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Abstract 

Accurate digital forest inventory (DFI) is essential for sustainable forest management, yet single-sensor LiDAR approaches often fall 

short in capturing the full vertical structure of forest stands. This study evaluates the performance of a fused dataset combining UAV-

based LiDAR (ULS) and personal laser scanner (PLS) data to overcome platform-specific limitations. A mixed forest stand in 

northeastern Germany was surveyed using both ULS and PLS under consistent scanning patterns, supported by ground control points 

for georeferencing. Point cloud fusion was achieved through a dynamic marker-based alignment and refined using partial iterative 

closest point (ICP) registration. The fused dataset, processed in TreeLS, enabled detailed stem reconstruction and vertical canopy 

characterization. Comparative analysis against field-measured tree metrics revealed a mean deviation of -2.5% for diameter at breast 

height (DBH) and +4.9% for tree height, with RMSE values of 2.9 cm and 3.84 m, respectively. These results highlight the 

complementary strengths of ULS and PLS platforms, demonstrating that their integration significantly enhances the accuracy, 

completeness, and efficiency of forest inventories. The presented workflow supports scalable, repeatable, and ecologically informative 

forest assessments, offering substantial potential for precision forestry and long-term monitoring applications. 

 

 

1. Introduction 

Digital forest inventory (DFI) based on discrete point clouds has 

emerged as a critical area of research in remote sensing and is 

increasingly vital for forestry management, offering essential 

information to support decision-making processes (Fassnacht et 

al. 2024; Kellner et al. 2019; Murtiyoso et al. 2024). Integrating 

remote sensing technologies into forest inventory practices 

represents a paradigm shift from traditional field-based 

measurements to advanced, data-driven methodologies. This 

evolution allows for temporal monitoring, and the extraction of 

detailed structural attributes of forest ecosystems. Recent 

advancements have introduced methods for semantic 

segmentation (Krisanski et al. 2021), tree instance segmentation 

(Straker et al. 2023), and comprehensive process chains for DFI 

(Tockner et al. 2022; Wang and Bryson 2023; Wilkes et al. 2023; 

Xiang et al. 2024).  

However, challenges remain in accurately capturing and 

reconstructing the full vertical structure of forests using 

individual sensing platforms. These limitations stem from the 

inherent constraints associated with single-sensor systems' 

spatial positioning and scanning capabilities. Point clouds 

generated below the canopy with terrestrial laser scanners (TLS), 

or personal laser scanners (PLS) provide high-resolution 

representations of stems and lower crown structures, but often 

lack detailed information on the upper crown (Lau et al. 2019; 

Terryn et al. 2022). This is primarily due to the occlusion caused 

by dense canopy layers that obstruct the upward view of ground-

based sensors. Conversely, UAV-based point clouds effectively 

capture the upper crown but the lower crown and parts of the 

stems are often missing due to occlusions (Terryn et al. 2022). 

Especially in stands with closed canopies and dense understory 

this affects the measuring of the diameter at breast height which 

is an essential parameter for forest inventory, accurate tree 

modeling and biomass estimation. 

A second challenge is georeferencing of point cloud data 

collected below the canopy and therewith, determining accurate 

tree foot positions (Fol et al. 2023). Precise georeferencing is 

crucial for longitudinal studies and change detection analysis, 

where consistent spatial referencing across time and platforms is 

necessary.   

These limitations can be mitigated through the fusion of point 

clouds from both platforms, leveraging their complementary 

strengths (Chen et al. 2024; Guo et al. 2023; Wang et al. 2023). 

A multi-sensor fusion strategy can integrate the detailed stem 

representation from TLS/PLS with the upper crown depiction 

from UAV point clouds, thereby enhancing the overall 

completeness and accuracy of the forest structural model. The 

combination of different viewpoints and resolutions contributes 

to a more robust representation of the vertical forest profile, 

enabling improved characterization of forest heterogeneity and 

vertical layering. Furthermore, incorporating RGB, 

multispectral, or thermal sensor data alongside LiDAR enabling 

applications such as tree health monitoring and providing a 

holistic understanding of forest ecosystems to support sustainable 

forestry management (Jurado et al. 2022). 

This study explores a novel approach for co-registering point 

cloud data collected from different platforms and sensors, 

employing dynamic markers for georeferencing and coarse 

alignment of the terrestrial point cloud and the iterative closest 

point algorithm for partially overlapping data (partial ICP) for 

fine registration.  

The use of artificial or natural markers enables initial alignment 

between datasets with different acquisition geometries and 

spatial references. Subsequently, the partial ICP algorithm 

refines the registration by minimizing point-to-point distances 

and ensuring spatial coherence across the merged dataset.  

The focus of this research is to evaluate the performance of fused 

UAV and PLS point clouds in reconstructing vertical forest 

structures and deriving key forest inventory metrics. By 

addressing the limitations of individual platforms, this study aims 

to advance methods for digital forest inventory and inform 

sustainable forestry practices. Ultimately, such integrated 

approaches facilitate better-informed decision-making processes 

and promote adaptive forest management strategies in response 

to climate change and ecosystem degradation. 
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2. Materials and Methods  

 

2.1 Study area 

The scanning activity was carried out in a mixed forest stand near 

the village of Haselberg in north-eastern Germany, one of 

Eberswalde University for Sustainable Development's 

Martelescope application sites.  

 

2.2 Data collection 

As preparation of the site, 5 ground control points (GCPs) were 

evenly distributed in canopy opening across the investigation site 

in order to extract their coordinates from the ULS point cloud for 

georeferencing of the PLS point cloud in the consecutive step 

described in 2.3. 

The PLS point cloud was collected with a GreenValley LiGrip 

H300 (GreenValley, Berkeley, USA) PLS which has 300 meters 

range and 640000-point scattering capacity per second. A parallel 

scanning pattern with a distance between the scanning lines of 20 

m was applied. After the last line, a diagonal calibration path 

which ended at the starting point was conducted to enable closed 

loop error correction. The position of the distributed GCPs were 

marked in the PLS point cloud using stop-and-go referencing 

during the scanning process (FARO). 

UAV-based lidar acquisition (ULS) was carried out with the 

same scanner by mounting it on a DJI M350 RTK. The same 

scanning pattern was applied in a flight height of 50 m. 

Additionally, conventional field methods were employed, 

utilizing measuring tape, calipers, and a vertex hypsometer to 

collect ground reference data. 

 

2.3 Data processing, georeferencing and co-registration 

PLS and ULS scanner data were converted into point clouds 

using the LiFuser BP software and then cropped into the specified 

area of interest. Thereby the coordinates of the GCPs were 

extracted from the ULS point cloud and applied to the PLS point 

cloud for georeferencing. 

This approach integrates the GCPs directly into the calculation of 

the scan trajectory of the PLS scan and, thereby, enhancing the 

spatial coherence between the PLS and ULS scans.  

After the PLS point cloud was georeferenced, it was co-registered 

to the ULS point cloud with the partial ICP algorithm in Cloud 

Compare. The final overlap of the point cloud was estimated with 

20% and the threshold for the outlier filtering was set accordingly 

that only the best 20% of pairs were used for the registration. 

For a proper result, it is crucial that the final overlap is not 

overestimated, and the initial alignment of the point cloud has an 

offset of only a few cm which was ensured by the used 

georeferencing approach. Otherwise, the partial ICP can also 

result in incorrect registrations results as local minima. 

After co-registration, the point clouds were merged and a scalar 

field containing the point cloud origin was generated (Figure 1). 

 

2.4 Digital forest inventory and field reference data 

collection 

The generation of the inventory table for the specified area was 

accomplished through the utilisation of TreeLS, an open-source 

software package utilising the R programming language. The 

point clouds were categorized into ground and above-ground 

points using the Progressive Morphological Filter (PMF) 

approach (Zhang et al. 2003). From the classified ground points, 

a Digital Terrain Model (DTM) was produced through the 

Inverse Distance Weighting (IDW) interpolation technique. The 

terrain was subsequently normalized based on the process 

described by (Liu et al. 2017). Advanced algorithms, including 

the Hough transformation, eigende-composition with clustering, 

and RANSAC with cylinder fitting, were applied to accurately 

process and model tree stems for detailed analysis (Conto et al. 

2017). The classification and segmentation of stem points were 

conducted automatically within TreeLS, following standardized 

processing routines.  

 

2.5 Evaluation 

Forest metrics derived from each data type were evaluated by 

comparing them to ground-truth data from the area of interest. 

Subsequently, a regression analysis was performed in order to 

investigate the average diameter at breast height (DBH) and the 

height of individual trees. The aim was to ascertain whether these 

metrics varied between point cloud datasets obtained from UAV-

LiDAR and PLS-LiDAR, as well as their fused counterparts. 

Furthermore, the study sought to quantify any observed 

variations. 

     
          

 
Figure 1 Example visualisation of data fusion workflow with 

UAV and PLS. Top: UAV dataset (red) and PLS dataset which 

was georeferenced by dynamic makers obtained from the UAV 

data. Bottom: UAV and PLS data after co-registration with partial 

ICP. 

 

3. Results and Discussion 

 

The comparison between PLS-LiDAR and UAV-LiDAR point 

cloud captures revealed distinct patterns in the distribution of 

points by height (Figure 2). The PLS-LiDAR capture exhibited a 

more uniform distribution of points across lower height ranges, 

accurately capturing details of stems and understory vegetation. 

This dense representation at lower canopy strata facilitated 

accurate reconstruction of ground-level forest structures, which 

are essential for deriving key forest inventory metrics such as 

diameter at breast height (DBH), stem form (Liang et al. 2018). 
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In contrast, the UAV-LiDAR dataset displayed a higher density 

of points concentrated in the canopy height range, reflecting its 

stronger capability in characterizing upper tree structures. This 

pattern corresponds to the top-down scanning geometry of UAV-

LiDAR systems. However, due to limited penetration of laser 

pulses through dense foliage, UAV-based captures showed lower 

point density in the stem and understory zones. These limitations 

hinder detailed reconstruction of lower strata, particularly in 

closed-canopy conditions (Calders et al. 2020). 

 
 

The UAV LiDAR points are heavily concentrated in the upper 

canopy, whereas the PLS points are more uniformly distributed 

through lower heights. For example, the first 4 meters height 

from the ground level roughly 22% of all PLS returns were 

recorded, compared to 14% of the UAV returns at that same 

height. By contrast, from the last 10 meters height, starting from 

170-172 me altitude intervals the UAV captures half of its total 

points while PLS has already captured its more than 96% of total 

points. Additionally, the UAV captured a much larger share of 

points in the highest canopy layer in the 174-176 m bin 

approximately one-fifth of the UAV’s points occur, versus about 

1% of the PLS points. These differences are clearly illustrated by 

the cumulative distribution curves (Figure 2) 

 

This indicates that the UAV predominantly samples the upper 

canopy, while the PLS provides denser sampling of the sub-

canopy and ground level. The numerical trends highlight how 

each platform captures a different slice of the vertical forest 

Figure 2 Vertical distribution of PLS-UAV LiDAR points. a) Top-left: Example of a 5-meter width section of the PLS point distribution 

by height. b) Top-right: Example of a 5-meter width section of the UAV point distribution by height. c) Middle: Cumulative distribution 

of points for whole area of interest. d) Bottom: Number of points by altitude intervals by 2 meters for whole area of interest. 

m 
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structure, the UAV from the top-down, capturing the outer 

canopy surface, and the PLS from the bottom-up, capturing 

understory vegetation and lower tree stems (Neuville et al. 2021).  

These results highlight the inherently complementary nature of 

the two acquisition methods. PLS-LiDAR excels in the detailed 

detection of lower forest structures, including stem profiles and 

ground-level vegetation, while UAV-LiDAR provides superior 

coverage of upper canopy layers. Their integration through data 

fusion techniques enables a more complete and structurally 

continuous representation of vertical forest profiles. This synergy 

is especially valuable in forest inventory applications where both 

lower and upper structural components are required for accurate 

parameter estimation.  

Figure 3 illustrates the fused point cloud dataset, combining PLS-

LiDAR and UAV-LiDAR captures. In this visualization, blue 

points represent PLS-LiDAR data, while red points represent 

UAV-LiDAR data. The fused dataset demonstrates the clear 

vertical complementarity between the two sources, with PLS-

LiDAR dominating the lower forest structure and UAV-LiDAR 

representing the canopy layers. The combined dataset thus 

enables a holistic 3D spatial representation of the forest stand, 

improving the spatial continuity and accuracy of structural 

analysis (Brede et al. 2019).  

 

 
Figure 3 Visual example of a 5-meter width section of fused PLS-

UAV point cloud data. Red indicates UAV while blue indicates 

PLS. 

Following the data integration, forest inventory parameters such 

as DBH and tree height were extracted from the fused dataset and 

compared against reference values obtained through 

conventional field-based measurements. This comparison 

provides a quantitative assessment of the accuracy and reliability 

of LiDAR-based inventory methods. 

According to Table 1, the mean DBH obtained from the fused 

dataset was 34.5 cm, while the field-based reference mean was 

35.4 cm. Similarly, the mean tree height derived from the fused 

LiDAR data was 26.75 m, compared to 25.50 m in the field 

reference data. The corresponding percentage differences were -

2.5% for DBH and +4.9% for height, indicating a strong overall 

agreement between remote sensing-derived and manually 

measured values. 

The standard deviation (SD) values were also consistent between 

datasets. The fused dataset showed a DBH standard deviation of 

14.2 cm, compared to 15.3 cm in the field data. The height 

standard deviation was 7.06 m in the fused dataset and 5.96 m in 

the reference dataset. These values suggest that the fused dataset 

captured a comparable range of variability in tree size 

distributions, further supporting its applicability for structural 

forest analysis. 

The Root Mean Square Error (RMSE) values were 2.9 cm for 

DBH and 3.84 m for height, corresponding to relative errors of 

8.2% and 15.1%, respectively. These error margins are within the 

expected range for operational forest inventory applications 

using LiDAR technology. In addition, the Mean Absolute Error 

(MAE) was 2.2 cm (6.2%) for DBH and 2.35 m (9.2%) for height. 

These metrics demonstrate good predictive performance and 

confirm that the fused LiDAR dataset provides reliable 

quantitative outputs. 

 

Table 1 Statistical Comparison Between Fused LiDAR Data and 

Reference Data 

 

Bias values were also calculated to assess systematic deviations 

between LiDAR-derived and reference measurements. The DBH 

bias was -0.8 cm, representing a relative bias of -2.3%, indicating 

a slight underestimation by the fused dataset. In contrast, the 

height bias was +1.26 m, equivalent to a relative bias of +4.9%, 

suggesting a moderate overestimation of tree height. These 

results are consistent with previous studies, where tree height 

derived from UAV-LiDAR often tends to be slightly 

overestimated due to canopy point scattering (Bing et al. 2025), 

while DBH estimations derived from ground-based point clouds 

are generally more conservative due to modeling constraints at 

the lower stem level (Ye et al. 2020). 

Despite these biases, the high level of correspondence between 

fused LiDAR outputs and field measurements demonstrates the 

effectiveness and operational relevance of integrating ground-

based and aerial LiDAR platforms. The fusion of these datasets 

not only improves vertical structural representation but also 

strengthens confidence in the inventory metrics derived by 

mitigating the limitations inherent to each individual method 

(Panagiotidis et al. 2022). 

Importantly, the fused LiDAR approach substantially enhances 

data acquisition efficiency compared to traditional field methods. 

While conventional inventories require manual measurement of 

each tree’s DBH and height, an effort-intensive and time-

consuming process LiDAR-based methods enable rapid data 

collection over large areas (Melville et al. 2015). Once the fusion 

workflow is established, the process can be repeated at regular 

intervals for forest monitoring, enabling time-series analysis, 

change detection, and the modeling of forest dynamics under 

different management scenarios (Apostol et al. 2019). 

In addition to inventory applications, the improved vertical 

representation obtained from fusion datasets supports broader 

ecological assessments. For example, the combined data allow 

for more accurate quantification of vertical foliage distribution, 

crown base height, and forest stratification, which are essential 

 
DBH 

[cm] 

Height 

[m] 

DBH 

ref[cm] 

Height 

ref[m] 

Mean 34.5 26.75 35.4 25.50 

SD 14.2 7.06 15.3 5.96 

RMSE 2.9 3.84 
  

MAE 2.2 2.35 
  

Bias -0.8 1.26 
  

m 
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for biodiversity studies and habitat modeling. The fine-resolution 

vertical structure also aids in carbon stock estimation, as accurate 

DBH and height measurements are fundamental inputs for 

allometric equations used in biomass modeling (Ferraz et al. 

2016). 

Furthermore, the successful fusion of PLS-LiDAR and UAV-

LiDAR demonstrates a scalable workflow that can be adapted to 

various forest types and terrain conditions. The approach is 

especially valuable in heterogeneous forest environments where 

single-platform data collection may fail to capture complete 

structural variation. By leveraging the strengths of both ground 

and aerial perspectives, the fusion technique contributes to 

enhanced spatial data quality and supports precision forestry 

approaches. 

 

 

4. Conclusions 

This study demonstrates the effectiveness of fusion PLS-LiDAR 

and UAV-LiDAR data for forest inventory analysis. While PLS-

LiDAR effectively captured detailed stem structures and 

understory vegetation, UAV-LiDAR provided comprehensive 

coverage of canopy architecture. The fusion of both datasets 

enabled a structurally complete and vertically continuous 

representation of the forest stand. 

The fused dataset exhibited strong agreement with reference field 

measurements, with errors, 2.2 cm for diameter at breast height 

(DBH) and 2.35 m for tree height, and low bias values. These 

results confirm the accuracy and reliability of the fused point 

cloud compared to conventional field-based inventory methods. 

Moreover, this approach significantly reduces the time and 

manual effort required for data collection, without compromising 

measurement precision. 

By leveraging the complementary strengths of ground-based and 

aerial platforms, LiDAR data fusion offers a scalable, efficient, 

and replicable solution for forest monitoring and inventory. The 

methodology supports not only operational forest assessments 

but also broader applications in ecological modeling and 

sustainable forest management. Future research could expand its 

application to diverse forest types and structural conditions, 

further enhancing the adaptability and utility of this approach in 

forestry science. 
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