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Abstract 

Seventy percent of global greenhouse gas (GHG) emissions originate from urban areas, with urban heat loss contributing 

significantly to energy consumption (UNEP, 2020). Digital twins offer a potential solution and insight into the problem 

and its causes. This is a study started as an undergraduate Engineering Capstone Project with a collaborative effort 

between the University of New Brunswick and the National Research Council of Canada to develop a workflow to aid 

thermal efficiency modeling using Digital twins. This project uses the University of New Brunswick (UNB) Fredericton 

campus as a case study to capture UAV, nadir perspective LiDAR, Panchromatic imagery and long wave infrared (LWIR) 

thermal imagery. The workflow includes 4 major steps following the preprocessing: (1) creating point clouds from the 

LiDAR and Panchromatic sources, (2) merging point clouds using grid-based segmentation and iterative closest point 

algorithm (ICP), (3) classifying the point cloud using Point CNN networks aided by manual refinement, and (4) 

overlaying thermal data. The resulting digital twin achieved a high level of spatial alignment accuracy, with 95% of points 

falling on building surfaces falling within an 11 cm tolerance as assessed by quadric cloud-to-cloud distance. Semantic 

classification performed using Point CNN and faster R-CNN object detection identified façade features such as windows 

and doors with a precision of 91.8% and an F1 score of 83%. Thermal data was successfully integrated and converted to 

approximate temperature values, enabling further analysis of surface heat behavior and laying the groundwork for future 

energy modeling applications. This case study demonstrates a scalable framework for high-detail drone based digital twin 

development with practical relevance to urban thermal efficiency analysis. 

1 Introduction 

Buildings hold a large amount of information within 

their walls, whether it be the occupancy, walking paths 

and common areas or if it be the very information of the 

structure itself such as materials, age and condition. This 

is the dream of a digital twin, to completely replicate and 

utilize all this geographic and contextual information to 

the best of its capabilities. Occupancy studies, energy 

efficiency, emergency planning and basic mapping and 

navigation are all examples of an industry that relies on 

this information that lies in front of our day to day lives 

(Ham & Kim, 2020). The biggest hurdle to this reality 

is the inclusion of a real time capture or an up-to-date 

model. Developments in UAV technology aid this step 

in big ways, the quick capture time and large scale with 

high detail provide a new venue and perspective for 

building research (Xie et al., 2023). UAV can quickly 

capture low-cost data with flexible operation 

characteristics making them well-suited to a range of 

specific data acquisition scenarios. 

Recent advances in remote sensing and Deep learning 

have accelerated the potential of UAV-based digital 

twins, particularly for energy efficiency and thermal 

analysis (Ni et al., 2023). Thermal efficiency data is 

highly valuable and can yield very important insights 

when effectively applied. For example, (Sadhukhan et 

al., 2020) demonstrated the use of aerial thermal 

imagery to estimate building surface temperatures and 

derive thermal transmittance (U-values). More recently, 

(Zhu et al., 2024) proposed a method for co-registering 

thermal point clouds with semantic 3D building models, 

leveraging segmented point clouds for advanced 

thermal analysis. These developments reflect the 

broader impact of deep learning integration, especially 

in semantic segmentation and deep learning-based 

feature extraction. Hybrid models that combine LiDAR 

and photogrammetry have proven effective in 

mitigating geometric distortions (Zhu et al., 2024), 

while deep learning-based tools such as Mask R-CNN 

are enabling dynamic, real-time interpretation of 

thermal data (Wilson et al., 2023). This convergence of 

technologies allows for more accurate detection of heat-

loss patterns and contributes to sustainable urban design. 

However, despite these advancements, thermal 

efficiency modeling has yet to be fully integrated into a 

scalable, real-time digital twin framework (Arowoiya et 

al., 2024). 

Construction of digital twins have taken many forms 

across literature, often shaped by the specific use case or 

data availability. Some studies rely on simulation or 

building information materials (BIM) derived models to 

form the basis of the digital twin, such as in (Lu et al., 

2020), who developed a multiscale DT of the West 
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Cambridge campus using city planning models. In 

contrast, (Borrmann et al., 2024) propose an AI-assisted 

pipeline for multi-scale digital twin generation, focusing 

on automatic integration rather than field-based 

acquisition. At the building scale, (Sundby et al., 2021) 

employ geometric change detection to refine DT models, 

but their methodology is based on fixed-position sensors. 

In the context of applied field methods, (Roda-Sanchez 

et al., 2024) demonstrated a smart campus DT 

integrating real-time sensor data and analytics, but the 

study does not integrate airborne sensors or 

multispectral workflows. All these methods are tailored 

to their specific purpose, our method is configured to use 

UAV-captured RGB, thermal, and LiDAR data in a 

multisensory configuration, processed through a 

structured photogrammetric and point cloud workflow 

to build a detailed, aligned, structural digital twin model. 

 

While existing studies explore digital twins for building 

energy efficiency typically through simulation 

environments or single-sensor workflows, few 

demonstrate a detailed, applied UAV-based multi-

sensor workflow that integrates LiDAR, RGB, and 

thermal imagery with semantic segmentation and deep-

learning-based façade feature detection in a real-world 

case study. To the best of our knowledge, no prior work 

has combined these elements into a unified and 

reproducible pipeline for digital twin construction at the 

building scale. Hence, this research presents a practical 

case study that demonstrates a full-spectrum UAV data 

capture and processing workflow from multi-modal 

point clouds to window/door classification and thermal 

overlay for a real urban building façade. This applied 

methodology aims to contribute both an operational 

prototype and a base for future research into the study of 

energy modeling.  

 

2 Study area 

 

This case study explores the application of remote 

sensing and processing techniques to produce a 

foundational digital twin model. We use the Fredericton 

Campus of the University of New Brunswick, NB, 

Canada as a case study. This area spans from the bottom 

of campus at Head Hall engineering building up to the 

McLaughlin nursing building. The total area 

accumulating to approximately 3.4 ha with an elevation 

gain of 34m.  

 

This section of campus is comprised of multistory brick 

buildings and a few single-story brick buildings. It 

features narrow structural corridors as well as a mix of 

flat and sloped roof surfaces. A dense forested section 

in the area gives a view into the inclusion of dense 

vegetation in UAV data. While this area is not a perfect 

representation of an urban environment, it exhibits 

many of the same characteristics and challenges 

commonly encountered in urban settings. This area was 

selected because of the structural complexity of the area 

and available permissions with data capture over urban 

environments in Fredericton.  

 

2.1 Data Collection 

 

Drone imagery and LiDAR has two common 

perspectives in most captures. A nadir perspective refers 

to imagery captured with the camera oriented directly 

downward, perpendicular to the ground surface (i.e., at 

a 90° angle). In contrast, an oblique perspective involves 

the camera being angled away from vertical typically 

around 45°allowing for the better capture of building 

façades and vertical structures. Due to an equipment 

limitation in this case study all data was captured from 

a nadir perspective.  

Given the main goal of developing a detailed digital 

twin and thermal model suitable for future energy 

analysis applications, a multi-sensor approach was 

employed to maximize both spatial coverage and 

accuracy. Two complementary datasets LiDAR and 

photogrammetry were collected, each selected for their 

unique strengths and for their ability to compensate for 

limitations in the other. The LiDAR data was treated as 

the reference geometry for georeferencing the 

multispectral and thermal data. Data collected from the 

Altum-PT sensor produced high-density, detailed point 

clouds, which were intended to be co-registered with the 

LiDAR dataset. 

 

All flights were captured from a nadir perspective to 

mitigate this limitation, flight parameters were adjusted 

between sensors to suit their respective objectives. The 

Zenmuse L1 system was flown at 100 meters AGL with 

80% overlap, focusing on high spatial resolution and 

broad coverage. In contrast, the Altum-PT sensor was 

flown at a lower altitude of 60 meters AGL with terrain-

following enabled and the same 80% overlap. These 

parameters were selected to improve the visibility and 

detail of building facades.  

 

 

 

 

 

 

Data Panchromat

ic 

Thermal LiDAR 

Focal Length 

(mm) 

16.3 4.5 Na 

Flight Height 

(m) 

60 60 100 

GSD 

(cm/pixel) 

2.59 22.66 2.73 

Image Size  4112 x 3008 320 x 256 Na 

Point Density 

(points/ m2) 

10,000 10.47 414 
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Data 

Collection 

Dates 

December 

17 2025 

December 

17 2025 

Decem

ber 16 

2025 

Table 1. Sensor and Flight Parameters 

 

As the Altum-PT also captured thermal imagery 

characterized by a relatively coarse Ground Sampling 

Distance (GSD), the reduced flight altitude helped 

mitigate this limitation. Furthermore, thermal flights 

were scheduled for late afternoon, as close to dusk as 

possible. This action was done in an attempt to minimize 

natural solar radiance and try to enhance the view of the 

natural thermal signature of the building.  

 

2.2 Preprocessing  

 

The photogrammetric and thermal preprocessing was 

done in Pix4D a terrestrial and drone photogrammetry 

mapping software (Pix4D, 2025). The Panchromatic 

imagery was processed in conjunction with the Long 

Wave Infrared (LWIR) imagery, by doing this it helps 

portray the lower resolution thermal data on a higher 

resolution base. The resulting products, such as point 

clouds and meshes are then more detailed while having 

the lower resolution data overlayed. Then the LiDAR 

was processed in DJI Terra due to the nature of the 

sensor being used in the data capture requiring the 

specific software.   

 

Following the initial raw data processing, all point 

clouds underwent spatial down sampling and noise 

filtering to ensure consistency across datasets and 

prepare them for integration into the processing 

workflows. A voxel-based down sampling approach 

was applied, standardizing point density to 1 cm³, 

meaning that one point represents every square 

centimeter of space. To further improve data quality, 

Statistical Outlier Removal (SOR) filtering was 

implemented. This evaluates the local neighborhood of 

each point and eliminates those whose mean distance to 

their neighbors falls outside a defined statistical 

threshold. 

 

However, variations in data density became evident due 

to the nadir acquisition. Ground surfaces and rooftops 

were well-represented due to their orientation relative to 

the sensor, vertical façades exhibited significantly lower 

point density. This discrepancy led to unintended cluster 

removal with some façade’s data being removed during 

filtering since it was interpreted as noise. These 

limitations were considered when interpreting 

classification and thermal analysis results in later stages.  

 

 

 

 

 

 

 

3 Methodology 

 

 

Figure 1. UAV based Workflow for Digital Twin 

Generation 

 

Figure 1 shows the flowchart of the proposed work. The 

methodology outlined here shows a complete workflow 

used for generating a digital twin of the UNB campus 

study area. As shown in Figure 1, the process begins 

with data acquisition from two aerial sensor platforms 

and progresses through preprocessing, each 

preprocessing step is different for the Altum and the 

Zenmuse. With each input generating a point cloud, an 

initial coarse alignment is done. This is followed by a 

grid segmentation and then a tile wise ICP alignment. 

The aligned dataset is then subjected to semantic 

segmentation, followed by object classification focused 

on detecting windows and doors. This sequential 

process establishes the foundational dataset for 

subsequent analysis. 

 

3.1 Multisource Point Cloud Alignment  
 

Following the initial preprocessing steps, all datasets 

were converted into standardized point cloud format, 

subjected to noise reduction procedures, and prepared 

for subsequent integration. To prepare for segmentation 

two preparatory steps were done. First a initial manual 

course alignment was done to the LiDAR base to allow 

the later ICP alignment to easily match the geometry. 

Then a grid network is laid out of 50 m³, grid squares, 

from a reference corner of the minimum bounding box 

of the cloud. The 50 m³, grid squares were chosen to aid 

in the reduction of computational load on the processing 

and so that if there are any drifts or larger distortions 

from the photogrammetric point cloud then the 

alignment could be more accurate on a small local scale 

where it might struggle on a full project area. The 

photogrammetric i.e. Panchromatic point clouds of the 

project area were segmented from their original clouds 

on the grid square.  

 

To reassemble the segmented point cloud grid tiles into 

a unified model, the LiDAR dataset was retained in its 

original georeferenced coordinate space, serving as the 

base reference. Each segmented chunk of 
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photogrammetric data was then independently aligned 

back to the LiDAR using ICP. This was performed in 

CloudCompare by maintaining the LiDAR tile as the 

fixed (static) reference and transforming the segmented 

photogrammetric tiles using the "ICP” tools. This 

approach minimizes cumulative errors and maintains 

spatial integrity when working with multi-tile 3D point 

cloud datasets. 

 

To evaluate this methodology, we do the same C2C 

distance computation but with a few changes. For this 

iteration, only building structures were retained from 

each point cloud, isolating them from transient or 

mobile elements such as vehicles and vegetation, which 

were subject to positional and structural changes 

between acquisitions. Given the study’s focus on 

structural energy modeling, buildings were chosen as 

the primary comparison target. The aligned 

panchromatic-derived point cloud was evaluated against 

the LiDAR-derived dataset, which served as a reference.  

 

 

 

3.2 Semantic Point Cloud Classification 
 

The usage of classified objects in 3D space allows for a 

wide array of in-depth analysis and detailed feature 

extraction. For this study the point cloud classification 

was done on two levels, first a semantic segmentation 

was carried out using Point CNN models then a 

refinement for windows and doors using Fast RCNN 

detection.  

 

The initial phase of semantic classification was 

performed using Trimble Business Center (TBC). This 

was done to assign broad class labels to the now 

recombined point cloud. This step provided a 

foundational classification essential for downstream 

processing and was used to separate the dataset into nine 

primary classes, including buildings, ground, vegetation, 

power lines, and noise. 

 

TBC's automated classification engine works with a 

combination of machine learning algorithms, 

specifically decision tree classifiers and random forest 

models, to distinguish between object types. These 

classifiers operate by analyzing multiple point attributes 

such as intensity, elevation, surface normal orientation, 

and local point density, comparing each point to its 

surrounding context. The underlying assumption is that 

features exhibiting similar geometric and radiometric 

properties likely belong to the same semantic category 

(Trimble, 2025). 

 

Following the initial classification, a refinement was 

applied using TBC’s optional advanced classification 

module. This process uses RANSAC-based geometric 

fitting, where planar and linear models are fitted to point 

clusters to improve classification accuracy. For instance, 

vertical planar segments may be identified as building 

facades, while horizontal planes may represent ground 

or roof surfaces. However, in the TBC user’s interface 

there are no configurable settings or parameters for this 

step. This step plays a key role in reducing 

misclassification in complex urban scenes. 

 

After establishing a preliminary automated 

classification of the point cloud, manual refinement was 

performed to correct significant misclassifications.. 

These adjustments primarily targeted structural 

elements that were incorrectly labeled or omitted.  

 

Following the automated classification phases, 

additional effort was directed toward identifying and 

labeling specific thermally influential objects. This was 

a manual classification targeted at elements such as heat 

exchangers, HVAC vents, solar panels, and other 

rooftop or façade-mounted systems that may serve as 

thermal anomaly sources within the scene. Due to the 

limited frequency and non-uniform geometry of these 

features across the dataset, a consistent and repeatable 

training set was not available, rendering automated 

classification unfeasible. As a result, all relevant objects 

were manually extracted and classified using visual 

inspection of the coloured point cloud. 

 

3.3 Deep Learning-Based Facade Feature 

Detection 

 

With the base classification of the point cloud completed, 

specific façade and building features became the next 

focus of analysis. The detection was carried out using a 

pretrained faster R-CNN object detection model 

accessed via Esri’s Living Atlas and integrated within 

the ArcGIS Pro 3D Object Detection toolkit. Since the 

only user defined variable is the minimum confidence 

level no other parameters are able to be altered. The 

model operates on a textured 3D mesh in Arc GIS’s 3D 

space. This mesh was generated as an output from the 

Pix 4D software using the RGB imagery from the 

Zenmuse. This was done because the pretrained model 

performed best on a colourized mesh.  

 

The ESRI pretrained faster R-CNN model generates 3D 

bounding boxes for detected windows and doors based 

on texture features, shape, and known facade 

configurations. In addition to this a preset confidence 

interval of 50% was set for detected objects, all objects 

below this confidence were discarded. The confidence 

interval was chosen due to certain resolution limitations 

with the mesh that will be discussed in the analysis. 

These bounding boxes are then projected onto the 

classified point cloud, where points falling within the 

defined spatial extent are reclassified accordingly. 

 

3.4 Thermal Integration 

 

Thermal overlays provide an invaluable layer of insight, 

enabling the visualization of temperature variations 

across a 3D model.  
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The result from the preprocessing of the thermal and 

panchromatic data is a uncalibrated LWIR band, after 

applying a formula provided in the official PIX4D 

documentation, the data is converted into temperature 

values in degrees Celsius (°C) (Pix4D, 2025).  

 

𝑇(𝐶°) = (
lwir

100
) − 273.5                       (1) 

 

This formula is a temperature approximation, as it 

assumes that the surface being measured behaves as an 

ideal blackbody emitter with an emissivity of 1.0. In 

real-world conditions, materials exhibit varying 

emissivity values that are typically less than 1, 

depending on surface properties such as texture, color, 

and material composition. As a result, the derived 

temperature values may differ from true surface 

temperatures, especially when analyzing materials like 

glass, metal, or painted surfaces. However, the 

temperature measurements that are calculated from the 

raw imagery of the Altum are still representative and by 

extension the patterns and observations shown are still 

valid representations. After calibration Pix4D generates 

an orthomosaic representation of the LWIR band. This 

is then what is overlayed on a resulting mesh 

representation. Importantly, Pix4D does not embed 

temperature values directly into the mesh geometry; 

instead, it applies a texture-mapped overlay using a 

standard RGB image where each pixel color 

corresponds to a normalized temperature value on a 0–

255 scale. 

 

To extract quantitative temperature data from this 

visualization, the colours are baked into the mesh in 

mech lab then a scalar field is produced from the colour 

values. The following formula converts the colours back 

to the temperature values using the minimum 

temperature and maximum temperature that Pix 4D 

calculated.  

 

𝑇𝑒𝑚𝑝 (℃) = (
𝑐𝑜𝑙𝑜𝑢𝑟 𝑣𝑎𝑙𝑢𝑒

255
) ∗ (max 𝑡𝑒𝑚𝑝 −

min 𝑡𝑒𝑚𝑝) + min 𝑡𝑒𝑚𝑝                                       (2) 

 

This scalar field allows the thermal information to be 

analyzed numerically in external software environments.  

While the thermal data can be used to compute zonal 

statistics, the primary objective in this case study was to 

generate a foundational framework that supports future 

research. This includes developing methods to enhance 

and fill energy model parameters and exploring the 

potential for object-level feature extraction from the 

point cloud using distinct thermal signatures. 

 

4 Experiments  

 

The concept of running the pretrained object detection 

model on raw imagery works on the same principles as 

the 3D viewshed but alternatively for batch processing 

was run in code. First, each input raster is evaluated to 

ensure it is in a  RGB format. Inference was then carried 

out using the same pretrained Faster R-CNN 

architecture. Output detections were exported as 

vectorized feature classes for each input raster 

 

This method yielded suboptimal results only achieving 

a Precision of 67.1%. While the pretrained object 

detection model was able to identify windows in the 2D 

imagery, the 2D-based detection demonstrated lower 

recall and a higher rate of false positives. This 

discrepancy may be attributed to two primary factors: 

first, the difference in viewing angle between the nadir-

oriented orthophotos and the oblique perspective 

offered by the 3D mesh viewshed; and second, the 

inherent distortion and lack of façade visibility in nadir 

imagery, which hinders consistent detection. 

 

Figure 1 shows one of the best cases from the 2D 

detection and shows window detection however, it 

exhibits double the amount of misclassification 

compared to the textured mesh-based detection for the 

same façade area. 

 

 

Figure 2. Example Output of 2D Imagery-Based 

Window Detection Using Deep Learning 

 

Despite geometric distortions in the mesh, the 3D model 

benefited from a more façade-centric perspective, which 

improved the contextual visibility of windows and doors.  

 

5 Results 

 

5.1 Multisource Point Cloud Alignment  

 

To provide a baseline for alignment evaluation, an initial 

cloud-to-cloud (C2C) distance computation was 

performed using the raw positions derived from the 

onboard GNSS/RTK data associated with each sensor. 

This yielded a result showing an average distance of 3.4 

m, this difference being attributed to the use of separate 

positioning systems for the Altum-PT and Zenmuse L1. 
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Figure 3. Building Comparison C2CResults 

 

The results of the above image show that 95% of the 

alignment fell under 11cm distance in the cloud-to-

cloud comparison. The notable exceptions to that being 

the highlighted green sections. These sections are 

sections that did not overlap in the reference LiDAR 

point cloud.  

 

 

5.2 Façade Detection  

 

The results of the object detection model, applied to 

textured mesh scenes within ArcGIS Pro's 3D 

environment, yielded a total of 246 window and door 

classifications. Out of that, there was a total of 295 

ground truth windows.  

 

 

Figure 4. Facade Detection Confusion Matrix for 

Window Detection 

 

The model achieved a precision of 91.8%, a recall of 

75.9%, and an F1 score of 83%. 

 

 

Figure 5. 3D Mesh-Based Window Detection Using 

Esri’s Pretrained Deep Learning Model 

 

Despite the strong performance in precision, the model 

demonstrated a noticeable number of false negatives, 

with approximately 24% of identifiable windows not 

detected. This estimate is somewhat speculative, as it is 

based on visual inspection of windows that appeared 

sufficiently clear to be classified. Misclassifications 

primarily occurred where features such as vehicle roofs 

or regular square shapes mimicked the spatial or visual 

characteristics of windows. These issues were likely 

exacerbated by the geometric distortions introduced 

during mesh generation. In particular around window 

edges where surface warping and texture stretching 

were evident. Its is likely that with an improved mesh 

the resolution increase would lead to much better results 

than what is currently shown in this case study.  

 

6 Discussion  

 

This case study has demonstrated the practicality of 

using unmanned aerial vehicles (UAV) in the generation 

of digital twins of complex environments. But this has 

also left multiple areas to be grown further and 

expanded upon. The workflow presented establishes a 

foundational framework for integrating multisensory 

data, including thermal, multispectral, and LiDAR, 

toward advancing energy modeling applications. 

Specifically, it lays the groundwork for producing Level 

of Detail 3 (LOD3) digital twins, which are 

characterized by accurate representation of building 

facades and roof structures. 

 

With all this said there are several keys’ areas with room 

for improvement. Adjustments to the data capture from 

both sources to help with resolution and complete 

coverage, is a key goal in the continuation of this 

research. As mentioned in section 3.4, this workflow is 

still very underdeveloped and leaves room for research 

in applications and how this can further aid energy 

modeling.    
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6.1 Data Capture Adjustments  

 

Data capture is the foundation of any project and has 

profound implications on 3D model quality and 

subsequent analysis workflows. In this study, all 

datasets were acquired from a nadir perspective, using 

independent flight missions for each sensor system 

(Altum-PT and Zenmuse L1). This configuration 

introduced several limitations in facade detail capture, 

mesh fidelity, and thermal perspective, which 

consequently impacted classification accuracy and 

alignment quality. One of the main goals for the 

continuation of this research is the development of a 

gimbal for the Altum-pt camera so that oblique imagery 

can be done. Oblique perspectives are expected to 

significantly enhance the quality of reconstructed 

vertical surfaces, improve window and door detection 

accuracy, and reduce mesh distortions associated with 

steep viewing angles. Additionally, further 

improvements can be made by reducing flight altitude 

to increase ground resolution, and by incorporating 

higher-accuracy ground control targets to improve 

georeferencing consistency across flight sessions. 

 

6.2 Prospective Thermal Applications 

 

The addition of LWIR data allows for a valuable insight 

and snapshot of the thermal behaviour of buildings (Sun 

et al., 2023). While this is a major point to expand upon 

in this case study there are several avenues this data 

could be used for. One such example is the inclusion of 

thermal data to aid in point cloud classification, 

specifically in the addition of cross-attenuation models. 

This framework would look at the thermal signatures of 

objects to help classify them into specific classes.  

 

From an energy modeling standpoint, there are two main 

methods energy modeling which is commonly 

employed. Physics based energy modeling aka building 

information modeling, which uses 2D floorplans to 

generate 3D geometry and material properties (LOD 

2.5-3). These simulations rely on known thermal 

transmittance values (U-values) and are used to evaluate 

heat transfer under dynamic environmental conditions. 

While there are several versions of physics-based 

modeling, they all follow this general format (Malhotra 

et al., 2022).   

 

The second method is thermal imaging-based estimation. 

This method relies on infrared imagery, although some 

models do incorporate a temporal time series aspect. 

These models extract surface temperatures and by using 

a known or estimated internal temperature derive the 

transmittance (U values). (Sadhukhan et al., 2020).  

 

Both of these applications are of interest and 

consideration for future research. Energy modeling 

benefits greatly from the less intrusive faster modeling 

that remote sensing offers and the possibilities of 

maximizing LWIR imagery potential only furthers the 

main goals of this project.   

 

7 Conclusion 

 

This report outlines the development and execution of a 

UAV-based data integration workflow aimed at 

generating a digital twin for aiding energy modeling. By 

combining LiDAR, multispectral, and thermal imagery 

acquired from nadir perspectives, a structured 

methodology was developed for point cloud 

preprocessing, segmentation, alignment, semantic 

classification, and object detection. 

 

The methodology demonstrated successful alignment of 

multisource point clouds, with 95% of building points 

falling within an 11 cm error threshold, as measured 

using a quadric cloud-to-cloud distance metric. The 

point cloud classification was carried out in three phases, 

beginning with automated general classification using 

Trimble Business Center, followed by deep learning-

based detection of windows and doors via a faster R-

CNN model, and finally manual classification of 

thermally influential rooftop features. The object 

detection model, when applied to textured 3D scenes, 

achieved a precision of 91.8% and an F1 score of 83%, 

although some misclassifications and missed detections 

were observed due to texture distortion and limited 

viewing angles. The limitations in data acquisition more 

specifically the exclusive use of nadir imagery, 

restricted the quality of façade reconstruction, mesh 

resolution, and ultimately classification accuracy. As 

such, future work should explore the use of oblique 

image capture. 

 

Overall, this report demonstrates the feasibility of 

producing digital twins using UAV-acquired data and 

highlights the potential for extending these models into 

scalable, automated frameworks for urban thermal 

analysis and energy modeling. This research is the 

foundation which will be built on in future research.  
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