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Abstract

The intensity of agricultural land use is a critical factor for food security and biodiversity preservation, necessitating effective
and scalable monitoring techniques. This study presents a novel approach for large-scale mowing event frequency detection us-
ing dense time series data and deep learning (DL) methods. Leveraging Sentinel-2 and Landsat data, we developed a bench-
mark dataset of over 1,600 annotated parcels in Greece, capturing mowing events through photo-interpretation and Enhanced
Vegetation Index (EVI) analysis. Four DL architectures were evaluated, including MLP, ResNetl18, MLP+Transformer, and
Conv+Transformer, with additional handcrafted features incorporated to assess their impact on performance. Our results demon-
strate that the Conv+Transformer architecture achieved the highest improvement when enriched with additional features, while
ResNet18 showed a decline in performance under similar conditions. To address data scarcity, we employed knowledge distillation,
pre-training models on pseudo-labeled data derived from a dataset in Germany. This process significantly enhanced model perform-
ance, with fine-tuned ResNet18 and Conv+Transformer architectures achieving significant performance improvements. This study
highlights the importance of architecture selection, feature engineering, and pre-training strategies in time series classification for
agricultural monitoring. The proposed methods provide a scalable, non-invasive solution for monitoring mowing events, supporting
sustainable land management and compliance with agricultural policies. Future work will explore multimodal data integration and
advanced training techniques to further enhance detection accuracy.

1. Introduction

The intensity of land use in agricultural regions is directly re-
lated to food security, and biodiversity preservation (Klein et
al., 2020). In addition, the Common Agricultural Policy (CAP)
requires all European Union (EU) member states to implement
a more stringent monitoring program in order to preserve the
sustainability of natural resources while maximizing crop pro-
duction yields. Every growing season, mowing events in cul-
tivated areas serve as a reliable indicator of parcel manage-
ment; therefore, effective monitoring techniques that enable the
effective implementation of national programs must be estab-
lished. These techniques are required to be not only able to
monitor large areas, but also to be non-invasive in terms of not
requiring in-situ observation of parcel management intensity.
Considering the requirements of parcel monitoring, Earth Ob-
servation (EO) data is essential in order to be able to monitor
vast areas over an extended period of time (KARAKIZI et al.,
2024) and provide decision-makers with the necessary tools.

DL models, as well as machine learning algorithms in general,
can decisively support such tasks given their efficiency and ef-
fectiveness. In recent years, DL-based methods have been pre-
dominantly used for mowing event detection. Previous stud-
ies on large-scale areas tend to focus on selecting the optimal
EO data source combination for the task. EO data has been
widely used for monitoring and managing agricultural areas
such as grasslands using different methods of machine learning
(Ali et al., 2016). Additionally, referring to the use of satellite
data for practice monitoring, Vegetation Indexes and specific-
ally of Normalized Difference Vegetation Index (NDVI) was
highlighted by (Ottosen et al., 2019).

The study of (Lange et al., 2022) have shown that Sentinel-2
(S2) data could be utilized for land-use intensity (LUI) paired
with DL methods such as Convolutional Neural Networks (CNN)
that resulted in accuracy of 68% for mowing detection. (An-
dreatta et al., 2022) also studied the use of S2 data for the task
of mowing frequency detection, showing that spatial resolution
plays a significant role in the prediction of their proposed al-
gorithm. (Watzig et al., 2023) also proposed a method that,
although not based on DL, gives better insight into data usage
(S2) and small-scale parcels due to geography. In terms of data
quality, inaccuracies in cloud masking could significantly lower
the ability of these methods to detect events accurately, while in
the meantime, excluding these areas could also lead to big fluc-
tuations in NDVI values, leading to poor results (Kolecka et
al., 2018). Additionally, (Halabuk et al., 2015) used MODIS-
derived NDVI and EVI along with a simple CART classifier,
obtaining an accuracy of 85% in the case of NDVI. LandSat8
(L8), along with S2 data, were also used by (Schwieder et al.,
2022) to map mowing events at a national scale, using a rule
based (non-ML) method that best describes the events under
study. A significant study by (Griffiths et al., 2020) utilized im-
agery collected by both S2 and L8 in the form of timeseries to
map mowing events in Germany, both in terms of frequency and
timing, using machine learning methods. Similarly, (Liu et al.,
2020) developed algorithms that take advantage of L8 and S2
time series to map mowing event intensities in China, showing
that climate change alters parcel activities at a global scale.

The use of Synthetic Aperture Radar (SAR) data derived from
Sentinel-1 (S1) was studied by (Taravat et al., 2019) to extract
the status of grassland cutting using artificial neural networks,
particularly multilayer perceptron (MLP), achieving an accur-
acy of 85.71%.
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Combination of S1 and S2 data as well as field evaluation of
results was done by (De Vroey et al., 2022), yielding a F1-
score of 79% for a specific type of crop through an object-
based approach. (Lobert et al., 2021) studied the combination
of different EO data modalities such as optical (S2, L8) and
radar (S1), proving that using NDVI along with SAR data, yiel-
ded the better results compared to utilizing solely NDVI. Apart
from optical or radar data (Holtgrave et al., 2023) included ad-
ditional data sources such as weather data, showing that more
data sources do not implicitly lead to better results, with optical
data proving to be the most crucial EO data source for the task.

In this work, we propose a novel approach for large-scale mow-
ing event detection by leveraging dense time series data, deep
learning architectures, and knowledge distillation techniques to
enhance model performance in data-scarce environments. In
addition, we introduce a benchmark dataset of over 1,600 an-
notated parcels from three agriculturally significant regions in
Greece, capturing mowing events through photo-interpretation
and Enhanced Vegetation Index (EVI) analysis. Dataset as
well as code implementation for this work are available under
the MIT license at https://github.com/rslab-ntua/mowing-event-
detection.

2. Datasets
2.1 Novel Mowing-Event detection dataset in Greece

As a first step in our work, we defined the Regions of Interest
(ROIs) in Greece as shown in Figure 1, for which data are col-
lected and annotated, taking into account the intensity of agri-
cultural activity. Moreover, three different areas were chosen
to further capture any spectral differences present. Specific-
ally these areas are located in Central and Southern-Western
Greece, Thessaly and Peloponnese; areas which host a signific-
ant part of agricultural activity. The data source for this study
was NASA’s Harmonized LandSat Sentinel Dataset (Claverie
et al., 2018) for a period spanning from April to November
2020. During dataset creation, pixels with high cloud cov-
erage were excluded. The EVI was calculated for each time
step of the time series. During this phase, each parcel was as-
signed a label corresponding to the number of mowing events
that occurred during the study period. Events were identified
via photo-interpretation from optical data in synergy with the
computed EVL.

Annotation process posed several challenges in terms of most
suitable parcels selection. At first, cloud masking created gaps
in the timeseries that could result in false positives. Another
issue we encountered was the small scale of a significant num-
ber of parcels leading to low-quality observations, especially in
parcel borders. This issue is common due to the way parcels
are arranged in agricultural areas in Greece, posing challenges
for small-parcel monitoring using HLS imagery.

After annotation, we impose a temporal pre-processing to de-
rive the median value for each timestep, resulting in a single
vector representation for each parcel containing 45 timesteps.

Observations containing missing values were preserved as dif-
ferent approaches, e.g. data imputation, could be tested. Fi-
nally, the dataset we introduce with this study consists of more
than 1600 parcels across the three selected geographical areas.
This dataset contains timeseries for 5 different classes, 0 to 4
events during the season. Furthermore, this dataset can be used
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Figure 1. Different ROIs in Greece, where data were collected
and annotated.

Figure 3. Gap filled timeseries with added padding after dataset
creation.

for classification for low intensity as well as heavily managed
parcels. An 80-10-10 (train-validation-test) split was utilized
for this study after a random split of the whole dataset.
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2.2 Additional datasets

To perform knowledge distillation on our selected models, we
utilized a dataset comprised of predictions rather than actual
ground-truth labels, as described in (Schwieder et al., 2022).
This dataset includes pseudo-labels generated for over 50,000
samples in West Germany. To leverage this dataset effectively,
we formulated a knowledge distillation process that incorpor-
ates these pseudo-labels, aligning them with our benchmark
dataset through HLS-based pre-processing to derive time series
features for pre-training.

3. Methodology
3.1 Model selection

In this study we focused on different DL-based architectures to
model relations between time-steps in the most efficient way,
while keeping the computational cost low.

Multi-Layer Perceptron (MLP) (Goodfellow et al., 2016):
This was the initial architecture used in our study in order to
set the baseline results for the next experiments. This simple
yet efficient architecture was built of 2 hidden layers, followed
by the network output. Initial Learning Rate was set to 1 x 103
and the ReLU activation function. During the second round of
experiments, where handcrafted features were used, the input
was flattened to be utilized by the network.

ResNet 1D: It is a well-studied architecture (Kiranyaz et al.,
2021) and was selected due to its ability to process multiple
features per step as well as intra-step time relations (Di Mauro
et al., 2017). It is similar to that of (Zhang et al., 2021) used
for Electrocardiogram (ECG) diagnosis. In our implementation
ReLU activation function was used, as well as Batch Normaliz-
ation. Stride was set to 1 for the start of the experiments, kernel
size was set to 7, padding used was same, and the Learning
Rate value was 1 x 1075,

MLP followed by a Transformer architecture (MLP +
Transformer): Taking advantage of the simplicity the MLP of-
fers and the abilities of the Transformer Encoder architecture,
this model was utilized to enhance the classification perform-
ance, leveraging the cooperation of both basic architectures.
The MLP part was built using 2 hidden layers that encoded each
step in order to be used later. The initial Learning Rate was set
to 1 x 10~* paired with Dropout value of 0.1. Additionally, a
standard Feed-Forward Layer of size 2048 was utilized for the
transformer.

1D CNN followed by a Transformer architecture (Conv +
Transformer): Finally, another hybrid network was tested sim-
ilar to that of (Safari et al., 2020), that is composed of 1D CNN
and Transformer Encoder one on top of another. In this ar-
chitecture similar values for the hyperparameters were used as
a starting point regarding the Transformer encoder part. The
convolution-encoder part was constructed with two layers. Both
layers’ stride was set to 1 and a same kernel size (3). The output
channels from the convolutional part were 64 and used as input
to the transformer encoder layers.

Regarding the two transformer-based architectures MLP and
CNN networks respectively act as an embedding layer prior to
Transformer input. The latter, in particular, leverages an addi-
tional attention pooling layer at the final part of the network.

3.2 Feature Selection

During our initial experiments, only the EVI time series fea-
tures were used without any additional features to establish an
early baseline prior to further experimentation, while any tem-
poral gaps were filled using interpolation. In succession, we en-
riched our benchmark dataset by incorporating a series of sev-
eral handcrafted features calculated over the dataset’s reference
period. The final list of features included in our dataset is the
following:

1. EVI: The basis of our selected input features.

2. Difference to the mean for each time step: Aim to better
combat sudden but small drops in EVI that could lead to
False Positives.

3. Difference to the maximum for each time step: This fea-
ture was used as it helped better model drops in the index
that are not caused by unmasked clouds.

4. Difference to the minimum for each time step: In this case,
minimum was selected to further enhance the networks
ability to reject False Positives.

5. Difference to the next for each time step: Finally, this fea-
ture was utilized to better describe temporal relations in
timesteps.

These features selected proved to better model the relations
between subsequent time-steps while their on-the-fly compu-
tation minimizes computational and storage needs.

3.3 Knowledge Distillation

To address the challenge of limited data availability we are in-
troducing a model pre-training step through knowledge distil-
lation in a typical teacher-student setup. This approach allows
us to leverage additional information from pseudo-labeled data,
enhancing the performance of our models in a data-scarce en-
vironment. As detailed in subsection 2.2, we leveraged external
datasets for pretraining the two best-performing models, Res-
Net and Conv+Transformer. The pseudo-labels, generated dur-
ing the inference step of the algorithm proposed in (Schwieder
et al., 2022), were employed as a teacher model to facilitate the
transfer of knowledge to our student models.

The straightforward teacher-student training scheme allows the
pre-training of our models on the pseudo-labels derived from
the teacher model in (Schwieder et al., 2022). This step enabled
us to expose our models to a broader range of data representa-
tions, even in the absence of additional rigorously labeled data.

Finally, a fine-tuning step was conducted on our dataset to
further refine the models and evaluate the performance gains
achieved through the knowledge distillation pre-training. This
final step allowed us to quantify the improvements in model
performance and validate the effectiveness of the knowledge
transfer process.

3.4 Activation Maps

For further insights into the learned representations by our net-
works, activation and attention maps were extracted for the vari-
ous architectures validated in this study. This information aims
to gain a deeper understanding relevant to the temporal regions
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each architecture is more likely to focus on. Resulting maps
reveal that our models’ activations correlate to the peaks of the
EVI index.

This behavior can yield satisfactory results but also exhibits
weaknesses, particularly in cases where peaks are not directly
associated to mowing events. Specifically, peaks may addition-
ally be caused by weather phenomena or inaccuracies in dataset
masking that fail to eliminate shadows or other effects influen-
cing the index in the examined parcel.
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Figure 4. (a) Attention map extracted from Transformer Encoder
architecture (MLP encoder), (b) corresponding input EVI time
series.

3.5 Training Configuration

The training process was designed to solve a classification prob-
lem, where the goal was to predict the number of mowing events
(classes) for each parcel. To achieve this, we employed the
categorical cross-entropy (CCE) loss function, which is well-
suited for multi-class classification tasks.

Initially, all models were trained and evaluated using the full
dataset without incorporating any additional features. This con-
figuration served as a baseline, providing a reference point for
subsequent experiments. In the next configuration, additional
handcrafted features were introduced into the training process
to assess their impact on model performance. This allowed
us to evaluate whether the inclusion of these features contrib-
uted to any measurable improvements in classification accur-
acy. Finally, we focused on refining the two best-performing
models from the previous configurations. This refinement in-
cluded leveraging external pseudo-labeled datasets through a
knowledge distillation process to enhance the models’ perform-
ance under data-scarce conditions.

All models were implemented using PyTorch, and the exper-
iments were conducted on an NVIDIA 3060 GPU with 6GB
of memory, which was sufficient to meet the computational re-
quirements of the study.

4. Results

Following the training process, each model was evaluated on
the validation set. Table 1 presents a performance comparison,
detailing the F1-score, Precision, and Recall metrics achieved
by each architecture, and indicates whether additional features
were incorporated during training.

4.1 MLP Architecture

To establish a baseline for time series classification, a basic
MLP model was employed. During the initial experiments, this
architecture achieved a satisfactory classification performance,
yielding an F1 score of 60.1%. When additional handcrafted
features were incorporated into the input, a significant improve-
ment of +12.7% in the F1 score was observed. Such signific-
ant improvement highlights the value of engineered features for
enhancing the performance of simpler architectures like MLP,
even in basic setups.

4.2 1D ResNet18

The next architecture that produced noteworthy results was the
1D ResNet18. In the initial training iteration, without the inclu-
sion of any extra handcrafted features, this model achieved an
impressive F1 score of 80.6%. However, when the input was
enriched with additional features, resulting in a total of five in-
put channels, a decrease in performance was observed. The
observed findings suggest that the extra handcrafted features
may not align well with the model’s internal feature extraction
mechanisms, potentially introducing noise or redundancy that
hindered its performance in this specific case.

4.3 MLP+Transformer

The combination of an MLP followed by a Transformer En-
coder proved particularly effective for encoding the temporal
steps of the time series data. This architecture demonstrated an
improved F1 score compared to the baseline MLP model, show-
casing its ability to model inter-time relationships more effi-
ciently. The inclusion of the MLP layer before the Transformer
Encoder appears to have facilitated the extraction of meaningful
representations, which were then further refined by the Trans-
former to capture temporal dependencies.

4.4 Conv+Transformer

Without additional handcrafted features, the Conv+Transformer
architecture achieved an F1 score of 67.8%. In contrast to the
1D ResNetl8 (which saw decreased performance with added
features), the Conv+Transformer benefited substantially from
incorporating the selected handcrafted features. This resulted in
a significant performance improvement, increasing the F1 score
by +12.8% to reach 80.6%. This finding underscores the adapt-
ability of the Conv+Transformer architecture, highlighting its
capacity to effectively leverage engineered features, likely due
to its ability to integrate both spatial and temporal information.

4.5 Knowledge Distillation

The knowledge distillation pre-training process demonstrated
its potential to enhance model performance, particularly in
scenarios with limited labeled data. Without fine-tuning, the
results indicated that it is feasible to learn meaningful and trans-
ferable features during the pre-training phase, leveraging the
knowledge distillation process. After fine-tuning and with the
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Architecture Extra Features | FI Precision | Recall

MLP X 60.1 60.0 63.2

MLP v 72.8 72.2 75.0
MLP+Transformer v 75.6 75.1 79.4

Our Dataset | ResNet18 1D X 80.6 | 795 82.7
ResNet18 1D v 79.1 79.2 80.7
Conv+Transformer X 67.8 69.7 75.3
Conv+Transformer v 80.6 80.7 81.5

Pre-trained | ResNet Pre-trained v 823 81.2 84.4
w/ fine-tuning | Conv+Transformer Pre-trained v 82.3 81.8 83.7

Table 1. Performance comparison of various models on our benchmark dataset, including the impact of fine-tuning and extra features.

inclusion of additional features in the input, both the ResNet18
and Conv+Transformer architectures exhibited further improve-
ments in performance, with Fl-score increases of +3.2% and
+1.7%, respectively. These findings highlight the effectiveness
of knowledge distillation as a pre-training strategy, enabling
models to better utilize available data and improve their overall
classification accuracy.

4.6 Attention-Activation Maps

Basic model behavior was studied by extracting activation maps
and correlation matrices from ResNet and Transformer based
models respectively. Experiments showed that models tend to
attend to spikes in timeseries resulting in low performance, es-
pecially when those sudden spikes are not followed by an event
that indicated a mowed parcel. Despite the weaknesses models
performed well in cases when the mowing intensity was heav-
ier, which in some cases results in cleaner patterns of drops and
spikes in EVI.

5. Conclusions and Future Work

In our study, we experimented with popular architectures to
study their performance in classification of time series data.
MLP was the first kind of model to be trained and showed that
even without any additional data as input, it was able to yield
Recall of 63.2%. Further experimentation with the same net-
work but with extra features as input, resulted in higher Re-
call that reached 75.0% in the test set. After performing our
study with the process of encoding initial timesteps into embed-
dings, our results showed that long temporal relations between
timesteps could be detected not only with the use of an MLP
network as an encoder but also by a 1D CNN, with each of
the previous encoder networks followed by a Transformer En-
coder. The final architecture was that of a 1D ResNet 18, which
revealed that extra features acted as noise, deteriorating overall
performance and future studies might consider avoiding adding
such features. A significant part of our study was dedicated
to studying whether the pre-training of various architectures
has an impact on the final performance of these models. To
further investigate their behavior we chose ResNet 1D and the
Conv+Transformer architectures and trained them with a con-
siderably larger dataset which was produced by the model de-
veloped in (Schwieder et al., 2022). Data used in that phase,
contains a large amount of labels that do not correspond to the
actual mowing events that have occurred in a parcel or larger
area and thus are considered pseudo- labels. Results showed
that this simple method of knowledge distillation has a signi-
ficant impact on model performance after fine-tuning on our
benchmark dataset.

Although significant progress has been made regarding the task
of mowing event detection, there are potential areas that could
be explored or improved as a part of a future study. Firstly,
the developed dataset must be enriched with more samples that
cover even more agricultural areas in Greece to better combat
any spectral profile differences between ROIs. Secondly, DL
models are promising in finding patterns in large quantities of
data. This could be exploited in order to integrate different data
sources in our workflow such as radar data, where the synergy
with modern architectures could lead to better results.

As a conclusion, we demonstrated the importance of architec-
ture selection and the significance of data availability for mow-
ing event detection. In addition, we establish a method that
takes advantage of pseudo-labels for efficient pre-training of
models used with limited access to ground truth training data.
Next steps should include the use of multimodal data and differ-
ent training techniques to further improve detection accuracy.
Concluding, we hope our study will support the use of deep
learning methods in the field of large scale monitoring with the
maximum use of open-access data.
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