating change classes and causes,

detecting change in near real-time, and incomplete uncertainty quantification. These challenges are obvious in cultivated lands,

where the seasonality and cultivated areas often alter in different years. On the other hand, change detection and classification

in space-time is difficult due to the nonstationary presented in data. In this study we used dimension expansion-based approach

that projects data to higher dimensionality for stationarity and understand the change of spatial stationarity over time. Our case

study focuses on vegetation dynamics in a cultivated and managed terrestrial area in the Takamanda National Park in Cameroon,

a protected area of significant ecological value, using Sentinel-2 satellite time series data. The results imply the possibility of new

spatiotemporal approach that is robustness against noise and enables near-real-time monitoring.

1. Introduction

Monitoring abrupt land cover changes is essential for conser-

vation and understanding the natural and antropogenic effects.

Change monitoring is particularly necessary in ecologically

sensitive regions, such as protected areas. Advancements in

spatial, spectral, and temporal resolution of satellite time series

data provide unprecedented opportunities for continuous, large-

scale spatio-temporal monitoring. These advances enable the

detection of critical changes such as forest degradation, defor-

estation, and urban expansion. Time-series-based change de-

tection methods, such as the BFAST framework (Verbesselt et

al., 2010), which is based on the empirical fluctuation process

(Zeileis et al., 2007), and TrendR, which is a more empirical re-

sidual manipulation process, are widely used due to their flexib-

ility in capturing the trend and seasonality in time series. Many

variations of time-series abrupt change detection methods, in-

cluding deep learning-based approaches, have been developed.

However, purely time-series methods do not make full use of

information from other dimensionality and have notable lim-

itations: first, a time-series analysis approach is sensitivity to

noise: Spectral variations caused by atmospheric interference

can trigger false detections. Secondly, it has difficulty in dif-

ferentiating change classes and causes: Relying on a single-

pixel time series for change detection misses spatial patterns

and does not make full use of multispectral bandinformation.

On the other hand, spatiotemporal Gaussian process is attract-

ive in detecting spatiotemporal change at once as opposed to a

separated spatial-first then time approach or the opposite. How-

ever, spatiotemporal Gaussian Process (GP) is itself a signific-

ant challenge, firstly due to the composition of a valid and effi-

cient spatiotemporal kernel, secondly due to the nonstationarity

in space-time.

Quantifying spatial patterns provides important information in

understanding the spatial process and the change of it. Most

spatial pattern quantification methods focusing on calculating

variability of a vegetation index, such as using Coefficient of

Variation (CV), or the using the parameters of variograms, such

as sill, range, and nuggest. However, applying these methods

globally provide limited information about spatial patterns. The

CV and variograms could be calculated in divided zone or mov-

ing windows. But first of all it is difficult to define such win-

dows. More importantly, local variograms or Kriging introduce

several methodological and statistical issues such as inconsist-

ant variogram modelling, loss of spatial structure, and unreli-

able uncertainty quantification (Goovaerts, 1997, Haas, 1990,

Journel, 1978).

Dimension expansion methods are techniques transform data

into higher-dimensional spaces, where hidden structures could

be revealed. The methods aligns with concepts in manifold

learning. The dimension expansion technique was introduced

firstly in (Sampson and Guttorp, 1992), who proposed trans-

forming nonstationary spatial processes into a latent Euclidean

space where stationarity holds. In computational age, (Bornn et

al., 2012) extended this concept by formulating dimension ex-

pansion as an optimization problem, where the goal is to learn

new dimensions that minimizes the discrepancy between the

spatial dispersion of the observations and the variogram in the

expanded space. Regularization is applied to ensure smooth-

ness and to avoid overfitting the latent dimensions. These ap-

proaches may be particularly valuable in the application of geo-

statistics in understanding complex land surface patterns, which

commonly do not follow the assumption of stationary.

In this study, we developed a change detection method that

is based on the dimension expansion and Gaussian process.

We applied our method to Sentinel-2 L2A NDVI time series

in a cultivated landscape within the Takamanda National Park

in Cameroon. Our goal is to 1) assess the capability of the

developed method in capturing phenological phase shifts and

changes between years, and 2) implement the dimension ex-

pansion approach and understand what is learned in the new

dimensions and how the change informaiton could be captured.

We hypothesize that with carefully selected features and object-

ive function, the dimension expansion approahch could reflect

a variety of valuable information that help distinguish temporal
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transitions, making it a promising tool for detecting land cover

change and understanding our dynamic environments.

2. Method

2.1 Dimension Expansion

The dimension expansion method proposed by (Bornn et al.,

2012) minimises the difference between spatial dispersion and

the variogram in the new space with extended dimensions. The

objective function can be expressed as:

φ̂, Ẑ = argmin
φ,Z′

∑

i<j

(

v
∗

i,j − r(di,j(X,Z
′))

)

2

+ λ1

p
∑

k=1

∥Z′

k∥

(1)

where X = the original dataset.

Z′ = the learned expansion

φ̂ = the learned hyperparameters of the kernel function.

v∗i,j = the spatial dispersion between sites i and j

r = the variogram

di,j(X) = the distances between i and j

λ1

∑p

k=1
∥Z′

k∥ = the regularization term.

The spatial dispersion v∗i,j is calculated as:

v
∗

i,j =
∑

(Y (xi)− Y (xj))
2

(2)

2.2 Study area

The study area (figure 1) is in the Takamanda National Park in

Cameroon, a protected area of significant ecological value. In

this study, we experiment on a 1 km * 1 km area, the area is

classified into cultivated and managed terrestial land based on

(Szantoi et al., 2020), this can also be seen from the worldview2

image on the right.

Figure 1. Study area, the magenta rectangle indicates the tile of

sentinel 2 L2A image that is used. The national park is outlined

in green. The red rectangle in the turquoise intersection is our

study area. On the right, a timestamp of the worldview-2 image

of the area is shown.

2.3 Implementation

The dimension expansion algorithm is implemented in R, using

BFGS to optimise the objective function. The spatial disper-

sion v∗ and variogram r (equation 1) are log transformed. The

choice of initial values, namely the hyperparameters, and the

penalty terms affect significantly the optimisation results. After

experiencing with different options, we set the model as fol-

lows. When using the spatial location as features, i.e. as in

Ordinary Kriging, the Matern kernel function with µ = 1.5 is

chosen as the variogram function; length scale is set to 10000.

When using the previous time stamp as features, i.e. as in Gaus-

sian process in general, the Gaussian kernel function is chosen

as the kernel function; length scale is set to two times the max-

imum of the feature distances . In both cases, the variance is

initiated as the variance of a single time stamp and the L1 norm

penalty is set to the sum of the absolute value of the learned

locations.

Several vegetation indices were explored, including the NPRB,

the normalised difference between red band (band 4) and

blue band (band 2); the moisture band, normalised difference

between the near infrared band (band 08A) and short wave in-

frared band (band 11); the NDTI, the normalised differencing

tillage band, and chose to use NDVI as it best represent season-

ality change in the area.

To reduce the computational cost, we regularly sampled 400

locations from each image, corresponding to a sample every 5

locations. The grid sampling allows us to better understand the

spatial patterns of learned locations. Note that the scaling the

features could greatly increase the computational speed.

2.4 Phenological phases identification

As the dimension expansion approach aims to push locations of

high variations to high values in the new dimension (so that the

distances between the locations are enlarged), it could be used

as a tool to assess spatial variability. Combined with vegeta-

tion index, in this study NDVI, we could design algorithms that

classify scenes and identify change. In this study, we classify

the following situations with algorithm design criteria on top of

criteria that is only based on the magnitude and variability of

a vegetation index spatially or temporally, as has been sugges-

ted in a variety of studies (Brown and Pervez, 2014, Pettorelli

et al., 2005). This makes the classification or change detection

more robust and less sensitive to a certain threshold based on

the magnitude and a variability measure such as the CV

We carefully reviewed all false-color near-infrared (NIR) and

true-color images and identified four important phenological

phases (Table 1 and proposed algorithm design criteria for each

of them in addition to using the magnitude and variability of

NDVI in Table 2.

2.5 Phenological phases shift identification

To identify phenological phase shifts, we mainly rely on model-

a: the spatial locations of the NDVI at time t (NDV It) as fea-

ture (same as in Kriging), and model-b: NDVI at time t − 1
(NDV It−1) as the feature (or ”location”), for NDV It. The

main hypotheses are:

1. High correlation between NDV It and learned locations

using model-a indicates change from t-1 to t.

explaination: if the spatial pattern of NDV It−1 changes

little from the NDV It, the NDV It−1 is a good predictor

for the NDV It, and the learned locations will have a low

correlation with NDV It. If there is a phenological shift,

the NDV It−1 is not a predictor of NDV It and the cor-

relation between NDV It and the learned locations will be

high.
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Phenological Phase Months Landscape Characteristics
1. Early growing season May–Jun Vegetation emergence with surrounding bare patches
2. Transitional shift Jul–Aug Vegetation expands into previously bare areas; some regions become bare again
3. Peak growth (vigorous) Sep–Oct Vegetation dominates the landscape
4. Wilting and senescence, Nov- Jan Vegetation retreats across the field
5. Dormant season Feb–April Wet or bare soil dominate the landscape

Table 1. Seasonal vegetation phases and landscape patterns derived from monthly imagery. Note the month is based on 2017, for other

years the month could shift.

2. Low correlation between NDV It and learned locations

using model-b indicates homogeneous or smooth spatial

patterns. The relative values between time indicate how

spatial patterns change. To illustrate, in the phenological

phases 3 (peak growth) and 5 (dormant season), the spatial

locations are a good predictor of the NDV It due to the

homogeneous spatial pattern.

To prevent the effects of extreme values of learned location, the

Kendall’s τ is used as a non-parametric measure of correlation.

The phenological phase shift is defined by the following cri-

teria:

• Criteria-A: the Kendall’s τ between the absolute learned

locations and NDV It using NDV It−1 as feature.

• Criteria-B: the Kendall’s τ between the absolute learned

locations and NDV It using spatial locations as feature.

Table 2 shows the algorithm design criteria, note the CV of

NDVI and criteria B both provide information about vari-

ation, but Criteria-B quantifies explicitly spatial patterns. The

threshold for Criteria-A is empirical for our study case and need

to be tuned or automatically learned for other studies.

3. Results

The learned locations are illustrated in Figure 6. A clear distinc-

tion emerges when comparing the plots from the post-harvest

and plant growing seasons in 2017. During winter, only a few

locations are significantly displaced in the learned dimension,

these correspond to evergreen vegetation, which stands in con-

trast to the majority of the region that comprises bare or wet

soil. This interpretation is supported by the spatial distribution

of the learned locations, along with the corresponding NDVI

and false-color NIR plots shown in Figures 4 and 5. Figure 5

excludes extreme values, defined as those exceeding 1.5× IQR

above the upper quartile (Q3) or below the lower quartile (Q1),

making it easier to identify both the outliers (which are filtered

out) and the more moderate values, which can then be analyzed

more clearly. Figure 5 b shows that the learned locations are

scattered, mostly in the vegetated areas.

In the growing season, more locations have high absolute values

in the new dimension (figure 6 b). It shows an oscillatory pat-

tern, which indicates the variation within the certain land cover

class, here, bare soil and vegetation. From figure 5 c and d, we

could observe a patch of bare soil surrounded by healthy veget-

ations. The brightest blue area (figure 5 c), which has the lowest

NDVI 5, has the learned locations with the most extreme val-

ues in the new dimension, and the slightly darker area (figure

5 c) has the learned locations with less extreme but also high

absolute values in the new dimension.

We move further to September 2017 and compare with Septem-

ber 2019 to understand the application of the dimension expan-

sion approach in understanding within-year dynamics and and

between-year change. In september 2017, the vegetation is at

its full growth, note that the bare soil area in figure 5 c is also

covered by vegetation. As the vegetation dominated the scene,

the learned locations have extreme values mostly in bare soil

areas. In comparison, in September 2019, the learned locations

show higher variations, as there is less vegetation. The learned

locations have higher values in vegetated areas as the bare soil

is more dominating in the scene.

With both model-a (spatial locations as feature) and model-b

(NDV It−1 as feature) We calculated the Kendall’s τ correla-

tion between learned locations and the NDVI, and found that if

we remove the extreme values of the learned location using the

1.5×IQR criteria, most of the time stamp has a high Kendall’s

τ of 1 or above 0.85, this is especially true with model-a. This

may suggest that most information is learned in the more ex-

treme locations and the importance of using a non-parametric

correlation measure instead of filtering out extreme values.

We show two examples where the phenological shift is detected.

An example of a high correlation between the learned locations

and NDVI using model-b is NDV It−1 is January 22, 2017 and

NDV It is March 23, 2017 (figure 2 a, b). The Kendall’s τ is

0.9, indicating a phenological phase shift with high probability.

The Kendall’s τ changes from 0.22 to 0.94 using model-a from

Janurary to March, showing the spatial pattern is becoming less

smoother. Reflecting a spatially smooth pattern in the wilting

season and the scattered vegetations of different levels of green-

ness, as well as soil of different levels of wetness in the dormant

season.

Another example of a relatively lower but still high correlation

between learned location and the NDVI using model-b is from

August to September, 2017 (figure 2 c and d), the Kendall’s

τ = 0.68, indicating a phenological phase shift with medium

probability. The Kendall’s τ changes from 0.83 to 0.68 using

model-a from August to September 2017, showing the spatial

pattern is becoming smoother. This is reasonable that when the

plant is in full-growth, the spatial correlation increases.

Then, we show two examples where no phenological shift is

indicated. One is from January to April, 2020, the learned

locations using model-b (figure 3 show a very low correlation

(Kendall’s τ = -0.04) with NDVI. The Kendall’s τ changes from

0.94 (Januaray) to 0.6 (April) using model-a, showing the spa-

tial pattern is becoming smoother. Another example is from

September to October, 2020 (figure 3 c and d). The Kendall’s τ

is 0.11, indicating no phenological phase shift with high prob-

ability. The NDVI and learned locations are perfectly correlated

using model-a, indicating no spatial patterns. Compared to the

example above for 2017, we could also identify a seasonality

change from 2017 to 2020 - the spring comes late in 2020.
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Phase shifting Criteria
1 -2 Criteria-A >0.6; Criteria-B stays or slightly decrease
2 -3 Criteria-A >0.6; Criteria-B decreases, NDVI increases, CV of NDVI decreases
3 -4 Criteria-A>0.6; Criteria-B increases, NDVI decreases, CV of NDVI decreases
4 -5 Criteria-A> 0.8; Criteria-B increases, NDVI decreases, CV of NDVI increases
5 -1 Criteria-A> 0.8; Criteria-B decreases, NDVI decreases, CV of NDVI decreases

Table 2. Algorithm design criteria for detecting phenological phase shifting. A and B are the criteria defined above. CV: Coefficient of

Variance .

Figure 2. Learned locations using model-b (NDV It−1 as

feature). The learned locations show a high correlation (b) and

medium correlation (d) with the NDVI, indicating a phenological

phase shift with respectively higher and lower probability.

Figure 3. Learned locations using model-b (NDV It−1 as

feature). The learned locations show a very low correlation (b)

and low correlation (d) with the NDVI, indicating no

phenological phase shift with high probability.

4. Discussion

In this study, we applied dimension expansion to satellite im-

age time series from the Sentinel-2 L2A product to understand

changes in a cultivated land area within Takamanda National

Park in Cameroon. This approach provides an efficient means

of interpreting spatial patterns, phenological phase shifts, and

inter-annual changes. The learned dimension captures the spa-

tial heterogeneity of the region and highlights areas of distinc-

tion within the imagery, such as vegetation during the dormant

season or bare soil in vegetated areas. By analyzing the cor-

relation between the learned locations and the observations, us-

ing different features, valuable information on temporal change

and spatial smoothness can be revealed. The proposed method

has the potential to detect both phenological phase shifts and

changes in seasonality or land cover across years. It may also

be applied to more accurately delineate the expansion of phe-

nomena such as fire or specific vegetation species.

When using the sspatial locations are features, as in Kriging,

it was found that without the extreme values, the learned loc-

ations are oftentimes the NDVI itself. The learned locations

with extreme values are usually locations that have a distinctive

NDVI values in the scene. However, if we only looking at the

NDVI values of a few locations, we are unable to know how

these values compare to the other locations of the image. One

can calculate the percentile of each location, but this does not

allow the incorporation of the spatial information. The causes

of the issue is mainly due to the feature used. If the feature

is a poor predictor, the learned locations will have very high

correlations with the observations, or even being the observa-

tion itself. If the feature is a good predictor, more meaningful

knowleage will be learned in the expanded dimension. It is also

possible to modify the objective function to prevent the learned

dimension to copy the observations.

The objective function proposed in (Bornn et al., 2012) tries to

fit a kernel using distances in the new dimensional space, this

will push the locations of extreme values far away with a large

length scale, as the increment of the kernel function slows down

tremendously if an exponential function is used. This explains

the extreme values in the learned locations and why removing

them result in high correlation with NDVI. his suggests the im-

portance of choosing objective functions, kernels and regula-

tion, while the original aim of (Bornn et al., 2012) is to bring

data to higher dimensions so that the stationarity assumption is

guaranteed. Note that is it the nature and risk of such optim-

isation methods that the learned dimensions do not necessarily

have physical meanings. The hope is that it could however mag-

nify change signals and extract interesting patterns.

Note that even though theoretically, the stationarity is guaran-

teed in the high dimensional space, due to the optimisation path

and the number of expanded dimensions, the variogram might

not be successfully learned in the expanded space. Figure 7

shows the variograms in the new space (a and b) and the original

space (c and d) for the January and June images in 2017, re-

spectively. It can be observed that the variogram for the 06.2017

image shows more spatial pattern compared to the original, but

the variogram for the 01.2017 image is less successful. Regard-
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less of a successfully learned variogram, the expanded dimen-

sion aims at pushing values with high spatial variability, or low

spatial covariance, to a high absolute value in the new dimen-

sions. If the variogram is learned successfully, the meaning of

the expanded space is clearer and our analysis is more reliable.

Thus, the variogram in the learned space could serve as an un-

certainty measure of our method.

Figure 4. The learned locations of two different time stamps, in

Januaray and June, 2017, respectively. The min-max

normalization is applied to the learned locations. The base map

is the NDVI (normalised difference vegetation index) map, the

legend of which is not shown as the absolute value is not

important. The greener, the higher the NDVI value and the

whitish, the opposite. a and c are false-color Near-infrared maps,

i.e., the RGB composition of bands near-infrared, red, and green.

5. Conclusion

In this study, we implemented and applied a dimension

expansion-based method to Sentinel-2 L2A NDVI time series

over a cultivated terrestrial landscape within a conservation re-

gion in Cameroon to identify phenological phase shifts as well

as between-year changes. We defined phenological phases and

analyzed the behavior of the learned dimension using different

features. We found that the predictor and objective function

play important roles in this approach. Using spatial coordinates

as features could tell us the change in spatial patterns, while

using the previous time stamp as features could tell us about

change. The value of this work lies not only in the implement-

ation of the dimension expansion approach, but also in explor-

ing its capacity to characterize spatial heterogeneity and tem-

poral transitions. Our findings highlight its conceptual prom-

ise. Future work incorporating multiple learned dimensions,

alternative objective functions, meaningful features, and differ-

ent regularization strategies could improve the robustness and

interpretability of this method. We could show that the dimen-

sion expansion is a promising technique for extracting structure

from spatial-temporal data and this work lays the foundation for

further methodological development in the quantification and

monitoring of our dynamic and complex environment.

Figure 5. The learned locations of two different time stamps, in

Januaray and June, 2017, respectively, with the extreme value of

3 IQR removed for visualisation, i.e. Lower Bound: (Q1 - 3 *

IQR) Upper Bound: (Q3 + 3 * IQR). The min-max

normalization is applied to the learned locations. The base map

is the NDVI (normalised difference vegetation index) map, the

legend of which is not shown as the absolute value is not

important. The greener, the higher the NDVI value and the

whitish, the opposite. a and c are false-color Near-infrared maps,

i.e., the RGB composition of bands near-infrared, red, and green.

Figure 6. Learned locations. The x-axis is sorted by the location

index, starting from the lower left corner. For two time stamps.
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Figure 7. The variogram in the learned space (upper figures) and

the original space (lower figures). The cut-off is set to the three

times length scale for the learned space.

Figure 8. The learned locations of two different time stamps, in

september 2017 and 2019, respectively. The min-max

normalization is applied to the learned locations. The base map

is the NDVI (normalised difference vegetation index) map, the

legend of which is not shown as the absolute value is not

important. The greener, the higher the NDVI value and the

whitish, the opposite. a and c are false-color Near-infrared maps,

i.e., the RGB composition of bands near-infrared, red, and green.

e and f shows the learned locations on y-axis, with the x-axis is

sorted by the location index, starting from the lower left corner.
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