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Abstract

The paper proposes a novel framework for automatically detecting wind turbines in orthophotos, transferring this information to a
database, and linking detected turbines to an existing registry to minimize location inaccuracy. This inaccuracy has a significant
impact on planning and identifying new potential locations for wind turbines, as existing turbines must be considered in these
processes. The existing public data frequently exhibit discrepancies from the actual location, and existing work also exhibits
relatively large discrepancies from the actual location, even though the exact location of a wind turbine is so important for these
processes. Moreover, existing work has not produced a new or improved database that could be used in the long term for processes
in the wind energy sector. The development of the AutoWindLoc framework creates a fully automated data basis from which
locations and possible further information can be retrieved. The recognition process utilizes a two-stage approach, incorporating
a You Only Look Once model with negative sampling and a binary classification Convolutional Neural Network, which attains an
average deviation of 0.85 m from the actual location.

1. Introduction

Global heating of land and ocean is progressing, with dra-
matic consequences for humans, animals, and our environment
(Minière et al., 2023). At the same time, high energy prices
are leading to competitive problems and thus to layoffs in some
energy-intensive industries (Olk, 2023). Wind energy, which is
both carbon-neutral and cost-effective, is a key component in
the solution to both problems. However, modern wind energy
companies face bureaucratic hurdles, such as inaccurate pub-
lic data or long waiting times for official data requests, which
make it difficult to identify lucrative sites. This is where our
approach comes in: a framework that Automatically searches
for Wind turbines to Locate (AutoWindLoc) them, so that, in
turn, unused areas can be identified more easily and faster.

In detail, the expansion of wind energy is confronted with sig-
nificant challenges. A significant challenge pertains to the iden-
tification of suitable locations, necessitating the collection and
consideration of extensive data (Sliz-Szkliniarz et al., 2019).
For instance, the identification of existing turbines or the utiliza-
tion of wind maps is necessary. This data is needed to determine
the preload of a site or the efficiency of a new wind turbine. The
process of obtaining the locations of existing turbines is time-
consuming. In numerous countries, there are public registers
for wind turbines, predominantly for general green energy or
general power generation. However, accessing these is often
complicated, or it is not possible to query individual sites from
the public register, as is the case in the UK (Department for
Business, Energy & Industrial Strategy, 2013). Furthermore,
a discrepancy was observed between the locations shown and
their actual geographical location, a phenomenon we found to
be particularly common in Germany.

In Germany there is the Markstammdatenregister (MaStR)
(Markstammdatenregister, 2019), in which all energy produ-

cers, including wind turbines, are registered and publicly ac-
cessible. However, the accuracy of this register is often ques-
tionable, as it contains significant deviations in its location data,
as evidenced in Figure 1, or as substantiated by the research
of Maximilian Kleebauer (Kleebauer et al., 2024), which con-
sequently hinders effective planning processes.

Therefore, all locations of wind turbines have to be queried,
and as the authorities have at least one month to provide the in-
formation (Umweltinformationsgesetz (UIG), 2005), this usu-
ally takes a long time. This delay is often attributed to the
substantial workload of these authorities, which includes the
administration of wind turbine permits. This has a negative im-
pact on the green energy business, as customers need explan-
ations of the process and must be patient. In many cases, the
business relies on real orders and contracts, making this an un-
necessary stress test, especially for smaller companies. Each
subsequent request for new information continues the cycle,
consuming more time and testing the patience of both parties.

We hereby propose a system, designated AutoWindLoc, that
automatically searches for existing wind energy sites on the
basis of orthophotos. Orthophotos are images created by fly-
ing over an area. AutoWindLoc then localizes the sites, stores
the wind turbines found, and searches for the real wind energy
asset in the MaStR based on the location found to provide fur-
ther information, such as the manufacturer or the power output.
We expect that the integration of AutoWindLoc will result in an
enhanced and sustainable database, a feat that will be achieved
through the presentation of two key contributions:

– The developed framework automates the downloading,
processing, and saving of images, as well as the extraction
of additional information from existing registers.

– We present a two stage detection process that has been de-
veloped to identify wind turbines with small deviations in
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(a) On the orthophoto, all entries that are included in the area in MaStR
have been marked with green markers. (wind-turbine.com, 2025)

(b) An image in which all existing wind turbines have been correctly
recognized by AutoWindLoc. The detected wind turbines are outlined in
blue and have a label indicating what was found, in this example wind

turbines and the safety as a percentage number, with a detection
highlighted for further analysis.

Figure 1. Two orthophotos which both show the same section,
where in (a) the entries of the MaStR are marked and in (b) the

recognitions of AutoWindLoc

their positioning. This data can then be utilized in various
processes within the wind energy sector.

While existing methods employ orthophotos and satellite im-
ages to localize wind turbines, these approaches do not gener-
ate a novel data foundation or address the issue of discrepancies
between the actual and perceived locations (Zhai et al., 2024).
The deviations of the locations are of particular relevance as

they are still in the meter range, which rapidly distorts the res-
ults, as numerous calculations, such as those for turbulence, are
highly sensitive to displacements.

The solution employed in this study utilizes a two-stage pro-
cess to enhance the efficacy of the results. Initially, a You
Only Look Once (YOLO) model (Jocher et al., 2023) is em-
ployed, and subsequently, the outcomes are validated using
a self-developed classification Convolutional Neural Network
(classification CNN) as shown in Table 1. The incorporation
of negative examples into the data sets serves to enhance the
precision and stability of the system. The Django framework
(Django Development Team, 2025), in conjunction with a Post-
greSQL (PostgreSQL Development Team, 2000) database, is
utilized to optimize the processing and storage of data obtained
because they support geodata and are very stable when used
together.

Section 2 is dedicated to a review of related work. Thereafter,
the methodology of AutoWindLoc and the two-stage detection
process are explained. This is complemented by a detailed de-
scription of the data sets. Finally, the results achieved are shown
and discussed.

2. Related Work

The detection of offshore wind turbines, unlike onshore wind
turbines, has been the subject of extensive research. The results
of research in this area have consistently achieved good results
with accuracies of up to 99.93%, as shown in the framework of
(Zhang et al., 2024). In addition, the work creates a sustainable
database of identified wind turbines. Furthermore, the frame-
work of Yichen Zhai et al. (Zhang et al., 2024) has broad applic-
ability, as demonstrated by its successful use in both Chinese
waters and the North Sea. However, it should be noted that the
applicability of this system is limited to offshore installations
and does not extend to onshore applications.

In a more recent work, a separate model was developed (Zhai et
al., 2024). This model represents a modification of the YOLO
framework with version 5 and is called Wind Turbine YOLO.
However, it should be noted that this version 5 is an older ver-
sion from 2020, after which several other versions have already
been released (Jocher and Qiu, 2024). In this model, the shadow
of the turbine is utilized as a distinctive feature to enhance the
efficacy of the system. To this end, a range of image resolutions
are employed to ensure broad applicability, even in cases where
the orthophotos are of suboptimal resolution. The approach
yielded average precisions ranging from 92.53 % to 98.84 %,
contingent on the resolution. However, this work is marred by
a problem in the accuracy of location detection. While this is
already adequate for values between 4.76 m and 8.13 m for the
mean distance error, it is too high for planning processes or
similar, as these processes are highly sensitive to shifts in wind
turbines. In addition, direct applicability is hindered by the lack
of processing or storage of the data in geospatial data storages.

Another study also deals with the detection of wind turbines
in Germany (Kleebauer et al., 2024). The study utilizes a Ret-
inaNet (Lin et al., 2017), which is naturally good at dealing
with unevenly distributed features. The network’s two-stage
architecture enables it to operate more efficiently with large,
high-resolution data sets without requiring exhaustive scrutiny
of every detail. Utilizing this approach, an average accuracy of
96 % is achieved, yielding commendable outcomes. However,
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it should be noted that no meaningful value for a deviation of
the found position from the original position is considered in
this work. Instead, the study introduces a categorization sys-
tem that classifies all detected instances into certain deviation
classes from the MaStR. This categorization system hinders the
determination of the mean deviation from the actual location,
thereby preventing comparisons. The authors acknowledge the
potential enhancement of the existing dataset, yet this proposal
remains unimplemented. This is problematic because it does
not create a database that could accelerate the expansion of re-
newable energy.

Parallel to this work, a further framework was developed (He
et al., 2025). This framework creates a map of all found wind
turbines, which can then be used as a database and achieves
an F-Score of 0.963. However, the comparability of results is
hindered in this case. The limitation of the study to China and
the absence of a published data set for comparison are signific-
ant obstacles. Additionally, the paper does not contain any part
on the methodology or further results regarding the comparab-
ility of both precision and recall as well as the deviation from
the actual location.

3. Methodology

In this section, the methodology is explained. In section 3.1,
the structural composition of AutoWindLoc is considered and
elaborated. This is followed by section 3.2, which describes a
detailed description of the two stage recognition process, and fi-
nally section 3.3, which describes the data sets required to train
the two stage recognition models.

3.1 Framework Architecture

This section will address the three primary components of
AutoWindLoc, as illustrated in Figure 2. These components
are as follows: data acquisition and preprocessing (highlighted
in blue), object detection and output generation (highlighted in
green), and data extraction (highlighted in purple).

The primary function of data capture and preprocessing is
to facilitate the seamless integration of orthophotos and their
metadata into object detection and the output generation. The
preparatory actions encompass the organization of queries for
orthophotos and their metadata and the subsequent cutting of
this data in preparation for its detection. The resultant cut data,
comprising images and metadata, is then passed on to the next
subprocess. The processing of each image is initiated individu-
ally, and this process is then repeated sequentially for each im-
age. This process is further delineated in section 3.1.1.

In the subsequent stage of the process, the resulting image is
processed with a YOLO model, the purpose of which is to re-
cognize wind turbines. In cases where the recognition is uncer-
tain, the image section of the object in question passes through
the second stage, which involves a classification CNN model
that performs a second check. If the classification is confirmed,
the coordinates of all wind turbines found are then determined
from the metadata and saved. A comprehensive explanation can
be found in section 3.1.2.

The final step of the Data Extraction section 3.1.3 follows only
after all the data has been retrieved and processed. This sub-
sequent step involves the acquisition of additional information
related to the location of the wind turbine in question. The loca-
tion found is used to try to find a wind turbine from the MaStR,

which stores information such as rated power and manufacturer.
A breadth-first search is employed for this purpose; however, it
should be noted that this approach does not guarantee correct-
ness due to the potential for significant variations in the data
provided by the MaStR.

3.1.1 Data Acquisition and Preprocessing A GeoJSON
file is employed for the download process, which is provided
by the State Office for Geoinformation and Surveying of Lower
Saxony (LGLN). However, it is imperative to note that this pro-
cess requires further refinement to ensure that only the most
recent images of a specific area are downloaded. To this end,
a check is made for each specific area to see if multiple im-
ages are available. If multiple images are present, the most re-
cent one is identified and utilized based on its publication date.
All other entries for older images will be deleted. For each
image, an XML file containing the metadata is downloaded.
This metadata encompasses not only the conventional attrib-
utes of metadata but also the coordinates encompassing the
area. It is noteworthy that the coordinates are expressed in the
UTM32 projection (Bundesamt für Kartographie und Geodäsie,
2018). This coordinate system is frequently utilized and em-
ploys a conforming representation of the earth’s surface. Each
GeoJSON entry is then processed as described below.

In the initial processing step, as previously referenced, an im-
age is downloaded in loss-free TIFF format, accompanied by
the corresponding XML. In the subsequent step, the image is
divided into sixteen parts. This division is imperative in order
to satisfy the requirements of the YOLO model. The necessity
for this division arises from the alternative option of an enorm-
ous computational capacity, which is further analyzed in section
3.2.

The XML file must then undergo a similar splitting process.
This is the best way to get the given coordinates for each part
of the image after the splitting process. Furthermore, it is ne-
cessary that both the images and the XML files are numbered
consecutively so that they can be correctly assigned in the sub-
sequent steps of the process.

3.1.2 Object Detection and Output Generation The sub-
sequent step of recognition and output generation is based on
a two-stage recognition process, which will be considered in
more detail in section 3.2. In this stage, the image section
undergoes the recognition process. This process returns co-
ordinates in the image of bounding boxes for each wind turbine
found. These bounding box coordinates are then utilized to cal-
culate the center point of the bounding box, which is the exact
base point of a wind turbine.

These coordinates can then be translated into real-world co-
ordinates in conjunction with the metadata XML. Given the
property of UTM32 as a conformal mapping of the Earth’s sur-
face, the conversion into real-world coordinates can be straight-
forwardly accomplished. The transformation is linear, whereby
the coordinate value is incremented by a single unit for each
meter moved in a given direction. Subsequent to this, an entry
is created in the database for each of these points, containing
the coordinates and a generated name.

The database has been constructed using the Django framework
(Django Development Team, 2025). The selection of Django
was primarily influenced by its Python foundation, which en-
ables the integration of machine learning capabilities. Addition-
ally, Django’s abstraction of database accesses facilitates faster
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Figure 2. Flowchart of the automated process for detecting and
validating wind turbines using satellite images. The process

includes data pre-processing (with image data from the LGLN -
Landesamt für Geoinformation und Landesvermessung

Niedersachsen), object recognition with YOLO and binary CNN
and comparison with the MaStR.

and more structured development. PostgreSQL (PostgreSQL
Development Team, 2000) was selected as the underlying data-
base. A pivotal consideration in this decision was the robust
support for geodata, facilitated by the PostGIS extension. The
selection was further influenced by the open-source nature of
PostgreSQL, its capacity for scalable functionality, and the act-
ive community of users and developers. The combination of
PostgreSQL and Django has been demonstrated to be highly
stable and powerful. This stability and power are primarily at-
tributable to the support of geodata, but also to the comprehens-
ive functionality of PostgreSQL supported by Django.

After being entered into the database, the next image part goes
through this process. Once this process has been completed for
all sub-parts of an image, the subsequent steps of splitting 3.1.1
and the above-mentioned process start again from the beginning
until the processing of all images has been completed.

3.1.3 Data Extraction The federal state, district, and muni-
cipality are determined and saved for each entry in the database.
To this end, polygons for each federal state, district, and muni-
cipality are stored in the Geographic Coordinate System. The
determination of the federal state is initiated by ascertaining the
location of the wind turbine point within the polygon, a process
facilitated by the Django function that converts the coordinates.
This is then repeated for all federal states until the polygon is
found. Subsequently, the same procedure is followed, first for
the district and then for the municipalities.

The subsequent step involves searching for a matching entry
in the MaStR for each wind turbine identified. The analysis
of all wind turbines is conducted through the implementation
of a breadth-first search. The initial step involves ascertain-
ing whether there are any wind turbines in the MaStR that are
within a radius of one meter of the turbines found. If such a
turbine is found, the MaStR turbine is assigned to the turbine
found, and the size of the radius is determined. This process
is repeated for all wind turbines, and once completed, the ra-
dius is increased. The radius is increased adaptively, as most
wind turbines are assigned at the beginning. The radius is in-
creased in increments of 1 m until it reaches 50 m, then by 2 m
up to 100 m, and from there by 5 m up to 500 m, and finally by
10 m up to 3000 m. At this juncture, the pursuit of the MaStR
wind turbine has been discontinued due to the improbability of
achieving a meaningful classification.

In the event that a wind turbine that has been found is assigned
to a wind turbine from the MaStR list by the process previously
described, that turbine is then removed from the set of wind
turbines found that still need to be assigned. This same prin-
ciple applies to the wind turbine of the MaStR. Consequently,
if these are assigned to a wind turbine found, they are no longer
considered as possible candidates. This ensures that each wind
turbine found can only be assigned to one MaStR wind turbine,
and vice versa.

The procedure in effect creates a database that contains much
more information than just locations. In addition to the data of
the MaStR, the radius in which the wind turbine was found is
also stored, as well as the real federal state, district, and mu-
nicipality. The radius value can serve as an indicator of the
relationship between the paired wind turbines found and in the
MaStR.
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3.2 Recognition process

The recognition process is a two-stage process. We chose this
two-stage process, as it has been demonstrated to enhance pre-
cision, leading to the elimination of numerous false positives
in the subsequent stage. Achieving a high level of precision is
imperative, as the absence of wind turbines in the database is of
paramount importance. Consequently, the benefit derived from
the enhanced precision of the locations becomes less significant
as the results become contaminated by false positives.

The initial stage of the process employs a YOLO model of ver-
sion 8 (Jocher et al., 2023). This YOLO model is capable of
identifying wind turbines from a provided orthophoto and sub-
sequently detecting bounding boxes. The decision to employ a
YOLO model was predicated on its proven capacity to deliver
expeditious results of a commendable caliber. This is of partic-
ular importance given that over 20,000 images are analyzed for
Lower Saxony a federal state of Germany alone.

As previously referenced in 3.3.1, the model was meticulously
trained with a resolution of 2500 x 2500 pixels, in order to cir-
cumvent an excessively substantial computational burden. Dur-
ing this training process, the YOLO model internally down-
scales the images, and later rescales them, as is customary for
the YOLO model, to a resolution of 2500 x 2500 pixels. The
model was trained over 100 epochs. This number was determ-
ined through a series of trials, which identified this particular
number as the optimal value for the number of repetitions. For
the base model for YOLO, the model size m was chosen. This
decision was guided by the finding from preliminary experi-
mentation with alternative model sizes, which indicated that
m consistently exhibited minimal overfitting and underfitting
tendencies.

In the second part of the recognition process, a simple, self-
developed classification CNN was utilized, as illustrated in
Table 1, to predict the probability of a wind turbine being vis-
ible in the input image. The architecture of this model com-
prises two convolutional layers, the first with 32 filters and max-
pooling, and the second with 64 filters and max-pooling. The
final stage of the network involves a flattening and output layer
with sigmoid activation.

Id Layer Kernel Size / Operation Output Size
1 Input Layer - 256×256×3
2 Conv2D + ReLU 3×3×3×32, padding=same 256×256×32
3 MaxPooling2D 2×2 128×128×32
4 Conv2D + ReLU 3×3×32×64, padding=same 128×128×64
5 MaxPooling2D 2×2 64×64×64
6 Flatten - 262144
7 Dense + Sigmoid 1 1

Table 1. CNN architecture

The selection of the classification CNN was made on the basis
that it is relatively simple and that it carries out its function in
an efficient manner. The classification CNN has been found to
rapidly and reliably detect the presence of a wind turbine.

The training was initiated with 100 epochs. However, the train-
ing was configured in such a way that it is automatically can-
celled if the validation loss does not improve for ten epochs in a
row. In such a scenario, the model with the most recent optimal
validation loss is employed.

The combination of these two models involves the classifica-
tion CNN model utilizing the outputs from the described YOLO
model. Initially, the probability of a bounding box is analyzed
to determine whether it corresponds to a wind turbine. The
probability and the bounding box of a detection can be read
directly from the result. In instances where this value falls be-
low 75 %, the subsequent phase of detection is initiated, which
is otherwise bypassed. The bounding box is then processed. In
the second part, the center point of a bounding box is determ-
ined, and a square image is cut out around this center point,
which is 200 x 200 pixels in size. This image then covers the
entire base of a wind turbine and is used as input for the CNN
after it has been scaled appropriately.

If the classification CNN subsequently asserts with a probab-
ility exceeding 50 % that a wind energy plant is visible in the
image, the subsequent process is initiated. Conversely, if the
classification CNN’s prediction falls below this threshold, the
result is disregarded without further consideration.

3.3 Dataset

It is acknowledged that the recognition process is comprised of
two distinct models, thus necessitating two separate data sets.
These data sets are addressed in the following sections.

3.3.1 Object Detection Dataset The data set for the YOLO
model is based on publicly accessible orthophotos. The images
originate exclusively from Lower Saxony and were published
by the State Office for Geoinformation and Surveying of Lower
Saxony (LGLN Open Geodata , 2023). The choice of Lower
Saxony as a training dataset is based on the fact that the region is
characterized by a diverse range of terrains. The topographical
variety is notable, encompassing a coastline in the northernmost
region, extensive agrarian terrain, urban areas such as Hanover,
Osnabrück, and Oldenburg, and the mountainous landscape of
the Harz. In addition, the state of Lower Saxony provides a
complete, openly accessible interface for orthophotos, with the
images available in high resolution. This is a particularly salient
point, as the availability of freely accessible data is otherwise
limited. Furthermore, the expense associated with procuring
orthophotos or satellite images is a significant deterrent, thereby
further reinforcing the appeal of Lower Saxony as a resource.

The original images are characterized by a resolution of 20 cm
per pixel, with each image encompassing an area of 2 km by
2 km. However, due to constraints in computing capacity, it is
impractical to employ a YOLO model trained with images of
10,000 x 10,000 pixels. It is evident that, in order to resolve this
issue, a reduction in image size was necessary. Consequently,
the area covered by each image is now 500 x 500 m, equival-
ent to 2500 x 2500 pixels. Each image has been subdivided into
sixteen parts. In the event that a wind turbine is situated on and
proximate to the section boundary due to the splitting of the im-
ages, the wind turbine in question has been labeled in the image
in which the largest part is shown. Consequently, this approach
results in the inclusion of even incomplete wind turbines within
the dataset.

The labeling of these images was conducted manually using
the LabelImg tool (TzuTa Lin, 2015). It is noteworthy that
the base of the wind turbine was the sole component placed
within the bounding box. That means that no rotors or shad-
ows were labeled as shown in Figure 3. Two arguments sup-
port this approach. The initial argument pertains to True-
DOP (Arbeitsgemeinschaft der Vermessungsverwaltungen der
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Figure 3. Image on which a wind turbine is labeled.

Länder der Bundesrepublik Deutschland (AdV), 2019), an ap-
proach to orthophoto processing that involves adapting ortho-
photos to produce a digitally decertified aerial image. This ap-
proach ensures that buildings no longer overlap roads in images,
thereby enhancing the clarity and interpretability of the visual
data. However, this approach also results in the exclusion of
wind turbine towers and rotors, which typically render both as
poorly identifiable features. Secondly, this approach facilitates
a more precise and reliable calculation of the base point.

The data set consisted of 2536 images. Of these, approximately
20 % did not depict wind turbines and were manually added to
the data set. The introduction of the negative sample resulted in
a marked enhancement in the outcomes across all parameters, a
topic that will be further explored in section 4.

Of the 2,536 images, 2,012 were allocated for the training set,
constituting 80 % of the total, while 419 images were desig-
nated for the validation set, accounting for approximately 16 %
of the entire dataset. The remaining 105 images (4%) were re-
served for testing at the culmination of the development pro-
cess.

3.3.2 Image Classification Dataset The second data set,
i.e., the one for the classification CNN, is based on the YOLO
data set. The YOLO model was configured to recognize all im-
ages once, thus enabling the generation of bounding boxes for
wind turbine bases and false detections. Sections were extrac-
ted from the images comprising the YOLO dataset. These im-
ages were sized at 200 x 200 pixels, with the midpoint of each
section corresponding to the center of the bounding box determ-
ined. The images, when categorized into two-state groupings
and sliced, are shown on 4.

In this particular instance, a dimension of 200 x 200 pixels
proved to be adequate, as it encompassed an area of 400m2,
which is sufficient to cover the base of a wind turbine. This was
followed by the extraction of the bounding boxes from the im-
ages and their subsequent saving as a separate file. These new
images were then manually binary classified, which indicates
whether they show a wind turbine or not.

The data set under consideration comprises a total of 218 im-
ages. Of these, 50 % correspond to 109 images, which are
correctly identified by the YOLO model, while the remaining

(a) Example detections of the YOLO model showing three different
wind turbines. These detections were cut out and used for training the

classification CNN.

(b) Negative detections of the YOLO model that show no relevant
objects for the classification. You can see a silo in the first image, a

power pole in the second image and a wave in the third image.

Figure 4. Example detections of the YOLO model, in which (a)
the detections of wind turbines and (b) negative detections are
shown. These were used for training the classification CNN.

50 % correspond to images that are misidentified by the YOLO
model. For the purposes of training, the data set was divided
into three sections. The initial segment constitutes the train-
ing dataset, encompassing 70 % of the images (153). The sub-
sequent segment is designated as the validation dataset, com-
prising 20 % of the images (44). The final segment, constituting
the test dataset, encompasses the remaining 10 % of the images
(21).

4. Results

The approach employed is predicated on sustainable data pre-
paration. The platform employs a robust storage system, foun-
ded on Django and PostgreSQL, to ensure efficient data man-
agement and retrieval. The comprehensive data set provides ad-
ditional insights into the characteristics of each individual wind
turbine, thus increasing the information value. However, it is
important to mention that the dataset contains errors. These er-
rors pertain to both the geographical location and the mapping
of the found wind turbines and MaStR, so sometimes incorrect
information is output.

With regard to the discrepancy between the predicted and actual
locations, the software displays an average deviation of 0.85 m.
This average deviation is the sum of all deviations from the true
location, divided by the number of locations. Caution should
be taken when interpreting this value, however, as the lack of
data sets on the exact location of each turbine introduces a de-
gree of uncertainty. Consequently, manual delineation of each
center point is imperative, though this approach can introduce
additional deviations.

The software achieved a precision of 97.1 % on the test data
set. Precision is calculated by summing true positives and false
positives and dividing by the number of true positives. This
value indicates the number of objects found and, in this case,
included in the database, despite not being wind turbines.

The software reported a recall of 96.94 % on the test dataset.
For this parameter, the true positives are added to the false neg-
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atives and divided by the true positives. This calculation en-
ables the estimation of the proportion of wind turbines that were
not identified.

It has been shown that the negative sampling technique used
in the YOLO dataset 3.3.1 improves the effectiveness of the
YOLO model. This enhancement was observed when train-
ing was performed with and without negative sampling. Spe-
cifically, the precision of AutoWindLoc was enhanced by 14
percentage points. Additionally, a notable enhancement in the
recall score was observed, with an increase of 10 percentage
points, suggesting a substantial improvement in the model’s
performance.

5. Discussion

The mean deviation of the framework is 0.85 m, indicating that
it possesses a low deviation from the original location. This
outcome is notably superior to the mean distance error, which
ranges from 4.76 m to 8.13 m. However, it is crucial to acknow-
ledge that this is not the same parameter, as it is not feasible
to calculate the mean distance error. Nevertheless, a statement
can be made about the deviation from the real location, which
is significantly smaller in this work. This substantial enhance-
ment has the potential to facilitate the planning and approval of
wind turbines, as it could lead to a reduction in the number of
hurdles encountered during the process.

It is imperative to acknowledge that the mean deviation is not
exact, as previously shown in 4. This inaccuracy arises from
the unavailability of a publicly accessible dataset that contains
the precise base points of wind turbines. Consequently, manual
delineation of all base points of the wind turbines was necessary
to calculate the deviation, which cannot be absolutely accurate.

The values of approximately 97 % for the precision are indic-
ative of a highly favorable outcome. This means that very few
wind turbines are added to the database that are not wind tur-
bines at all, resulting in a usable database with few errors. It
is also worth noting that both models are characterized by their
simplicity and lack of complexity. The CNN model consists of
only three layers, and the YOLO model is a model that can be
trained quickly. This simplicity speeds up the recognition pro-
cess and successfully avoids the overfitting of AutoWindLoc.

Moreover, AutoWindLoc has an F-score of 0.9702, which is
an improvement over the work described in (He et al., 2025).
However, this is not the primary advantage. The most signi-
ficant advantage of these models lies in their database and the
fully automated process of recognizing wind energy sites. This
development establishes a sustainable and valuable data found-
ation for the expansion of wind energy in Lower Saxony and
has the potential to be extended beyond the region. The unique-
ness of this fully automated process is underscored by the fact
that no other database has been developed with such a sophist-
icated and comprehensive approach to recognizing wind energy
sites.

However, AutoWindLoc is not without its limitations. Its ef-
ficacy is dependent on the data formats available in terms of
resolution per pixel, the overall size of the image, and the need
for TrueDop images. This limitation is further compounded by
the fact that many orthophotos or satellite images are inaccess-
ible due to restrictions on free availability or are financially
prohibitive to purchase, thereby limiting their overall utility.

Consequently, its practical application is constrained to regions
where the necessary data is accessible, which encompasses ap-
proximately 50 % of Germany.

6. Conclusion

The present paper proposes a framework capable of recogniz-
ing and processing wind turbines from orthophotos. The data is
meticulously prepared and processed using the Django frame-
work and the PostgreSQL database. This approach ensures that
the data obtained can be readily retrieved at a future date.

The recognition process, which is two-stage and based on a
YOLO model and a binary classification classification CNN,
was developed for this study. This approach has been demon-
strated to yield precision and recall values of approximately
97 %, thereby ensuring the integrity and stability of the database
with few errors. For instance, the framework exhibits a devi-
ation of 0.85 m compared to a mean distance error of 4.76 m to
8.13 m, signifying a substantial enhancement. It is important to
note, however, that the actual value may vary due to the manual
definition of the locations.

This work has the potential to significantly improve the data
basis for wind turbines in Lower Saxony by using this frame-
work. The federal government wants to increase the wind en-
ergy output in Germany in the next 5 years (Sander, 2025),
which will be facilitated by the framework.

It is imperative to note that orthophotos intended for processing
must be of superior quality and in TrueDOP format to ensure
optimal results. Failure to meet these criteria can substantially
compromise the deviation of the recognition process.

The potential exists for the project to be expanded even further
in the future. The processing of orthophotos from all regions
of Germany is a potential avenue for expansion, given that all
newly generated orthophotos are required to adhere to the same
standards as the established framework. A subsequent expan-
sion throughout Europe would also be a plausible option.
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