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Abstract 

 

In recent years, large language models (LLMs) have revolutionized many aspects of life and work, and their impact is expected to 

continue transforming professional practices in the near future. Artificial intelligence is poised to become a standard tool in our 

workflows. This paper investigates the comprehension and reasoning capabilities of LLMs for boulder detection from high-density 

Lidar data (20 points/m²) and its derivatives, such as DEM, DSM, slope, and roughness, evaluating their potential to achieve reliable 

results. Three LLMs with notable reasoning and coding capabilities—Claude 3.7 Sonnet, Gemini 2.5 Pro, and OpenAI o1—were 

selected for this study. Due to the complexity of working and availability with very high-resolution data for boulder detection, few 

studies have explored this area. As a result, this research highlights the potential of LLMs in innovative applications and underscores 

their role in advancing collaborative research efforts to enhance scientific capabilities. 

 

1. Introduction 

In recent years, Large Language Models (LLMs) have 

demonstrated remarkable capabilities across a wide range of 

tasks, including question answering, summarization, image and 

video generation, and the development of intelligent, code-

based solutions (Li, 2024). This versatility has sparked growing 

interest in exploring their potential across diverse research 

domains. In remote sensing, LLMs have been applied to tasks 

such as image captioning, text-based image generation, text-

based image retrieval (TBIR), visual question answering, scene 

classification, semantic segmentation, and object detection (Li 

et al., 2024). These developments highlight the expanding role 

of LLMs in enhancing remote sensing research and 

applications. 

Beyond traditional multimodal tasks, LLMs also support 

prompt-based class discovery and exhibit strong performance in 

coding-related activities, including code generation, completion, 

and interpretation across multiple programming languages. A 

notable example is Claude 3.7 Sonnet, the latest iteration of 

Anthropic’s LLM (Anthropic, 2025), which introduces a 

“hybrid reasoning” approach. This mechanism enables the 

model to switch between rapid responses and detailed, step-by-

step reasoning, significantly improving its effectiveness in 

solving complex programming and logic problems. 

Boulder detection is relevant across a range of disciplines and 

environmental settings, encompassing both planetary and 

terrestrial contexts. On Earth, boulders provide insights into 

geological processes such as glacial transport, landslides, and 

tsunami deposits. In planetary exploration, boulder detection 

plays a vital role in identifying safe landing sites, enabling 

autonomous navigation of rovers, and interpreting surface 

processes. Boulder distributions provide valuable clues about 

crater formation, erosion, mass-wasting events, and even 

seismic activity, such as moonquakes. 

Boulder studies require data with very high spatial resolution. In 

the literature, high-resolution imagery with a ground sampling 

distance of approximately 25 cm/pixel has been widely used in 

planetary exploration (Rothrock et al., 2016; Palafox et al., 

2017). For terrestrial applications, various high-resolution data 

sources have been employed, including side-scan sonar with 

resolutions of 0.1–0.2 m (Feldens et al., 2019), geophysical 

survey data such as electrical resistivity with resolutions 

ranging from 1 to 5 m (Su et al., 2021; Gomo et al., 2023), topo-

bathymetric Lidar data with point densities between 5 and 20 

points/m² (Hansen et al., 2021, 2022), and aerial orthophotos 

with 30 cm spatial resolution (Jiang et al., 2019). 

Most image-based boulder detection studies are limited to two-

dimensional information, unless stereo or multi-view imagery is 

available. These methods also perform best in open, vegetation-

free areas. Detecting boulders in forested environments remains 

challenging when relying solely on optical imagery. In contrast, 

Lidar, an active remote sensing technology, has the advantage 

of being able to penetrate vegetation canopies and capture 

ground-level features. However, its effectiveness depends on 

the wavelength of the laser system used. 

Topo-bathymetric Lidar typically operates at a wavelength of 

532 nm, which is capable of penetrating clear water and is 

therefore well-suited for mapping riverbeds, coastal zones, and 

shallow aquatic environments. Due to power and atmospheric 

absorption limitations, 532 nm systems are typically used at 

lower altitudes. Topographic Lidar systems, on the other hand, 

commonly operate at 1064 nm. These systems support higher 

power outputs and longer ranges, making them suitable for 

large-scale surveys from airborne or satellite platforms. The 

1064 nm wavelength provides strong returns from dry surfaces 

and offers good ground penetration in vegetated areas, making it 

ideal for mapping boulders, forest structures, buildings, roads, 

and terrain models. 

As Lidar technology has advanced, point cloud densities have 

increased substantially—from approximately 0.5 points/m² in 

the early 2000s, to 5 points/m² in the late 2010s, and up to 20 

points/m² or more in national-scale datasets by the 2020s. 

Despite this progress, research on boulder detection remains 

limited, largely due to the demanding spatial resolution and 

point density requirements. 

In parallel, the emergence of Large Language Models (LLMs) 

in recent years has opened new avenues for data analysis and 

automation in remote sensing. Their potential applications in 

tasks such as code generation, data annotation, multimodal 

analysis, and prompt-driven class discovery are actively being 

explored by the research community.  

This paper explores the novel application of large language 

models (LLMs) for boulder detection from Lidar data, 

addressing a gap in current research. In this study, two prompts 

were designed for the latest LLMs: Claude 3.7, Gemini 2.5, and 

ChatGPT 4o to test its intelligence. The first set of Prompts 

defined available datasets and the outputs. The algorithms are 

fully designed by the LLMs. In the second set of Prompts, we 

provided the detailed steps of the algorithm that we designed. 

By evaluating the potentials of different LLMs for this 
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challenging task, it offers a fresh perspective on leveraging 

LLMs in geospatial analysis despite their reliance on existing 

knowledge. 

. 

2. Related work 

The detection and classification of boulders have progressed 

from manual rock count methods to advanced machine learning 

pipelines incorporating semantic segmentation, object detection, 

and 3D geophysical modelling. This evolution reflects the 

increasing need for automated and scalable approaches across 

both planetary and terrestrial domains. 

 

•  Boulder Detection and Characterization on Planetary Surfaces 

Early investigations into Martian surface characterization laid 

the groundwork for assessing landing site safety and 

understanding surface morphology. For instance, Golombek et 

al. (2008) analysed rock size-frequency distributions at the 

Phoenix landing site using analogue data from terrestrial 

environments, offering insights into Martian surface processes 

through comparative geology. 

Subsequent research has increasingly leveraged automated 

methods. Rothrock et al. (2016) introduced SPOC, a deep 

learning-based terrain classifier capable of supporting real-time 

rover navigation on Mars. Palafox et al. (2017) applied 

convolutional neural networks (CNNs) to identify geological 

landforms, demonstrating the utility of deep learning in 

reducing manual annotation. 

Recent advancements have further emphasized automation at 

scale. Hood et al. (2022) developed the Martian Boulder 

Automatic Recognition System (MBARS), integrating image 

processing and pattern recognition for large-scale boulder field 

extraction. Similarly, Zhu et al. (2021) adapted Earth-based 

object detection models such as YOLOv5—augmented with 

attention mechanisms—for boulder detection in planetary 

imagery, confirming the adaptability of these frameworks to 

extraterrestrial contexts. 

The applicability of deep learning to high-resolution imagery 

has been further demonstrated by Prieur et al. (2023), who 

extracted boulders from satellite data, underscoring the 

feasibility of large-scale planetary surface analysis. In addition, 

studies by Nagle-McNaughton et al. (2019) and Bickel et al. 

(2019) exemplify hybrid approaches combining manual and 

automated techniques to investigate impact-driven boulder 

fields and rockfalls across Mars and the Moon. 

 

• Earth-Based Analogues and Geophysical Methods 

Terrestrial environments serve as essential analogues for 

planetary research. Feldens et al. (2019) employed neural 

networks to detect boulders in side-scan sonar imagery of 

marine settings, while Hansen et al. (2021) utilized topo-

bathymetric Lidar to classify boulders in coastal areas. 

In the context of civil engineering and infrastructure, boulder 

detection is critical for mitigating risks in tunnelling operations. 

Yang et al. (2024) highlighted the impact of undetected 

boulders during super-large diameter shield tunnelling, 

advocating for robust pre-construction geophysical surveys. Su 

et al. (2021) addressed similar challenges in urban subway 

construction by integrating 3D resistivity tomography with AI-

driven data fusion techniques. Furthermore, Gomo et al. (2023) 

proposed a multi-sensor geophysical workflow tailored for 

boulder delineation in mining applications, demonstrating the 

value of integrated approaches for subsurface imaging. 

 

•  Machine Learning and Semantic Segmentation Techniques 

Recent developments in deep learning have enabled precise 

pixel-level classification of boulders and rocks in complex 

terrains. Jiang et al. (2019) applied semantic segmentation to 

extract geological features from heterogeneous natural 

landscapes. Similarly, Maharaja et al. (n.d.) introduced a 

transfer learning framework for detecting boulders and craters, 

illustrating the benefits of leveraging pre-trained models for 

cross-domain generalization. 

Ensemble learning methods have also been explored. Hansen et 

al. (2021, 2022) implemented a random forest classifier using 

Lidar-derived features for boulder classification in coastal 

environments, demonstrating robust performance in noisy, 

unstructured data. 

 

•  Terrain Classification and Autonomous Navigation 

Beyond boulder detection, terrain classification is central to 

autonomous navigation in unstructured environments. Birk et al. 

(2008) provided a comprehensive review of terrain 

classification methods for planetary rovers and autonomous 

systems, highlighting the intersection of robotics, computer 

vision, and safety-critical operations. Building upon this 

foundation, Rothrock et al. (2016) applied deep learning in the 

SPOC framework to support real-time, autonomous terrain 

assessment—critical for planetary exploration. 

 

3. Materials 

The Lidar dataset was acquired in 2023 by the National Land 

Survey of Finland using a Leica TerrainMapper-2 system over 

the Heinävesi region, Finland. The survey was conducted at a 

flight altitude of 900 meters above mean ground level, with an 

airspeed of 130 knots. The laser scanner operated at a pulse 

repetition frequency of 1700 Hz, resulting in an average point 

density of 20 points/m². The maximum point spacing was 0.45 

meters in the flight direction and 0.2 meters in the direction of 

the mirror movement. Other available data include Lidar 

derivatives: Lidar-DTM, Lidar-DSM, Lidar-Slope, and Lidar-

Roughness. The Lidar data were classified into ground, low 

vegetation, and high vegetation using Terrascan software 

(Terrasolid, Finland). Two sets of test data (mapsheets: 

N5243G1_6 and N5233E3_5) from different environment were 

selected. Fig. 1 shows the example of 20 points/m² Lidar point 

cloud with undulating terrain and cliffs, predominantly covered 

by vegetation. Each set covers an area of 1 km². As shown in 

the right image of Fig. 1, stones are on top of undulating terrain, 

highlighting the complexity of the detection task in such 

environment. 

. 
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Figure 1. Example of test data.  

Upper layer from mapsheet: N5243G1_6, lower layer from mapsheet: N5243G 

 

 

Reference data were from Finnish National topographic 

database, in vector format with a shape file (Fig. 2).  

The reference data was symbol-based indicator with evenly 

distributed boulder symbols. It demonstrated that there were 

boulders around the place. However, boulders can be identified 

visually from DEM data. 

 

 
 

Figure 2. Boulder reference data from national topographic 

database. 

 

 

 3. LLMs 

In the field of AI, a system’s capacity for “reasoning” refers to 

more than just classification and prediction. It refers to its 

ability to analyse information, draw logical conclusions, 

incorporate context and nuance, and make informed decisions 

(Google Deep Mind). In this test, three recent published LLMs 

with powerful reasoning capacity were selected to explore their 

capacities for boulder detection. They are Claude 3.7 Sonnet, 

Gemini 2.5, and OpenAI o1 models. 

 

3.1.1 Claude 3.7 Sonnet (Anthropic, USA) 

 

Claude 3.7 Sonnet, released by Anthropic in February 2025, is 

an advanced hybrid reasoning AI model that integrates rapid  

 

response generation with extended, step-by-step reasoning 

capabilities. This flexibility allows users to tailor the model's 

performance to a wide range of tasks, from quick information 

retrieval to complex problem-solving scenarios  (Anthropic, 

2025). 

Claude 3.7 Sonnet is state-of-the-art for agentic coding, and can 

complete tasks across the entire software development 

lifecycle—from initial planning to bug fixes, maintenance to 

large refactors. It offers strong performance in both planning 

and solving for complex coding tasks, making it an ideal choice 

to power end-to-end software development processes. In 

benchmarks, Claude 3.7 Sonnet has demonstrated 

improvements over Claude 3 Opus in coding-related tasks. For 

instance, it achieved a 96.2% score on the MATH benchmark, 

compared to Claude 3 Opus's 60.1%. Additionally, Claude 3.7 

Sonnet has shown strong performance in software engineering 

tasks, outperforming models like GPT-4o and o1 in certain 

areas. It is accessible through various platforms (Anthropic, 

2025). 

 

3.1.2 Gemini 2.5 (Google, USA) 

 

Google's Gemini 2.5, introduced in March 2025, represents a 

significant advancement in artificial intelligence, emphasizing 

enhanced reasoning and multimodal processing capabilities. 

Gemini 2.5 models are designed to reason through their 

thoughts before responding, resulting in improved performance 

and accuracy. The model can interpret various input types, 

including text, audio, images, video, and code, providing 

versatile and comprehensive responses. Gemini 2.5 Pro excels 

in generating visually compelling web applications and supports 

agentic programming, facilitating complex coding tasks with 

greater efficiency (Google DeepMind, 2025). 

 

3.1.3 OpenAI o1 (OpenAI, USA) 

 

OpenAI o1 is a reflective generative pre-trained transformer 

(GPT). A preview of o1 was released by OpenAI on September 

12, 2024. o1 spends time "thinking" before it answers, making it 

Lidar data Lidar-ground Lidar DTM 

Lidar hillshade 
Lidar slope Lidar roughness 
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better at complex reasoning tasks, science and programming 

than GPT-4o (Metz, 2024). The full version was released to 

ChatGPT users on December 5, 2024. (OpenAI, 2025). 

In tests, the o1 model has shown remarkable performance, 

surpassing human PhD-level accuracy on benchmarks in 

physics, chemistry, and biology. It also ranks in the 89th 

percentile on competitive programming questions. The o1 

model is particularly effective for generating and debugging 

complex code efficiently. The o1 model has improved safety 

features, including better adherence to safety rules and 

guidelines1. It scored significantly higher on safety tests 

compared to previous models (OpenAI, 2025). 

 

    4. Methods 

 

 

 

 

 

 

 

 

 

 

Figure 3. Workflow 

 

 In this study, a series of prompts were carefully developed to 

assess the performance of Large Language Models (LLMs) in 

the task of boulder detection. The initial set of prompts provided 

detailed information regarding the available datasets, their 

respective formats, and the expected output structure. 

Specifically, these prompts outlined the information to be 

included in the outputs and the required formats for the 

generated files. Following this, the LLMs were tasked with 

autonomously designing algorithms based on their inherent 

knowledge, subsequently generating Python code for the task.  

The prompts were inputted into three distinct LLMs: Claude 3.7 

Sonnet, Gemini 2.5, and OpenAI’s GPT-4 (o1 model). The code 

produced by each model was then copied into the PyCharm 

Integrated Development Environment (IDE) and executed. The 

results of the execution were stored in shapefiles in a local 

directory for subsequent evaluation. The workflow, from input 

prompts to output generation, is illustrated in Fig.3. 

This experiment aims to explore the capacity of LLMs to 

interpret dataset structures and apply existing knowledge to 

develop novel algorithms for the boulder detection task. To 

optimize the LLMs’ performance, iterative testing and 

refinement of the prompts were necessary, ensuring that each 

prompt was as detailed and clear as possible. The insights and 

considerations drawn from our experience were helpful in 

shaping effective prompt design, highlighting the importance of 

precise and well-informed input for maximizing model 

performance. The following shows the final Prompt we 

designed: 

 

Prompt: You act as a scientist to solve problems: you have a set 

of Lidar point cloud with point density of 20 points per square 

meter in .laz format. A laz file contains x, y, z, classification, 

intensity, number of echoes, and echo number for each point.  

Each point cloud file covers an area of one square kilometer. 

The number of points in one file is about 80M. The file size is 

between 50-500 MB. The point cloud has been classified into 

ground (in class 2), low vegetation (in class 3), and high 

vegetation (in class 4) using Terrascan software. Besides, other 

available data with 25cm spatial resolution include Lidar DEM, 

Lidar DSM, Lidar Slope, Lidar Roughness, and Lidar Hillshade, 

covering the same area as the Lidar point cloud. The above 

Lidar products were derived by TerraScan. The test area covers 

lots of vegetation. It means that some potential boulder points 

under vegetation might be in the last echoes. Besides, according 

to the articles (Hansen et al., 2021, 2022), curvature features 

might be useful. Please consider: “Local height differences in 

ground points might contain boulders, but some of them might 

be cliffs, not boulders. Lidar DSM might be useful for boulders 

in open areas, but they might not be useful in vegetation areas if 

boulders are under vegetation”. Now you detect Boulders from 

above available data with each dimension greater than 0.5m.  

Can you provide an algorithm using Python to detect the 

Boulders with good accuracy and high efficiency? The result 

should be saved in ‘.shape’ file. All data is in coordinate 

projection system: EPSG:3067. A figure containing Lidar 

ground points and detected boulders should be plotted.  

 

 

 

 

 

 

 

 

 

 

 

In the figure, the detected boulders should be marked as a red 

circle. 

 

5.  Results and evaluation 

 

In the experiment, datasets from two areas (N5243G1_6 and 

N5243G2_4) were tested with prompt for Claude 3.7 Sonnet, 

Gemini 2.5 Pro, and OpenAI o1 respectively. The algorithms 

were suggested by LLMs in Table 1. 

 

In the Table, Claude 3.7 Sonnet utilized all datasets except 

Lidar hillshade. First the local height differences were 

estimated. Then by calculating the local normal to detect the 

height variation of the surfaces. The slopes and curvatures as 

important features were calculated to find potential boulders. 

DBSCAN was used for clustering the points to boulders. 

Gemini 2.5 pro was accessible in Google AI Studio. It 

employed all datasets except Lidar DSM and Lidar hillshade. 

First it calculated the curvatures from the Lidar DEM. Then it 

produced a smoothed DEM from the original Lidar DEM and 

estimated the height differences between them. The candidates 

points were extracted according to the multiple features: slope, 

curvature, roughness, and local height differences etc.. It also 

mentioned that roughness is optional because some boulder 

surfaces might have relative low roughness. Connected 

components analysis  was used to group the candidates as 

boulder objects. The method considered the rejection of cliffs 

by using the aspect ratio to define the shape of object. OpenAI 

o1 model proposed a simple solution which only used the Lidar 

DEM. It ignored other datasets and suggestions given by the 

prompts. The idea from the algorithm was that a smoothed 

DEM was produced from the original DEM. The relative height 

differences were estimated. By analyzing the object shape using 

aspect ratio, the potential boulders were detected. By running 

the LLMs suggested python codes in PyCharm, these methods 

were tested. Table 2 showed the analysis of the solution given 

by the LLMs. 

 

 

 

LLM1: Claude 3.7 Sonnet  

 LLM2: Gemini 2.5 

 

 
LLM3: OpenAI o1 

 

Algorithm1 

Algorithm2 

Algorithm3 

Prompt 
Datasets 

PyCharm 

 

Output 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-7-2025 
44th EARSeL Symposium, 26–29 May 2025, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-57-2025 | © Author(s) 2025. CC BY 4.0 License.

 
60



 

 

 

 

 

 

 

 

 

 

Gemini 2.5 + Prompt 

 

Proposed Algorithm Strategy 

The core idea is to use the high-resolution DEM and its derivatives (Slope, Roughness, Curvature) to find candidate boulder 

locations, then filter these candidates based on size, height, and shape characteristics. We will primarily work with the raster data 

for efficiency. 

Algorithm Steps 

1. Setup: Import libraries, define constants (paths, thresholds, CRS). 

2. Calculate Curvature: Compute a curvature raster from the DEM. A simple approach is using the Laplacian, or more 

sophisticated methods involving Gaussian derivatives (Hessian matrix). A positive curvature indicates convex features. 

3. Calculate Relative Height (Detrended DEM): Create a raster representing how much higher each pixel is compared to 

its local surroundings. This can be done by subtracting a smoothed version of the DEM (e.g., Gaussian blur or mean 

filter) from the original DEM. Boulders will appear as positive "bumps" in this relative height raster. 

4. Identify Candidate Pixels: Threshold the derived rasters to find pixels likely belonging to boulders: 

o Relative Height > min_relative_height (e.g., 0.4m - slightly less than 0.5m to account for smoothing) 

o Curvature > min_curvature (positive value indicating convexity) 

o Slope > min_slope_on_boulder (e.g., 15-20 degrees - boulders aren't flat) 

o Roughness > min_roughness (optional, can help but might filter out smoother boulders) 

Combine these conditions using logical AND. 

5. Segment Candidates: Group the contiguous candidate pixels into individual objects using connected components 

analysis (e.g., scipy.ndimage.label). 

6. Filter Objects: Analyze each segmented object (potential boulder) based on geometric criteria: 

o Minimum Height: Calculate the actual height difference within the object's footprint on the original DEM 

(max(DEM) - min(DEM) within the object). This must be > 0.5m. 

o Minimum Size/Dimensions: Calculate the bounding box or area of the object. Ensure its dimensions are 

plausible for a boulder > 0.5m (e.g., area > ~0.5 * 0.5 m², considering pixel size; check bounding box 

dimensions). A minimum pixel count per object is also essential (e.g., at least 3-4 pixels for a 0.5m object at 

25cm resolution). 

o Maximum Size/Shape (Cliff Rejection): Filter out very large or elongated objects that are more likely cliffs 

or other terrain features. Calculate the object's aspect ratio or major/minor axis lengths. Reject objects longer 

than a certain threshold (e.g., 10-20 meters). 

o Context Check (Optional): Check the average slope around the object's boundary. If the surrounding slope 

remains high, it might be part of a larger cliff face. 

7. Extract Boulder Locations: For each valid boulder object, determine a representative point (e.g., the centroid or the 

pixel with the maximum relative height within the object). 

8. Create Shapefile: Generate a GeoDataFrame (using GeoPandas) containing the points representing the detected 

boulders. Include attributes like estimated height or size if desired. Save as a shapefile with EPSG:3067. 

9. Visualization: 

o Load a sample of the ground points (Class 2) from the LAZ file to avoid memory issues. 

o Load the detected boulder locations from the shapefile. 

o Create a 2D plot showing the ground points and overlaying the detected boulders as red circles. 

 

OpenAI o1 + Prompt 

Explanation: 

1. Loading the DEM: The DEM (with a 25 cm resolution) is loaded using rasterio. In our case, it represents the ground 

surface as derived by TerraScan. 

2. Baseline and Height Difference: A morphological opening (using a window of 9×9 pixels by default) is applied to the 

DEM. This “opens” the surface—smoothing out small structures. Subtracting this smoothed surface from the original 

DEM results in a map of local height differences (which acts as a proxy for curvature and protrusions, as suggested by 

Hansen et al. ). 

3. Thresholding and Labeling: A simple threshold (0.2 m) isolates the “bumps” that could be boulders. We then apply 

connected-component labeling to group neighboring candidate pixels. Each group (or region) is later filtered to ensure 

that both its width and height (converted from pixels to meters) are at least 0.5 m. 

4. Filtering by Shape: To avoid selecting elongated features (like sections of a cliff), we compute an aspect ratio for each 

candidate; regions with a high aspect ratio (beyond a chosen threshold) are discarded. 

5. Saving and Plotting: The centroids of the remaining candidate regions are saved into a shapefile (with EPSG:3067) 

using GeoPandas. Finally, a plot is produced: the DEM is shown as a “terrain” background and the detected boulders are 

overlaid as red circles. 
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Table 1.  The algorithms produced by the LLMs 

 

 

Table 2. Analysis of LLMs’ suggested algorithms 

 

From the results, Claude 3.7 Sonnet performed the best. There 

were no bugs in the code. It went smoothly. The runtime was a 

little long, about five hours for data processing, including 78M 

Lidar points. The code from Gemini 2.5 Pro produced bugs. For 

the first run, it went ‘out of memory’. Then it suggested a 

solution to handle the bugs. Other problem came out. After a 

few round improvements by Gemini, finally it worked, but the 

runtime was rather long, over ten hours. From the OpenAI o1 

model, the runtime was less than one minute. But the result was 

poor. Only one boulder was detected in one dataset.  

The advantages of utilizing the LLMs lie in the possibilities of 

continuous improvement by iterating chat with them. The LLMs 

work like team members. Various solutions can be tested, and 

problems can be solved with their help. Fig. 4 shows the result 

from Claude 3.7 Sonnet model. It can be seen that the boulders 

(red dots) were well detected when overlapping with the 

LidarDEM. The reference data from the national topographic 

database were symbols evenly distributed in the area when the 

boulders presented. It doesn’t represent the real location of the 

boulders. However, from the visual inspection, the potential of 

LLMs is evidenced.  

 

 

 

Claude 3.7 Sonnet + prompt 

 

Algorithm Explanation 

The boulder detection algorithm I've developed uses a multi-feature approach that integrates several data sources to improve 

detection accuracy while maintaining computational efficiency: 

1. Data Loading & Preprocessing 

• Processes LAZ point cloud data to extract ground points (class 2) 

• Loads complementary raster data (DEM, DSM, slope, roughness) 

• Computes derived features like height differences and curvature 

2. Candidate Point Selection 

• Identifies initial boulder candidates using local height differences 

• Uses spatial indexing (KDTree) for efficient neighborhood searches 

• Processes data in chunks to maintain memory efficiency with large files 

3. Feature-Based Classification 

• Calculates local normals to identify surface orientation 

• Measures local height variations, slopes, and curvatures 

• Differentiates boulders from cliffs using multiple criteria:  

• Height differences > 0.5m but < 5.0m (to avoid cliffs) 

• High local curvature (characteristic of boulder surfaces) 

• Moderate slopes < 65° (to avoid cliff faces) 

4. Boulder Delineation 

• Uses DBSCAN clustering to group nearby points into individual boulders 

• Calculates boulder properties (height, width, length) 

• Filters by minimum size requirement (>0.5m in each dimension) 

5. Output & Visualization 

• Saves results as shapefile with boulder properties in EPSG:3067 projection 

• Creates visualization with ground points and detected boulders as red circles 

                  LLMs 

Items of analysis 

Claude 3.7 Sonnet Gemini 2.5 Pro OpenAI o1 

Bugs or error 

messages 

No First try: Out of memory 

Second try: run time 10h+ 

No 

 

Use of provided 

data 

All data except Lidar-hillshade All data except Lidar-DSM and Lidar-

hillshade 

Only Lidar DEM 

 

Used  Features 

local height differences, local 

normal, high variation, slopes, 

curvatures, DBSCAN 

curvature, DEM smoothing, relative height, 

slope, roughness, segment candidates,  local 

height differences,  connected components 

analysis,  aspect ratio   

DEM smoothing, local 

height differences,  

aspect ratio   

Understanding of 

datasets 

 

Very good 

 

Good 

 

Fine 

Efficiency Relatively good Not considered Very fast 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-7-2025 
44th EARSeL Symposium, 26–29 May 2025, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-57-2025 | © Author(s) 2025. CC BY 4.0 License.

 
62



 

 

 
 

Figure 4. The results from Claude 3.7 Sonnet. 

The red and magenta dots are the boulders detected by the LLMs. The green dots were the reference data with evenly distributed 

boulder symbols. The gray images are the DEMs. The color image shows the Lidar ground points. The color was determined by the 

heights of the terrain. 

 

6. Discussion 

 

 

In this experiment, we explored three LLMs with their 

capacities of the utilization of knowledge, scenario 

understanding, and reasoning regarding boulder detection. 

There was limited information from literature about boulder 

detection from the earth surfaces, especially regarding the use of 

Lidar data due to the demanding in high point density. In those 

three LLMs, each of them produced algorithm from different 

perspectives and had ‘own thinking’. Claude 3.7 Sonnet model 

tried to utilize all given information in Lidar data and their 

products (slope, roughness, and hillshade). Table 3 addressed 

the insights of the Claude 3.7 Sonnet model: what have been 

considered and what can be improved further. Similarly, 

Gemini 2.5 Pro model exploited almost all data except 

LidarDSM. Table 4 presented the explanation and key 

consideration from Gemini 2.5 Pro model. OpenAI o1 has a 

strong personality that it only picked Lidar DEM as data for 

further analysis. The notes from OpenAI o1 model can be found 

from Table 5.  In this study, the reference data  was imperfect.    

In the future, a field survey is needed to collect  reliable 

reference data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Consideration of Claude 3.7 Sonnet 

 

 

 

 

 

Scientific Considerations:  Claude 3.7 Sonnet 

The algorithm addresses specific challenges mentioned in your requirements: 

1. Vegetation cover: Leverages last echo information to detect boulders under vegetation 

2. Boulder vs. cliff differentiation: Uses multiple features (height, slope, curvature) to distinguish between these 

features 

3. Size filtering: Ensures detected boulders meet the >0.5m dimension requirement 

4. Computational efficiency: Employs spatial indexing and chunk processing for handling large datasets 

To improve results further, we could: 

• Adjust the parameters (curvature_threshold, boulder_cluster_eps, etc.) based on your specific terrain 

• Add validation using a sample of known boulder locations 

• Explore additional features like intensity values or machine learning for classification 
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Table 4. Explanation from Gemini 2.5 Pro model 

 

 
Table 5. Notes from OpenAI o1 model 

 

 

7. Conclusion 

 

 

This study examined the comprehension and reasoning abilities 

of large language models (LLMs) for boulder detection from 

20p/m² Lidar data and its derivatives. Three LLMs—Claude 3.7 

Sonnet, Gemini 2.5 Pro, and OpenAI o1—were selected for the 

experiment. A series of prompts, including detailed data 

descriptions, insights from human expertise, and clear task 

objectives, were designed to guide the models. Each LLM 

generated a set of algorithms and Python code for the task. 

Among them, Claude 3.7 Sonnet outperformed the others, 

demonstrating superior dataset understanding, strong reasoning 

capabilities, and careful attention to the prompt's content. 

Gemini 2.5 Pro also exhibited strong reasoning skills, though its 

algorithm failed to account for computing efficiency, resulting 

in an "out of memory" error. After adjustments, the runtime for 
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Gemini’s algorithm on 1 km² of Lidar data was over 10 hours, compared to just 5 hours for Claude's solution. The OpenAI o1  

model provided a simpler solution, but it overlooked critical 

data and ignored human-provided hints, relying solely on Lidar 

DEM for boulder detection. Consequently, its algorithm 

produced suboptimal results with a runtime of only one minute. 

Overall, Claude 3.7 Sonnet showed considerable potential for 

future research applications, proving capable of functioning as 

an effective tool to augment scientific research efforts. 
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