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Abstract

Floods are devastating hazards that cause human displacement, loss of life and damage of properties. Getting accurate information
about the extent and severity of floods is essential for planning proper humanitarian emergency assistance. Though integrating Earth
observation with deep learning models supports rapid information extraction, mapping floods accurately is still a challenging task,
because of the necessity of extensive, representative datasets with high quality labels to train models. While there exist some datasets
that focus on providing satellite imagery for flood events, these are typically limited to data either from few floods or for specific
regions. Moreover, the majority of these datasets provide images captured only during the flood event, which hinders methods that
rely on detecting change. Therefore, in this work, we created a global dataset for mapping flood extent (SentForFlood), including
images before and during flood from Sentinel-1 and -2, terrain elevation and slope, Land Use and Land Cover (LULC), and flood
masks. The samples included in each flood event were selected by analysts considering quality of flood mask and completeness of
the available satellite imagery. The dataset incorporated data from over 350 distinct flood events, encompassing all continents except
Antarctica. The dataset was tested by training a convolutional neural network for detecting floods without permanent water bodies
and the results are discussed. We expect that the dataset will facilitate the development of robust, transferable models for automatic
flood mapping, thereby contributing to the humanitarian emergency response in crisis situations. Dataset download instructions, as
well as code for easy usage is available at https://github.com/menimato/SenForFlood.

1. Introduction

Advances in remote sensing have led to an immense availabil-
ity of Earth observation (EO) imagery with a range of sensing
modality, fine spatio-temporal granularity and scope. In the era
of big geodata, machine learning has emerged as an important
tool to efficiently extract information from Earth observation.
In particular, deep learning models have been increasingly em-
ployed, often with superior accuracy. However, training such
models is challenging and requires a large amount of data (Ad-
egun et al., 2023).

In this context, open-access datasets are important tools to en-
able rapid model workflow prototyping, training, evaluation and
inference. Open datasets help to foster collaboration and innov-
ation in the Earth observation and machine learning communit-
ies. Applications such as flood mapping can greatly benefit
from the widespread use of these datasets, as flood mapping
is considered to be affected by the small data problem due to
floods rarity and brevity, resulting in fewer available data and
reference (Amitrano et al., 2024).

In this regard, there are a few openly available flood datasets.
Sen1Floods11 (Bonafilia et al., 2020) includes data from 11
flood events and about 90% of the labels are automatically gen-
erated. Other recent flood dataset is S1S2-Water (Wieland et
al., 2024), that compiles data from Sentinel-1 and -2 focus-
ing on water bodies and some instances of seasonal floods,
providing each sample aligned with the Sentinel-2 tiling sys-
tem (100 km × 100 km images). SEN12-Flood (Rambour et
al., 2020) is another high quality dataset that instead of provid-
ing images only during the flood event, provides entire im-
age time series for these events. It includes radar and optical
samples, allowing the training of robust multi-source models,
but on the other hand, it includes only a few floods limited to

parts of Africa, the Middle East, and Australia. An important
data source is the Copernicus Emergency Management Service
(CEMS) (Salamon et al., 2021), which provides flood masks
via an ensemble of three independent well-evaluated methods
working on Sentinel-1 image time series, but is not provided
directly as a dataset for easy training of deep learning mod-
els. Other important datasets are described in (Amitrano et al.,
2024), most of which provide data at a 10m spatial resolution
(from Sentinel-1 and -2) and other coarser spatial resolution or-
bital platforms.

A common shortcoming of existing flood datasets is that they
only provide data for the time during the flood, making them
difficult to use for methods that compare images pre-event and
during flood to detect changes in water extent or flooded sur-
faces. In addition, most datasets contain only a few flood
events, resulting in a lack of geographic and temporal represent-
ation. This imparts high spatial autocorrelation to the samples,
which can lead to overfitting and poor model spatio-temporal
transferability, constraining the development of robust and scal-
able flood extraction models. To improve these aspects, we de-
veloped a new dataset with a wide geographic coverage and
temporal span, with the inclusion of pairs of optical and SAR
images before and during the flood with other thematic layers.

2. Dataset Design

The process for designing and creating the dataset will be de-
scribed in the following sections.

2.1 Flood Data and Sample Selection

Flood occurrence data is produced by many different flood
monitoring systems. For indicating where and when floods
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occurred around the globe, we used the database made avail-
able by the Dirtmouth Flood Observatory (DFO) (Brakenridge,
2024) and CEMS (Salamon et al., 2021). In the DFO data-
base, flood events are comprised of the region affected and the
approximated start and end times. The database documents
flood occurrence using information gathered from news, in-
strumental, governmental, and remote sensing sources. On the
other hand, some data in CEMS is based on user activation,
where mapping requests for a specific flood event can be sub-
mitted through a dedicated system. In the construction of our
dataset, we used data from flood-related activations since open,
high-quality flood mask products could be obtained from previ-
ous activations.

Combining information from DFO and CEMS regarding the oc-
currence time and duration, geographic location and extent of
flooded areas, we created a pipeline to hand-select appropriate
samples to include in the dataset. First, images from Sentinel-
1 and Sentinel-2 archives pre- and post-event were obtained to
be shown in a Geographical Information System (GIS). Then,
automatic flood masks were created based on the difference
between pre- and during flood VH images. Then, a grid with
the size of the desired samples were overlaid on the images and
analysts were responsible to hand select which samples of the
grid would be included in the final dataset, considering the qual-
ity of flood mask and availability of satellite imagery. This stage
was devised in order to overcome possible inconsistencies in
the flood databases used as reference for the location and time
of flood, as well as data related issues, improving the overall
quality of the dataset.

2.2 Data Retrieval and Dataset Characteristics

With a collection of intended sample locations and flood occur-
rence times, we started the procedure of data retrieval and pro-
cessing. The Sentinel-1 and -2 image archives were searched
for images that matched the flood events geographically and
temporally. Each sample has two reference periods for the satel-
lite imagery, one before and one during the flood. Therefore,
images were then separated into two groups: before and during
flood. These groups of images were then ordered by their tem-
poral proximity to the beginning of their respective time inter-
vals, and then mosaicked and downloaded matching the extent
of each sample patch. During this process, terrain, land use and
cover (LULC) and flood mask data were also obtained.

Regarding the data layers included for each sample in the data-
set, Table 1 and Figure 1 depict the seven image / information
layers that compose a single sample patch. Synthetic Aper-
ture Radar (SAR) and optical images were obtained before and
during the flood event. The included radar data was obtained
from Sentinel-1 Ground Range Detected (GRD) images and
is composed of VV and VH polarizations, as well as the ratio
V V/V H . Optical data was included from Sentinel-2 archives,
available in the bands 2, 3, 4, 8, 11, and 12 top-of-atmosphere
reflectance (Level-1C). Due to the shortcomings often found
in the Sentinel-2 cloud masks generated for Level-1C products
(Skakun et al., 2022), we included the cloud mask information
from Cloud Score+ (V1) (Pasquarella et al., 2023). Moreover,
for radar and optical data, a band indicating the sensing date
of each pixel is available as well because different dates could
have been mosaicked together to compose one single sample at
the border of Sentinel’s acquisition strips.

As indicated in section 2.1, the location of the samples was
defined manually for each flood event considering the satel-

Type Reference Time Bands
Sentinel-1 Before Flood VV

VH
VV/VH
Pixel Date

Sentinel-1 During Flood

Sentinel-2 Before Flood Band 2
Band 3
Band 4
Band 8
Band 11
Band 12
Cloud Score+
Pixel Date

Sentinel-2 During Flood

Flood Mask During Flood Computed/CEMS
Copernicus
DEM GLO-30

2010 - 2015 Elevation
Terrain Slope

ESA World
Cover V200

2021 LULC

Table 1. Components of a sample in the dataset.

Figure 1. Images that compose a single sample in the dataset.
Sentinel-1 image before (a) and during (b) flood; Sentinel-2

image before (c) and during (d) flood; Computed flood extent
with band differencing (e); Terrain elevation (f); and LULC (g).

lite data availability and the quality of the flood mask at hand,
which was created in one of the following ways:

1. Automatically generated via thresholding of Sentinel-1
VH difference between images pre- and during flood, re-
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Figure 2. Density of samples (512× 512 pixels) in the dataset per geographical location.

fined with terrain slope and permanent water bodies data;
and

2. Directly from manually checked, high quality flood masks
obtained from previous flood mapping CEMS activations;

Topography data from the Copernicus DEM GLO-30 (Coperni-
cus DEM, 2022) has been included in the form of elevation and
terrain slope. Moreover, LULC information obtained from ESA
World Cover V2 (Zanaga et al., 2022) was added to the dataset.
As its reference time is the year 2021, the land cover informa-
tion may not be a highly accurate representation of LULC dur-
ing the flood event. We assume that major land cover and use
classes would remain stable that this layer could serve as addi-
tional contextual information to detect flood events.

Overall, the dataset created includes data for more than 350
flood events that happened from the year 2016 to 2025. It
contains 40,770 georeferenced samples with dimensions of
512 × 512 pixels, that because of the seven information layers
amount to a total of 285,390 image patches.

The number of samples with precise flood masks is smaller than
samples with automatically generated ones. More specifically,
39,431 samples obtained from DFO documented floods have
automatic flood masks, while 1,339 sample patches had their
flood mask obtained directly through CEMS’s flood activation
archives. A map indicated in Figure 2 shows the geographic
distribution and density of included samples. The samples are
globally distributed across all continents where regions with
frequent flood incidence exhibit dense sample inclusion. Ac-
cordingly, high density sample regions are falling in Asia that
includes countries like Bangladesh, India, and Myanmar, where
floods happen with a high periodicity. In South America, in
comparison to other regions in the continent, the basin of the
Uruguay river stands out with a high density of samples. It
should be noted that the density of samples in each region has
a direct relation with the floods recorded in DFO and CEMS
databases, some regions that have lower density are either not

Figure 3. Latent space distribution of images from selected flood
events per country. Due to the considerable size of the dataset

and computational demand, we did not to include all samples in
the latent space.

flood prone or have their flood events not recorded by these
databases. This explains the apparent lower amount of samples
in countries like China and Brazil.

Due to the variable nature of seasons and geography, there is
a considerable alteration in the inherent data distribution of the
dataset, akin to a domain shift. This phenomenon can be at-
tributed to the changing responses of the target to electromag-
netic radiation. This can be easily evidenced by examining the
compressed latent space plot (Figure 3) of images captured be-
fore and during flood events, which are taken from selected
floods where the latent representations of each one barely over-
lap. This limits the transferability of models trained exclusively
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Figure 4. U-Net model architecture for the dataset usage example.

on data from a specific region to previously unseen locations.
Consequently, one of the main advantages of this dataset is its
covering of multi-temporal flood events globally, enabling the
training of models with high transferability.

The dataset is made publicly available and further informa-
tion regarding its access and usage can be found at https:
//github.com/menimato/SenForFlood. With this dataset,
we aim at providing the community with an extensive collection
of multi-temporal, multi-layer, multi-source and multi-modal
samples for training deep learning models focused on flood
mapping. To this end, the aforementioned repository also in-
cludes a dataset exploitation code based on PyTorch (Paszke
et al., 2019), which facilitates the integration of the dataset
into training and validation workflows. The dataset exploitation
scripts allows the user to use the samples according to specific
countries, as well as sub-tiling the 512× 512 pixel images into
smaller parts (32 × 32, 64 × 64, 128x × 128, and 256 × 256
pixels).

3. Applications

In order to test the application of our dataset, we trained a deep
learning model for automatic flood mapping. More specific-
ally, we created a U-Net model (Ronneberger et al., 2015) that
takes the SAR images during flood and the terrain information
as input, yielding flood masks once trained. Figure 4 details the
layers of this model, as well as its inputs and output.

To train this model, we used only a part of the dataset, corres-
ponding to all samples in South Asia. We sub-tiled the samples
into 256 × 256 image patches and trained the model for 50
epochs, with cross-entropy loss function, Adam optimizer, and

learning rate of 0.001. During training, we used a batch size
of 96, from which 64 samples were used for training and 32
for validation. During training, the U-Net achieved an overall
accuracy of around 85% taking the flood masks included in the
dataset as reference. After the model was trained, we used it
to create the flood mask for a region in Bangladesh with data
never seen by the model, where an extensive flood event took
place around the end of May 2024. The results are illustrated in
Figure 5.

In Figure 5a, it can be seen that the flooded areas present
a darker colour, making it challenging to see the difference
between perennial water bodies and the non-permanent flood.
However, in Figure 5b, one can notice that the model success-
fully avoids classifying rivers as flooded areas, even though
only SAR data obtained during-flood was used. This happened
because the flood masks available cover only temporary floods,
due to the change-detection nature of the method used to create
the sample masks, as indicated in Section 2.2. In addition, the
terrain data included during training and inference also helps
the model to distinguish permanent water bodies from ephem-
eral floods due to their effect on the topography. This applica-
tion demonstrates only one potential utilisation of the dataset. It
is anticipated that the incorporation of multiple data layers, par-
ticularly the before-flood and during-flood segments, will facil-
itate the development of more robust models.

SAR data band differencing of images acquired at distinct
timestamps has been used by the remote sensing community
to map flood extent (Amitrano et al., 2024), but few have taken
advantage of comparing images from different dates to specific-
ally map flood extent with machine learning on a global scale.
This dataset allows training and evaluation of deep learning al-
gorithms with a global coverage that reduces the probability of
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Figure 5. (a) Sentinel-1 data for a region in Bangladesh affected
by the floods started at the end of May 2024. False-color

composition where RGB bands are VV, VH, and V V/V H; (b)
Flood mask created for the same region, using the trained U-Net

model. It can be noticed that permanent water bodies such as
rivers are not identified as flood, even though only one image

during the event was used to generate the final map.

overfitting and improves transferability. Existing change detec-
tion methodologies based on Adversarial Networks or diffusion
models can be adapted to take advantage of our dataset (Li et
al., 2022, Li et al., 2023, Luo et al., 2024, Ayala et al., 2023), es-
pecially considering the flooded and non-flooded image patches
of samples, radar and optical pairs, with topographic and land
cover information from the same area. Furthermore, the highly
accurate flood extent reference constructed from the CEMS data
can be used for validation or fine-tuning.

4. Conclusion

In this work, a dataset was presented, tailored for rapid train-
ing and evaluation of robust deep learning models using im-
ages captures prior and during the flood. This dataset, which
may evolve into a benchmark dataset by rigorous testing and
assessment, provides SAR and optical imagery at 10m spatial
resolution, topography data, LULC, and labels computed auto-
matically or obtained directly from a highly accurate source.
More than 370 flood events around the globe have been in-
cluded, which we expect will help to produce models with high
transferability. In total, 40,770 distinct 512×512 pixel samples

were included, each with 7 different information layers (a total
of 285,390 image files). In the future, the dataset will be used in
a series of benchmarking flood detection experiments conduc-
ted by the authors.
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