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Abstract

Surface reflectance (SR) is essential for many remote sensing applications, but retrieving it from aerial images is challenging due
to the lack of in-flight radiometric calibration and varying acquisition conditions. We propose a novel method for radiometric
cross-calibration of aerial imagery using satellite Top-of-Atmosphere (TOA) reflectance. The method involves estimating at-sensor
reflectance at the airborne altitude from satellite TOA reflectance, followed by spectral band adjustment and spatial alignment
between satellite and airborne imagery. A linear radiometric model is derived to relate the Digital Number (DN) to the at-sensor
reflectance from a selected subset of robust aerial-satellite pixel correspondences. The radiometric calibration parameter was re-
trieved using linear regression. The method is particularly suitable for airborne campaigns that lack onboard or in-situ radiometric
calibration equipment. An ablation study is presented to analyze the selection of reliable reference pixels.

1. Introduction

Atmospheric correction aims to retrieve the Surface reflect-
ance (SR) at the Bottom-of-Atmosphere (BOA) from remote
sensing data by estimating and correcting atmospheric effects.
Most biophysical/biochemical variable inversion algorithms are
based on SR. It is also essential for change detection and land
cover mapping. However, applying these atmospheric correc-
tions on Top-of-Atmosphere (TOA) reflectance images relies
on models that require calibrated sensors (with a temporally in-
variant response) and knowledge of acquisition conditions such
as solar angles and atmospheric conditions (such as aerosol op-
tical thickness) (Hagolle et al., 2017). The National Mapping
Agencies produce nation-wide orthophotographs (images geo-
metrically corrected with a uniform scale). However, the sun
angle, atmospheric conditions, and sensor acquisition paramet-
ers change between images, causing color inconsistencies betw-
een images from a single acquisition mission and even larger
inconsistencies between images from different acquisition mis-
sions, e.g. at the province boundaries.

In this article, we propose a novel method for radiometric cross-
calibration of an airborne sensor using satellite TOA reflectance
(here Copernicus Sentinel-2B (S2 Mission, 2017)). The first
step of this work consisted of retrieving the reflectance at the
airborne sensor altitude from the TOA reflectance given by the
satellite data. The atmospheric radiative transfer equation (Ver-
mote et al., 1997a) is expressed at the plane altitude to link the
TOA reflectance to the reflectance at the airplane altitude. To
apply the defined model, we simulated the atmospheric para-
meters in aerial conditions with the atmospheric radiative trans-
fer model 6S (Vermote et al., 1997b) and the Py6S tool (Wilson,
2013). We used a linear transformation matrix to convert the
spectral response of the satellite bands to that of the airborne
sensor bands.

Moreover, aerial and satellite images do not have the same spa-
tial resolution. In order to simulate aerial images at the satel-
lite spatial resolution (60 cm to 10 m or 20 m), we use the
Point Spread Function (PSF) of the Sentinel-2 by estimating

the Gaussian PSF from the discrete values and applying it to
the aerial spectral resolution. Then, an ablation study was con-
ducted to identify the most reliable reference pixels from both
the satellite and airborne imagery. Finally, we proposed a mod-
ified radiometric model (Lei et al., 2022) that relates the DN
acquired from the aerial acquisition to the airborne at-sensor
reflectance, estimated from the Sentinel-2 TOA reflectance.

2. Related work

Accurate radiometric calibration is essential for quantitative re-
mote sensing applications. For satellite optical sensors, abso-
lute radiometric calibration is typically performed using pre-
launch laboratory equipment (Barker et al., 1984) and in-flight
devices (Xiong et al., 2003), ensuring consistency and traceab-
ility of radiometric measurements. In contrast, aerial sensors
are often calibrated using vicarious calibration methods (Big-
gar et al., 2003), such as ground-based reflectance targets or
calibrated panels deployed during image acquisition (Markelin
et al., 2008). However, such calibration setups are not always
feasible, especially when dealing with large image archives ac-
quired at different times and covering wide areas, where in-situ
measurements become difficult or even impossible.

Relative Radiometric Normalization (RRN), which aims to
align the radiometry of multi-temporal images. Notably, when
the reference image is atmospherically corrected to surface re-
flectance, RRN can effectively align the subject image close to
surface reflectance (Chen et al., 2010).

RRN assumes that a subset of pixels, known as Pseudo-
Invariant Features (PIFs), exhibit stable reflectance character-
istics over time and under varying acquisition conditions. The
concept of PIFs dates back to (Schott et al., 1988), who first
proposed using radiometrically stable pixels as references for
inter-image normalization. Early approaches relied on manu-
ally selected features such as urban surfaces or water, which
are assumed to maintain constant reflectance over time (Yuan
and Elvidge, 1996). To improve automation and robustness,

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-49-2025 | © Author(s) 2025. CC BY 4.0 License. 49



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-7-2025
44th EARSeL Symposium, 26-29 May 2025, Prague, Czech Republic

a method introduced in (Du et al., 2002) based on Principal
Component Analysis (PCA) extracted PIFs in an unsupervised
manner, providing a more data-driven and scalable approach
to PIF detection. Building on these foundations, many stud-
ies have proposed increasingly robust strategies for PIFs selec-
tion, incorporating statistical modeling, spectral similarity, tem-
poral consistency, or spatial homogeneity (Canty et al., 2004,
Moghimi et al., 2021, Xu et al., 2021).

Inspired by these findings, we propose to extend the use of
PIFs by identifying a subset of pixels whose radiometric val-
ues can be reliably used as references for vicarious calibra-
tion. Unlike traditional approaches that require in-situ meas-
urements, we obtain the reference radiometric values directly
from well-calibrated satellite observations, enabling cross-
calibration between satellite and airborne sensors without the
need for ground-based data (Bruegge et al., 2021).

Cross-calibration is traditionally used to ensure radiometric
consistency between different satellite sensors (Claverie et al.,
2018). Our work extends this framework to address the spe-
cific challenges of cross-platform calibration between satellite
and airborne sensors. We tackle several new issues, such as
the more significant spectral band mismatch, spatial resolution
mismatch, and robust selection of reference pixels, which are
especially pronounced between satellite and airborne sensors
compared to inter-satellite calibration, and propose specialized
solutions for each.

3. Radiometric cross-calibration method
3.1 Aerial reflectance retrieval from TOA reflectance

TOA reflectance can be expressed using the following analyt-
ical formula (Vermote et al., 1997b) :

proa(0s,00, 05 — dv) =T} 16 4 (0 )T;,TOA(HS)[pRJrA,TOA
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where 60, and 60, are the viewing and solar zenith angles, and

¢s and ¢, are the corresponding azimuthal angles. prt+ 4,704

denotes the intrinsic reflectance of the molecular and aerosol

layer; T r0a and Tg T0.4 Tepresent the upward and downward
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gaseous transmittance, respectively; 7T, TO 4 and TTO 4 are the
upward and downward atmospheric transmittance; S is the total
spherical atmospheric albedo; and Fj is the extraterrestrial solar
irradiance.

At the airplane altitude z, the reflectance at the sensor level can
be written :
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We can combine equations (1) and (2) into a single expression.
For fixed viewing and solar zenith angles 6, and 65, and for
each wavelength A\, we have:
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The previous equation establishes a linear relationship between
the reflectance at any given altitude and the TOA reflectance
across a continuous spectrum. By calculating the two coeffi-
cients A(\), B()), one can convert the TOA reflectance to the
reflectance at any altitude. However, since multispectral satel-
lite sensors measure the integral of TOA reflectance over sev-
eral spectral bands, we cannot directly discretize the previous
equation. Therefore, we assume that the spectral-dependent
parameters in the previous equation vary smoothly within the
spectral band range. Under this assumption, the coefficients
A(X) and B(\) can be separately integrated over the spectral
bands, yielding scalar values Ay and B, which can then be
used to compute the band reflectance p. a at airplane altitude :

pz.n =~ Arproaa + Ba )
S AN fa(N)dA
Ax = [ Fa(N)dx
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B M e
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where fa()) is the Spectral Response Function (SRF) of the
satellite sensor, and pro 4, its measure of the TOA reflectance
in band A.

3.2 Data reshaping

3.2.1 Spectral band adjustment Due to differences in the
spectral coverage of the SRFs among sensors, Spectral Band
Adjustment (SBA) is required to eliminate systematic errors in
cross-sensor radiometric calibration (Teillet et al., 2007). For
spectrally similar sensors (e.g., Landsat-8 OLI and Sentinel-2
MSI), it is generally sufficient to calculate the Spectral Band
Adjustment Factor (SBAF) (Chander et al., 2013) between their
most spectrally matched bands (e.g., OLI B2 blue band and MSI
B2 blue band) to achieve cross-sensor bandpass adjustment
(Claverie et al., 2018). This approach has also been widely ap-
plied for SBA between heterogeneous sensors, including Land-
sat 7 ETM+ and Terra MODIS (Angal et al., 2013), GaoFen-6
WEFV and Sentinel-2 MSI (Han et al., 2022), as well as between
the aerial photogrammetric sensor DMC and the spaceborne
multispectral sensor MODIS (Harris and Van Niekerk, 2019).

Figure 1 compares the SRFs of the UltraCam sensor and
Sentinel-2 MSI sensor. The UltraCam exhibits significantly
broader spectral coverage than the MSI, with its SRFs spanning
more than two MSI bands. Consequently, a single MSI band
cannot adequately compensate for the radiometric response dif-
ferences between the two sensors. To address this, we first sim-
ulated the band response values for both UltraCam and MSI us-
ing ECOSTRESS hyperspectral reflectance data (Meerdink et
al., 2019). We then derived a linear transformation matrix from
MSI to UltraCam bands using the Non-Negative Least Squares
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(NNLS) method (Bro and De Jong, 1997). Separate transform-
ation matrices were estimated for the S2A and S2B sensors.
Table 1 presents the transformation matrices from the four 10-
meter bands of Sentinel-2 to the four bands of the UltraCam.
Table 2 summarizes the band-specific Root Mean Square Error
(RMSE) of the estimated transformation.

Spectral Response

Wavelength (nm)

Figure 1. SRFs of UltraCam (UC) and Sentinel-2 A/B MSI
bands. UC bands: Blue (B), Green (G), Red (R), and
Near-Infrared (NIR) are represented by solid colored curves.
Sentinel-2 bands: S2A (solid black) and S2B (dashed black)
cover spectral ranges from 400-1000 nm (B1-B9). All SRFs are
normalized to their peak response for comparison.

S2A to UltraCam Transfer Matrix

b 0.9712 0 0 0 B2
G | _ 10.3449 0.6581 0 0 B3
R 0 0.2249 0.7749 0 B4
NIR 0 0 0.2333 0.769| | B8

S2B to UltraCam Transfer Matrix

B 0.9716 0 0 0 B2
G | _ 10.3396 0.6635 0 0 B3
R | 0 0.2241 0.7757 0 B4
NIR 0 0 0.2332 0.7691| [B8

Table 1. Spectral Transfer Matrices for S2A and S2B

B G R NIR
S2A | 0.01749 | 0.00334 | 0.00671 | 0.01356
S2B | 0.01724 | 0.00349 | 0.00686 | 0.01360

Table 2. Transformation RMSE from S2A/S2B to UltraCam
bands

3.2.2 Spatial reshaping In order to create a corresponding
dataset of DN from the aerial images and at-sensor reflectance
estimated from the Sentinel-2 images, it was necessary to de-
grade the spatial resolution of the aerial images from 60 cm to
10 m, matching the spatial resolution of the satellite images. To
achieve this, we used the PSF of Sentinel-2.

Each spectral band of the Sentinel-2 sensor has a correspond-
ing PSF. As described in Section 3.2.1, the SBA from Sentinel-2
bands to UltraCam bands used a transformation matrix to lin-
early combine multiple Sentinel-2 bands. Accordingly, we also
applied this transformation matrix to the PSFs of the Sentinel-
2 bands in order to obtain a synthesized PSF corresponding to
each UltraCam band.

For bands with a 10 m resolution, the PSF is provided by
Sentinel-2 as a 33%33 grid at 2 m resolution, covering a spa-
tial extent of 66 m x 66 m. The PSF follows a Gaussian shape.
We estimated the parameters of the Gaussian function and res-
ampled it to a PSF at 60 cm resolution, resulting in a 110x110
grid to be applied to the aerial images (Figure 2).

Image borders are excluded, and only valid pixels are pro-
cessed.

0

0 5

Figure 2. (Left) S2B B2 band PSF at 2 m resolution, (Right)
Synthesized UltraCam blue band PSF at 60 cm resolution.

3.3 Calibration coefficient determination

The relationship between the DN acquired by the airborne im-
ager and the incoming radiance can be expressed using the ra-
diometric model proposed in (Lei et al., 2022) :

it
DNy = mC’ASALz,A +ea (6)

where ¢t is the exposure time (s), NV is the f-number, L. is the
incoming radiance (W - m™2.um ™ -sr~ 1), C is the radiomet-
ric coefficient constant (count - m*-pm/J), S is the spatial
variation factor and ¢ is the coefficient refers to dark current
noise.

In the case of UltraCam sensor, we can assume :

e spatial variation within images is corrected by a vignetting
calibration (Sx = 1)

e radiometric linearity is guaranteed

e dark current noise is corrected (5 = 0)

The relationship between the at-sensor reflectance and the in-
coming radiance is :

PN = e )
where Fj the extraterrestrial solar irradiance.
The modified radiometric model for calibration is:
DNy = LC’AF07Apz,/\cos(c9s) ®)

4N?

4. Experimentation

First, we applied the radiometric model to all aerial images ac-
quired within 15 minutes before and after the satellite imaging
to minimize differences in solar angles. Aerial images were
downsampled to the spatial resolution of the satellite, while
satellite images were transformed to the aerial at-sensor reflect-
ance (section 3.1, 3.2).

Then we added some criteria to filter PIFs among all elements,
to apply the radiometric model only on elements where the re-
flectance does not change between the aerial and satellite ac-
quisition.
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DN = f(pGfromT04)
for all pixels

DN =C g+ cos(fs) - pz
30000 4 with € estimated with all feature:

25000

20000 4

15000

Elements number

10000

DN airbomne sensor - Green spectral channel

5000

0 2 10
27~ €OS(65) - PerromToA - Green spectral channel

Figure 3. Radiometric coefficient retrieval using full pixels pairs
for green channel

4.1 Cross-calibration using all pixels

For each spectral band, the radiometric coefficient C'x was es-
timated using the Random Sample Consensus (RANSAC) al-
gorithm. To reduce the impact of the hot spot effect, an outlier
filter was applied to remove extreme values. We fit the model
on 80% of the dataset, and evaluate on 20%, randomly chosen.
We computed the coefficient of determination R? and the Mean
Absolute Percentage Error (MAPE) for each band. The results
are presented in Figure 3 and Table 3. We remind that the coef-
ficient of determination R? is defined as :

_ Ssresiduals

R =1
Sstotal

€))

Where SSyesiduals designates the sum of squares residuals and
SStotais the total sum of squares.

Band MAPE in % R? Ca

Blue 13358.53  0.0819  4704.4189
Green 7962.93 0.1349  4544.2405
Red 6874.08 0.3847  4780.4309
Near Infrared 5568.38 0.3774  6590.0969

Table 3. Cross-calibration results using full pixels pairs
4.2 Cross-calibration using PIFs

The results presented in Figure 3 and Table 3 indicate that using
all pixels in the image pairs leads to a large number of outliers.
These outliers are primarily caused by differences in the view-
ing geometry between aerial and satellite images. Aerial im-
ages typically have a wider field of view than satellite sensors.
To mitigate the impact of these differences, we established a set
of criteria for selecting PIFs, and evaluated their effectiveness
through an ablation study and optimized their value by reducing
the residuals in the calibration coefficient estimation.

Each criterion applied to the pixels reduces dratiscally the num-
ber of elements to apply the model to. Since we perform on
aerial images of landscapes, it is not guaranted that for an op-
timized solution that we have enough elements to perform a ro-
bust calibration. In order to make sure we have enough PIFs to

determine the calibration coefficient, we wanted to relax some
criteria and only be restrictive on the most discriminant ones :
we conducted an ablation study to chose which criteria to op-
timize the most.

4.2.1 Criteria to select PIFs
PIFs are as follow :

The criteria used to select

Viewing direction difference. To remove directionnal effects,
we only select pixels with the same viewing angles between aer-
ial and satellite images. The viewing angle comparison is made
using the angular distance between the corresponding viewing
angles. The viewing angles of two images 1 and 2 are defined
with (01, ¢1) and (02, ¢2). The angular distance between these
viewing angles is calculated as follows :

6 =cos " (cos(@l)cos(eg)Jrsm(Gl)sin(@z)cos(quS)) (10)

Geometric difference (edge detection). Since the geometric
registration of aerial and satellite images are not done at the
same resolution and from the same DTM, misregistrations and
misalignments may occur between the two images. To mitigate
the impact of these misregistrations, we favor pixels in homo-
geneous areas by filtering out pixels with large gradient norm.
Edge detection is performed using a simple Sobel filter on the
two dimensional images. The edge strength values are normal-
ized to the range [0, 1].

Change detection. We use the Multivariate Alteration Detec-
tion (MAD) (Nielsen et al., 1998) to detect spectral changes
between two satellite images separated by large time intervals
(> 5 days). This algorithm relies on Canonical Correlation
Analysis (CCA) to transform the multispectral image pair into a
set of mutually uncorrelated difference components. Each com-
ponent forms a change map. A threshold | M AD| was applied
to extract the no change area.

Removal of extreme values. To mitigate the hot spot effect,
we removed extreme pixel values by discarding the top k0w %
and bottom kio., % of the data distribution.

4.2.2 Ablation study To better understand the contribution
of each criterion and to find the most discriminant one to optim-
ize it, we conducted an ablation study, where each parameter
was removed individually, one at a time, based on proposed ini-
tial parameter values. As a measure, we calculate for each cri-
terion the impact of this ablation in Table 4 as the difference of
the R? scores between all criteria with the initialization values
and without the studied criteria.

Ablation Impact = Ri (DNAyfu]], DA]VA’full)) —
A (1
R} (DNA,ablatem DN A,abla[ed))

where the coefficient of determination R% is a mean of each
R? for the aerial spectral channels; full designates the PIFs
filtered using all criteria; and ablated refers to the ones selec-
ted with one criterion omitted.

These results show that the solar angle and the filter of geomet-
ric differences have the most significant impact on the selection,
whereas the change detection mask and the extreme values fil-
ter contribute less. Their ablation impact index is approximately
ten times lower than that of the former two parameters.
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- 1 Reference pixels

0 Mask pixels

Figure 4. Binary masks for pixels of an aerial image (a) Angular
condition; (b) Edges condition; (c) Change detection; (d)
Reference features (intersection of all masks.

Parameter Initial Value Ablation Impact
& Solar Angle 2.5° 0.261
|Grad| Edges 0.5 0.141
|MAD)| 0.5 0.011
kiow Extreme Low 2% 0.004
knign Extreme High 98% 0.012

Table 4. Parameters initial value and ablation study impact

Each of the four previous filters used to select invariant fea-
tures depends on a specific parameter. To optimize the choice
of parameters, we started with empirical values (Table 4). Then,
we optimized each parameter in turn, fixing the others.

4.2.3 Parameter optimization In order to find the optimal
values for each parameter, we performed a semi-empirical op-
timization procedure. In this process, all parameters were fixed
at their initial values except the one under optimization. We ex-
plored all possible values within a predefined interval, which is
determined by the feasible range of the parameter, and calcu-
lated the evaluation criteria at each iteration.

1 _RIQ\ (DNA,W'efaDANA,T‘ef) (12)

As for all pixels, the model is fitted on 80% of the PIFs dataset,
and evaluated on 20% of it.

The optimal value for each parameter is defined as the one that
minimizes the evaluation criterion. After optimizing all para-
meters, we reinitialize the system using the updated values.
This process is repeated iteratively until the variation of para-
meters falls below 5%.

Figure 5 and 6 illustrate the variation of the R? score with re-
spect to the difference of solar angle and edge detection. The
results show that a smaller angular difference leads to a lower
evaluation criterion, indicating improved performance. How-
ever, since multiple masks were overlaid to select PIFs, there
were cases where no valid pixels could be detected in certain

images. When the mask is too restrictive, the system becomes
underconstrained. This is because the radiometric coefficient
is estimated from a small subset of the reference data. It was
therefore necessary to identify the limit where the system di-
verged.

The optimal semi-empirical parameter values used for extract-
ing PIFs are presented in Table 5.

Parameter Inital Value Best Value Max R?
0 Solar Angle 2.5° 1.43° 0.9583
|Grad| Edges 0.5 0.18 0.8809

Table 5. Summary of parameter study results

1— R? score function of solar angular difference

i
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0.14 1 !
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H -—- best: 1.43
- baseline
0.10 S T T t r
2 4 6 8 10

solar angular difference

Figure 5. 1 — R? error function of the angular acquisition
difference between aerial and satellital image

1 - R? score function of geometric difference
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Figure 6. 1 — R? error function of the geometric difference
between aerial and satellital image

Finally we estimated the radiometric coefficient in Equation
8 with a RANSAC algorithm using only the PIFs (Figure 7),
where the parameters ¢, N are provided by the aerial images
metadata and the atmospheric parameter Fp estimated through
6S (Wilson, 2013). The results show a significant improvement,
as shown in Table 6 : the residuals error in percentage is much
smaller when using the PIFs compared to using all pixels.
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Band MAPE in % R? C
Blue 2.14 0.9263  4566.3554

Green 2.67 0.9082 4136.3551
Red 3.98 0.9539  4435.8575

Near Infrared 3.86 0.9516  6590.0969

Table 6. Comparison of calibrated sensors reflectance for PIFs

DN = flprromT0a)

for only pseudo invariant features
25000

DN =€ cos(6s) -z

with C estimated with pseudo invariant features

20000 ) 10!

15000

Elements number

10000

DN airbome sensor - Green spectral channel

5000

0 1 2 3 4 5 6 7 8

77 €OS(65) - prramroa - Green spectral channel

Figure 7. Radiometric coefficient retrieval using pseudo
invariant pixels pairs for green channel

4.3 At-sensor reflectance retrieval

Then with these two coefficients estimated we can calibrate the
sensor. with, for each aerial pixel i :

B DNy,
CA.Foai-

PAi 13)

;ﬁ - cos(0s,:)

where Fj ; is estimated with the 6S code (Vermote et al., 1997b)
and Py6S library (Wilson, 2013). We apply Equation 13 for the
four aerial spectral bands for all aerial images with the same
atmospheric conditions, to calibrate the sensor (Figure 8 as an
example). This amounts to make a correspondence from digital
numbers to reflectance.

5. Conclusion and perspectives

This study proposes an absolute radiometric cross-calibration
method on airborne sensors, providing a reflectance value at the
sensor-level in the viewing direction. Future work will consist
in retrieving ground reflectance, removing the uniform atmo-
spheric effect and the directional effect. Then we will be able
to compute an absolute radiometric error evaluation.

The proposed calibration may be extended in several ways:

1. Improving what we qualify as a pseudo-Lambertian fea-
ture, the way we detect them (using bare ground detec-
tion), other algorithms than MAD.

2. This first calibration is made on a campaign where the aer-
ial images acquired at the almost same time as the satellite
acquisition. Further work will implement the same calib-
ration on a larger dataset, not acquired at the same time

Aerial Ortho-Image
Spectral band Red

025 30000

25000

20000

°
&

Reflectance

15000

Digital Number

10000

5000

0.00 0

Figure 8. Aerial image before and after calibration for the red
aerial spectral channel (input : digital numbers / output :
reflectance)

and compare the quality of the coefficient determination
and calibration.

3. Carrying out the calibration on images from overlapping
aerial acquisitions. Actually, aerial images distant in time
from the reference images used to calculate the coefficient
can be a way to verify the impact of solar angle and other
variations, such as the aerosol optical thickness variation,
testing if it is still valid.
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