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Abstract 
 
The Mediterranean Sea has a substantial volume of maritime traffic, including many tankers ferrying oil from eastern sources to 
western refineries. This critical maritime front, vital for trade and connectivity, also poses a significant risk of oil spills due to these 
busy shipping routes. The conventional methods for early oil spill detection have encountered numerous challenges, primarily due to 
the complex and variable nature of spill events. This study promotes an anomaly-based approach, treating oil spills as environmental 
outliers, and utilizes baseline water parameter comparisons to detect and monitor sea oil spills effectively.  
This approach leverages satellite data, employing a combination of remote sensing techniques and advanced machine learning 
technologies. The end goal is providing a platform for monitoring and detecting oil spills, to empower users worldwide to conduct 
regular assessments, contributing to the proactive prevention of future environmental damage. 
 

1. Introduction  

The Mediterranean Sea has served as a focal point for extensive 
maritime traffic, providing essential routes for the transport of 
goods between Europe, Asia, and Africa. Within this network, 
the ports and maritime front of Israel functioned as a crucial 
link between the country and the global space. These areas 
hosted a complex web of shipping routes, reinforcing the 
strategic importance of the Mediterranean both internationally 
and locally. However, this extensive traffic also raised 
environmental concerns. The intricate network of shipping 
routes rendered the Mediterranean a high-risk area for oil spills, 
which threatened not only marine ecosystems but also the 
livelihoods of coastal regions, potentially leading to significant 
economic and ecological consequences [1]. 
 
The 17 Sustainable Development Goals (SDGs), established by 
the United Nations, included several goals dedicated to 
protecting marine environments and promoting the sustainable 
use of ocean resources (SDG 14: Life Below Water) [2]. 
Addressing oil spill risks and enhancing marine environmental 
management were recognized as critical steps toward achieving 
these goals. Effective monitoring and response systems for oil 
spills contributed directly to SDG 14 by preventing marine 
pollution and supporting the restoration of marine and coastal 
ecosystems. Furthermore, the study aligned with SDG 13: 
Climate Action, as it promoted resilience and adaptive capacity 
to climate-related hazards by ensuring that the impacts of oil 
spills, which can exacerbate environmental stress, were swiftly 
mitigated [3]. 
 
Traditional methods for detecting oil spills, which often relied 
on ships or aircraft, were limited in their range, expensive, and 
required continuous operation for ongoing maritime monitoring 
and management [4]. An alternative method that became 
prevalent in recent years involved the use of satellite-based 
remote sensing technologies, which offered a significant 
advantage in monitoring vast marine areas efficiently [5]. These 
satellites, orbiting the Earth at high altitudes, covered large 
areas in a single pass. This capability allowed for rapid 

assessment of potential oil spill events, reducing response times 
and helping to minimize environmental damage. Additionally, 
compared to traditional methods that required the deployment of 
ships or aircraft, satellite-based remote sensing was cost-
effective, with various types of satellite data being openly 
available, making them an accessible resource [6]. 
 
Despite the significant advantages of satellite-based remote 
sensing technology for spill detection, it was not without 
complexities and challenges [7]. One major challenge was sun 
glint, which occurred when sunlight reflected off the water's 
surface, creating a bright mirror effect that complicated the 
detection of oil spills and other environmental features. Another 
challenge was the phenomenon of mixed pixels, where satellite 
sensors captured a mixture of multiple signals within a single 
pixel due to its size, posing a unique challenge in accurately 
identifying oil spills [8]. Furthermore, the Mediterranean Sea, 
like many other water bodies, exhibited a variety of changes in 
water properties, such as turbidity and salinity, which could 
affect the spectral signals detected by satellite sensors. These 
variations posed challenges in signal interpretation, requiring a 
deep understanding of how different water types and changes 
within the same water body influenced oil spill detection [9]. 
Beyond the potential complexities and variations in seawater, 
there was also the spectral diversity of oil. The spectral 
properties of oil varied depending on its type, thickness, and 
environmental conditions. Different types of oil displayed 
unique spectral signatures across the electromagnetic spectrum 
[10]. 
 
While satellite-based remote sensing systems could capture a 
wide range of data, relying on a single sensor type often 
highlighted the mentioned limitations [11]. Multispectral (MS) 
satellites did not always provide the necessary spectral 
resolution to detect all types of spills and required extensive 
prior knowledge about both the water composition and the 
contaminant material. Synthetic Aperture Radar (SAR) systems 
were commonly used to detect oil spills under various weather 
conditions and oil types, but their low coverage frequency posed 
a significant limitation in continuous monitoring and tracking 
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the spill's progression after detection [12]. Additionally, the 
signal received from the frequencies used in satellite systems 
was often noisy, complicating the interpretation process and the 
accurate identification of the contamination [13]. 
 
To overcome these challenges, the integration of data fusion and 
machine learning techniques emerged as a powerful approach to 
the detection and monitoring of oil spills. Data fusion involved 
the combination of data from multiple sources and sensors to 
enhance the accuracy and reliability of detection processes [14]. 
By fusing data from various satellite sensors, such as MS, SAR, 
and thermal infrared data, with high-frequency (HF) radar data, 
the study leveraged the strengths of each sensor while 
mitigating their weaknesses [15]. 
 
Machine learning algorithms, particularly those in the realm of 
deep learning, demonstrated significant potential in analyzing 
complex and large datasets from remote sensing technologies 
[16]. These algorithms were trained to recognize patterns and 
anomalies in the data that were indicative of oil spills, 
improving detection rates and reducing false positives. For 
instance, convolutional neural networks (CNNs) were applied to 
MS and SAR imagery to automatically detect oil spill features, 
while recurrent neural networks (RNNs) were used to model 
and predict the temporal dynamics of spills based on time-series 
data from HF radar [17]. 
 
Moreover, the fusion of data from HF radar with satellite 
observations enabled real-time monitoring and predictive 
modelling of oil spill movements. HF radar provided high-
resolution data on sea surface currents, which was critical for 
predicting the spread and trajectory of oil spills. By integrating 
these data with satellite-based observations, the study created 
dynamic models that not only detected oil spills but also 
forecasted their future locations and potential impact areas [18]. 
 
Recent studies highlighted the effectiveness of combining 
machine learning techniques with data fusion for oil spill 
detection. For example, a study by Zhang et al. (2024) 
demonstrated the use of a hybrid model combining CNNs with 
data fusion from multiple satellite sensors to achieve high 
accuracy in oil spill detection in the Gulf of Mexico [19]. 
Similarly, Liu et al. (2022) developed a machine-learning 
framework that integrated SAR and optical satellite data with 
HF radar measurements to monitor oil spills in the East China 
Sea, showing significant improvements in detection accuracy 
and timeliness [20]. 
 
In the effort to enable early detection of oil spills in the 
Mediterranean and other regions, the study implemented a shift 
in paradigm by emphasizing oil spill detection through 
environmental anomalies. The methodology utilized data from 
various sensors and platforms – MS data from publicly 
available satellites, medium-frequency radar data from open 
satellites, satellites with Ocean and Land Color Instrument 
(OLCI) and Sea and Land Surface Temperature Radiometer 
(SLSTR) sensors to examine water color and sea surface 
temperature (SST), and high-frequency radar data providing the 
resolution required for current assessment. This approach not 
only allowed for early detection of oil spills but also enabled 
real-time forecasting and source retrieval. Additionally, 
combining different radar frequency data addressed the noise 
issues in the signals [21]. Thus, the approach enhanced the 
accuracy and reliability of oil spill detection, helped prevent 
environmental damage, and improved the understanding of the 
spread direction and source of contamination. This integrated 
approach is presented in this study.  

 
2. Methodology  

The methodology developed in this study integrates multisource 
satellite data, resolution enhancement techniques, and machine 
learning-based anomaly detection into a coherent framework 
designed for generalizable and near-real-time oil spill 
identification. Rather than focusing on the direct spectral 
signature of oil, the approach treats oil spills as environmental 
anomalies, deviating from expected baseline oceanic conditions. 
A schematic overview of the full methodological flow is 
presented in Figure 1. 

 

 
 

Figure 1. Methodology Flowchart 
 
 
The workflow begins with the acquisition of optical and radar 
satellite data from Sentinel-1 and Sentinel-2, which are used as 
complementary sources due to their differing spatial, spectral, 
and temporal characteristics. Sentinel-3 data is further employed 
for validation and cross-checking, though not as a primary 
detection source. Data are accessed via cloud-based platforms to 
ensure processing efficiency and scalability. 
A fusion and enhancement stage is subsequently applied to 
address limitations in both spatial and temporal resolution. The 
study evaluates several techniques for this purpose, including 
wavelet-based fusion, pansharpening, and super-resolution 
convolutional neural networks (SRCNNs). Temporal resolution 
is improved through time-series interpolation and gap-filling 
using recurrent neural networks, particularly LSTM (Long 
Short-Term Memory) models. The combination of these 
approaches enables the generation of high-resolution composite 
images that improve detection sensitivity, especially in dynamic 
or low-signal marine environments. 
Following enhancement, the fused datasets are analyzed through 
an anomaly detection process that compares observed 
conditions against a pre-established baseline of "clean" ocean 
states. The detection logic is not bound to specific spectral 
bands associated with oil but instead leverages the multispectral 
and textural deviation from typical marine signatures. This 
paradigm shift supports generalization across regions and 
seasons. 
To optimize performance, the study tested a variety of machine 
learning algorithms at different stages of the workflow—both 
supervised and unsupervised. These included Random Forest, 
Support Vector Machines (SVM), Autoencoders, and K-means 
clustering. 
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Figure 2. Methodos Tested in Various steps 

 
 
Figure 2 summarizes the performance evaluation of these 
models during both the fusion-enhancement phase and the 
anomaly detection phase. The results supported the selection of 
SRCNN for spatial enhancement and autoencoders for anomaly 
segmentation, based on their balance of accuracy, robustness to 
noise, and computational efficiency. 
The final output of the methodology is a spatio-temporal map of 
detected anomalies, interpreted as potential oil spills. These 
detections can then be cross-validated using auxiliary sources, 
or subjected to prioritization and alerting mechanisms based on 
confidence levels and environmental sensitivity. 
 

3. Results  

3.1 Case Study Results 

Our preliminary investigation into the detection of oil spills in 
the Mediterranean Sea has yielded promising results. Utilizing 
satellite-based remote sensing technologies, we analyzed two 
key images taken before and after a significant storm event to 
assess the presence and progression of oil spills. 

 
 
Figure 3. Identification of oil spill on 24-02-21 in the coast of 

Israel, Days after the storm         

 

Figure 4.  Water image on 14-02-21 in the coast of Israel, 
Before the storm 

 
The first image (Figure 3) shows the detection of the oil spill 
chosen as a case study in the coast of Israel (February 2021), a 
few days after the spill event. The bright area marked in green 
delineates the extent of the oil spill, which is prominent and 
clearly defined along the Israeli coast, stretching from the 
northern region near Hadera down to Ashdod. This significant 
presence indicates a major spill that spread over a considerable 
area, suggesting that the spill has been influenced by coastal 
currents and potentially spread by the storm. This finding 
emphasizes the need for timely monitoring and response to such 
events. 
In contrast, the second image (Figure 4) shows the area before 
the storm, where no oil spills were detected. The absence of any 
bright areas indicates that the waters were free of oil 
contamination before the storm event. This serves as a critical 
baseline for comparison, highlighting the impact of the storm on 
oil spill dispersion. The clear difference between the two images 
underscores the importance of real-time monitoring and 
validates the use of remote sensing technologies in detecting 
and tracking oil spills. 
These preliminary results demonstrate effective detection, with 
the post-storm image successfully identifying the oil spill and 
clearly delineating the affected area. This confirms the system's 
capability in accurately mapping oil spills. The significant 
spread of the oil spill post-storm highlights the influence of 
environmental conditions on spill progression, a finding crucial 
for developing predictive models that account for weather 
patterns and their impact on oil spill dynamics. The pre-storm 
image provides a vital baseline, reinforcing the need for 
continuous monitoring to detect changes in marine 
environments and validate the presence of new spills. 
Building on these preliminary results, the detection model was 
established and later been validated ant tested on further events. 
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3.2 Spatio-Temporal Resolution Enhancement 

A critical component of the detection framework developed in 
this study is the improvement of both spatial and temporal 
resolution, which directly impacts the sensitivity of the 
detection process. By integrating multisource data and applying 
super-resolution and time-series interpolation techniques, the 
study achieved substantial enhancement in the input data 
quality. The original resolutions of the primary datasets—
Sentinel-1 and Sentinel-2—were limited by acquisition 
frequency and native spatial resolution (typically 10–20 meters). 
After applying the proposed fusion pipeline, spatial resolution 
was improved to approximately 3 meters, while the effective 
temporal resolution was increased to near-daily frequency in 
high-priority monitoring zones. 
 

 
 

Figure 5. Resolutions improvement 
 
Figure 5 presents a summary comparison of the native 
resolutions of each sensor and the enhanced spatio-temporal 
output achieved using the methods detailed in the previous 
section. These improvements enabled detection of smaller and 
earlier-phase spills than would otherwise be possible using 
single-source input data. 
 
3.3 Validation and Generalization 

As shown in section 3.1, initial validation of the model was 
conducted using several known oil spill events in the Eastern 
Mediterranean Sea, where reference reports were available for 
ground-truth comparison. The model demonstrated consistent 
performance in identifying and outlining the spatial extent of 
multiple documented spills, thereby validating the anomaly-
based approach in known environments. 
To assess the model's generalization capability in unfamiliar 
conditions, the detection process was then applied to regions not 
used during model training or calibration. 
 

 
 

Figure 6. Detection of Gibraltar Oil Spill, September 2022 by 
Model 

Figure 6 illustrates the detection outcome of a randomly 
selected oil spill event that occurred off the coast of Gibraltar in 
September 2022. The region was not part of the original training 
set, and the event itself was unknown to the model. Despite this, 
the system successfully identified anomalous patterns 
corresponding to oil contamination, with visible slick signatures 
appearing in the deep sea during the tested period. These results 
demonstrate the robustness of the detection process and its 
applicability across diverse marine environments. 

 
3.4 Detection of Small and Dispersed Slicks in High-Traffic 
Zones 

Beyond major spill events, a key objective of the study was to 
evaluate the feasibility of detecting smaller, more dispersed 
slicks—often resulting from continuous marine traffic and port 
operations. For this purpose, the system was tested in the 
northern Red Sea, near the entrance to the Suez Canal, an area 
known for its high vessel density and routine low-volume 
discharges. 

 
 

Figure 7. Detection of Red Sea Oil Spills, August 2024 by 
Model 

 
Figure 7 presents the results of a model run conducted on an 
arbitrary date in August 2024. Unlike single-source 
contamination events, the detections in this case correspond to 
multiple small slicks, spread across the maritime zone. These 
slicks, marked by scattered red points, represent potential 
localized contamination events that typically go unnoticed in 
traditional detection systems. Their identification supports the 
extended applicability of the framework in contexts such as 
aquaculture safety, port monitoring, and maritime 
environmental enforcement. 
 

4. Discussion  

This study presents a novel and scalable approach to oil spill 
detection, emphasizing anomaly-based classification supported 
by high-resolution data fusion and machine learning. The 
integration of multisource satellite data—optical and radar—has 
enabled a significant improvement in the spatial and temporal 
characteristics of input datasets. As demonstrated in Figure 3, 
the methodology achieves enhanced resolution outputs, thereby 
allowing for the identification of smaller and more transient 
spill events that may otherwise be overlooked using 
conventional methods. 
The approach shifts away from traditional oil detection 
paradigms that rely on direct spectral identification of oil slicks. 
Instead, by modeling the baseline state of oceanic conditions 
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and flagging deviations as potential anomalies, the system 
proves capable of identifying contamination across a variety of 
environmental settings. This conceptual framework also 
supports broader regional transferability, as it does not rely on 
site-specific oil characteristics or predetermined thresholds. 
Validation efforts in the Eastern Mediterranean—where the 
model was trained—showed strong agreement between detected 
anomalies and independent reports of oil spills. This initial 
success provided a foundation for testing the model’s 
robustness under unfamiliar conditions. The case study in the 
Strait of Gibraltar (Figure 6) demonstrated that the system can 
generalize effectively to new geographic regions and detect 
unreferenced spill events in deep sea areas. This capacity for 
extrapolation highlights the strength of anomaly-based 
approaches in remote sensing, particularly when supported by 
machine learning models trained on environmental baselines 
rather than event-specific features. 
Importantly, the methodology’s performance was also evaluated 
in a complex and dynamic environment where oil contamination 
manifests in dispersed, small-scale forms rather than large 
singular slicks. In the Red Sea example (Figure 5), the model 
successfully identified multiple scattered oil patches in a high-
traffic corridor, confirming its utility for applications that 
extend beyond large spill detection. This includes continuous 
monitoring in zones of environmental sensitivity—such as 
aquaculture regions, marine reserves, and coastal ports—where 
even minor discharges can accumulate and pose significant 
ecological risks. 
From a technological standpoint, the fusion of SAR and 
multispectral imagery through SRCNN and wavelet-based 
enhancement methods was found to be effective in 
reconstructing fine-scale spatial and temporal variability. The 
integration of machine learning models, particularly 
autoencoders and LSTM networks, added robustness to the 
anomaly detection logic, with minimal dependency on rigid 
classification rules. 
The study also underscores the importance of creating open, 
accessible platforms for environmental monitoring. All data 
used were based on freely available sources (e.g., Sentinel 
missions), and processing was conducted using cloud-based 
platforms such as Google Earth Engine, reinforcing the 
potential of this approach to be deployed and replicated by 
institutions with limited infrastructure. 
In conclusion, this research contributes a flexible, high-
resolution, and generalizable framework for oil spill detection. 
Its capacity to identify both major and minor contamination 
events across different marine environments opens the door to 
broader operational adoption. Future work will focus on scaling 
the platform to additional geographic regions, incorporating 
near-real-time alert capabilities, and integrating multi-modal 
data such as AIS (Automatic Identification System) and 
meteorological datasets to support spill source attribution. 
Furthermore, the methodology holds promise as a tool not only 
for emergency response but also for continuous environmental 
monitoring, regulatory enforcement, and protection of 
vulnerable maritime ecosystems. 
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