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Abstract

With the growing interest in robotics and autonomous vehicles, visual-inertial odometry (VIO) in SLAM techniques have become
increasingly important for estimating a robot’s trajectory using visual and inertial data. Evaluating the accuracy of a VIO trajectory
estimate typically requires aligning it with a reference trajectory, where the goal is to find a transformation that minimizes the
discrepancy between estimated and reference poses. However, existing methods often overlook the state covariance of the estimated
trajectory or rely solely on manufacturer specifications, without considering the covariance of VIO estimation. As a result, the
accuracy of the aligned trajectory may not be truly reflected, as the alignment process minimizes global discrepancies rather than
prioritizing state pairs with higher confidence. This paper investigates the impact of state covariance of estimated trajectory on
spatio-temporal trajectory alignment. To validate our approach, we use various open-source datasets that exhibit different state
covariance behaviors and conduct comprehensive statistical analyses. The results indicate that the proposed method improves the
precision and internal reliability in estimating alignment parameters. Additionally, the resulting a-posteriori variance factor of unit
weight from the proposed method reflects a better-calibrated stochastic model and can serve as an indicator of state covariance

estimation quality in VIO systems.

1. Introduction

With the growing interest in robotics and autonomous vehicles,
visual-inertial odometry (VIO) in SLAM techniques have be-
come increasingly important for estimating a robot’s trajectory
from visual and inertial data. The accuracy of VIO is commonly
evaluated by comparing the estimated trajectory against a ref-
erence trajectory. However, without global positioning from
GNSS, the VIO or SLAM trajectory cannot be directly com-
pared with the reference trajectory, as they are typically ex-
pressed in different reference frames. Consequently, a prelim-
inary alignment is required, which is often carried out using
either a similarity or rigid-body transformation, depending on
the measurement and sensor configuration. The parameters of
this transformation can be estimated using all the states from
trajectories or only the initial states, with the distinctions and
implications discussed by Zhang et al. (2018).

Horn’s method (1987) is widely used to estimate the rota-
tion and translation parameters of the alignment transforma-
tion, assuming that temporal correspondence between the es-
timated and reference poses is already established. It solves
a closed-loop least squares problem by minimizing the trans-
lational errors between the aligned estimates and their corres-
ponding reference translations. Umeyama’s method (1991) ex-
tends this approach by incorporating the estimation of scale
parameters, making the alignment applicable for the traject-
ory with scale ambiguity such as the trajectory from monocular
visual odometry. However, these two approaches treat all estim-
ated states as having identical uncertainty—which is generally
not the case—and use only the translational component of the
poses, presuming any rotation error will manifest in the sequen-
tial translation. To investigate the effect of explicitly including
rotation in the alignment, Salas et al. (2015) used both simu-
lated data with added Gaussian noise and real data to show that
accounting for rotation can reduce the absolute rotation error,
albeit at the cost of increased absolute translation error. Never-
theless, this method continues to assume identical state covari-

ance across the estimated poses, an approximation that may not
fully reflect real-world conditions.

In addition, without precise GPS timing, VIO systems can suf-
fer from time synchronization errors, which introduce inac-
curacies in pose timestamps. Different output rates for the es-
timation and groundtruth systems further complicate alignment,
as poses are usually matched by the closest timestamps. Manu-
ally measuring the lever arms between sensors adds another po-
tential source of error. To address these challenges, Tombrink
et al. (2024) introduced a more sophisticated spatio-temporal
alignment that jointly estimates the trajectory transformation
parameters, the time offset between sensors, and the lever arms
in the sensor frame (assuming the lever arm errors are only
present in translation component). However, instead of using
the state covariance computed by the estimator, they relied on
the localization error specifications provided by the manufac-
turer. This approach implicitly assumes that real-world un-
certainties are consistent with nominal manufacturer specific-
ations—an assumption that may not hold if unexpected errors
or noise arise in practice.

For a least squares based estimator, the state covariance can be
described as the inverse of the Hessian of the cost function after
the solution has converged. It encodes the strength of the con-
straints imposed by the observations on each parameter (Moritz,
1972). All the previously mentioned methods neglect state co-
variance after pose estimation, despite its potential benefits for
trajectory alignment and subsequent evaluation. Additionally,
the accuracy of state covariance estimated from VIO systems
remains uncertain, and its quality assessment has received little
research attention. However, state covariance from VIO is cru-
cial for applications such as loosely coupled integration (Liu et
al., 2025; Sirtkaya et al., 2013; Zhang et al., 2024) and solution
credibility evaluation (Niu et al., 2023; Xu et al., 2024).

By incorporating VIO-estimated state covariance, we can
achieve a more intuitive trajectory alignment that reflects the
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quality of pose estimation from real data. Furthermore, the un-
certainties of estimated poses can be propagated through the
alignment process and captured in the resulting state standard
deviations, cross-state correlations, and a-posteriori variance of
the estimated alignment parameters. This provides valuable in-
sights into the precision and internal reliability of alignment
parameter estimation, as well as the quality of state covariance
estimation in VIO systems.

Consequently, this paper investigates how state covariance of
estimated pose influences spatio-temporal trajectory alignment
for VIO systems and discuss an assessment approach for the
state covariance estimation from VIO using the alignment stat-
istics. Specifically, we integrate the estimated state covari-
ance from Open-VINS (Geneva et al., 2020), a state-of-the-art
(SOTA) filtering-based VIO estimator into the alignment, con-
sidering all estimated poses and weighing them according to
their respective variances. The four degrees-of-freedom yaw-
only rigid body transformation includes a 3D translation and
a yaw-only rotation. These parameters (which are sufficient
to align a VIO trajectory as discussed by Kelly & Sukhatme
(2011)), along with a time offset between the estimated and
reference trajectories, are estimated to align the VIO traject-
ory. To investigate the impact of fluctuations in VIO-estimated
state covariance on alignment parameter estimation, we evalu-
ate our method using four data sequences from two widely used
open-source visual-inertial datasets: EuUROC MAV (Burri et al.,
2016) and TUM (Schubert et al., 2018). Each data sequence
represents varying dynamics and levels of feature-tracking dif-
ficulty.

The remainder of the paper is structured as follows. First, we
provide a brief introduction to the workflow of the proposed al-
gorithm. Next, we discuss the state covariance based trajectory
alignment and an assessment approach for VIO state covari-
ance estimation using statistical results after alignment. Sub-
sequently, we elaborate on the alignment configuration, valida-
tion datasets, and their characteristics. Finally, we present and
analyze the performance of the alignment parameter estimation
and the evaluation of the aligned trajectory.

2. Methodology

The implementation of the proposed method is illustrated in
Figure 1. The inputs for state covariance based trajectory align-
ment are highlighted in green, while the system’s output or tra-
jectory evaluation results are marked in red. These values are
also used for comparison with benchmark results.

The VIO provides two primary outputs: the estimated traject-
ory, consisting of a sequence of estimated poses with their
corresponding timestamps, and the associated state covariance,
which characterizes the uncertainty in the estimated states. The
inputs for alignment parameter estimation include the reference
trajectory along with its accuracy specifications, derived from
the sensor manufacturer’s datasheet, as well as the estimated
trajectory and its associated state covariance. A least squares
estimation is used to determine the spatio-temporal transforma-
tion, represented by the alignment parameters. These paramet-
ers consist of three translations along the x-, y-, and z-axes, a
rotation around the z-axis, and a time offset between the sensors
of the estimated trajectory and the reference trajectory. Further-
more, estimation statistics are computed to assess the perform-
ance of the alignment parameter estimation. These include the
standard deviations of the estimated alignment parameters, the

a-posteriori variance factor of unit weight, and the correlation
matrix of the alignment parameters. Once the spatio-temporal
transformation is estimated, it is applied to the estimated tra-
jectory to express it in the reference trajectory frame. With
both trajectories aligned in a common frame, their consistency
is quantitatively evaluated using the Absolute Pose Error (APE)
metric.

Visual-Inertial Alignment Parameters
Odometry Estimati

R g g

5
([ pmaea | (s anion ]
| Trajectory 1~

|

|

| Y-axis translation
/State Covariance; | "

(Parameters Standard Deviations /
A-posteriori variance factor
Parameters Correlation

Spatio-Temporal
Alignment

[ Z-axis transl 7

_____ -

rA==== ? B

| e : -axis rotation Trajectory

| Specifed . { Time offset /

! — |

| Reference ) Evaluation
Trajectory J ]

R .

Figure 1. Overview of the state covariance based trajectory
alignment.

2.1 State Covariance based Trajectory Alignment

Given both the estimated and reference trajectories, temporal
correspondence can be established by matching poses with their
nearest timestamps. Let the translation components of the
matched poses be denoted as {p;}* ;" and {p;}; ", for es-
timated and reference poses respectively. The goal of general
trajectory alignment is to find a transformation ¢’(-) that satis-
fies:

aQ

N—-1

g' = argmin 3 [[p: — (bl O
=0

However, this nearest-timestamp matching does not guarantee
perfect temporal correspondence between estimated and refer-
ence poses. Even when two poses share identical timestamps,
they may not be truly synchronized due to time synchroniz-
ation errors, which can arise in VIO systems lacking precise
timing services (e.g., GPS). Consequently, inaccuracies in tem-
poral correspondence introduce additional errors into trajectory
alignment, which should be accounted for in the alignment pro-
cess. Moreover, the least squares estimation in Equation (1) as-
sumes uniform uncertainty across translation states, which does
not accurately reflect real-world state estimation uncertainties.

Therefore, a weighted spatio-temporal trajectory alignment is
required to address these issues. In this process, we aim to es-
timate the following alignment parameters:

X = [tévt;7tlz:R/z7At] (2)
Given the observations for the least squares problem:

L, = [vapy»pmﬁx»ﬁyvﬁmvmyUy»”z] (3)

And Equation (1) can be explicitly reformulated as Equation

(4):
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where R, represents the rotation around the z-axis, and t =
[te,ty,t-]" denotes the 3D translations. The term A; corres-
ponds to the time offset between the estimated and reference
trajectories. The residual r; is explicitly defined in Equation
(5), while 3, ! represents the inverse of the observation cov-
ariance, which is constructed based on the state covariance of
estimated trajectory and reference trajectory, as shown in Equa-
tion (6). For estimated trajectory covariance, filtering-based
VIO is chosen over graph optimization-based VIO as it inher-
ently maintains and propagates state covariances in a sequential
manner, providing direct uncertainty estimates for each estim-
ated state. For the covariance of the reference trajectory, which
is also an observation in this least squares problem, we assign
its covariance based on the manufacturer specifications, which
are typically much smaller than those of the estimated traject-
ory. The velocity v; = [vs, vy, v:] is computed in the estimated
trajectory frame as the gradients of translation with respect to
time. Notably, the sensors used for both the estimated and ref-
erence trajectories are mounted on the same vehicle, meaning
their velocities are identical but expressed in different frames.

Ei - Eest,i + Eref,i (6)

To solve the least squares problem with an implicit functional
model, the Gauss-Helmert model (Koch, 2014) is employed to
estimate the alignment parameters. For fast and reliable conver-
gence, the initial estimate of the yaw-only rigid body transform-
ation is computed using the traditional Umeyama’s method.
Subsequently, the initial value for A; is determined separately.

Once the solution has converged, least squares statistics are
used to evaluate the estimation performance. These statistics
include the standard deviation and correlation of the estimated
alignment parameters, as well as the a-posteriori variance factor
of the unit weight, which will be discussed in detail in the next
section.

pi =RL(P:i + viA:) +t/, R;=R.R; @)

To evaluate the trajectory, the aligned trajectory, represented by
Equation (7), is compared against the reference trajectory.

2.2 Assessment of State Covariance Estimation

In section 2.1, the alignment parameters estimation can be for-
mulated as a weighted least squares problem. The state cov-
ariance estimated by the VIO systems are now served as the
covariance of observations that account for the uncertainty of
the estimated poses. After the least squares solution converges,
the a-posteriori variance factor of unit weight can be computed
as:

~2 1 Ts—1
o =™ zzz % 8
G, - EZ r r 8)

where n and m are the number of observations and estimates,
respectively. Its difference represents the degree of freedom in
the least square estimation. r; refers to the residual defined by
Equation (5) and 3J; denotes the covariance of the observations.

The value of 62 provides a direct gauge of how well the pose
covariances 3J; reflect the actual statistical spread of the align-
ment residuals. If 52 is close to *1°, the residuals are consistent
with the assumed covariances (Teunissen, 2003). when §2 < 1,
it indicates that the observation noises has been overestimated
(i.e., the actual alignment errors are smaller than predicted).
Conversely, if 62 > 1, it implies the covariances were too op-
timistic (the errors are larger than predicted).

Since the reference trajectory is usually generated by a high-
precision groundtruth sensor (e.g., a motion capture system or
a high-end survey-grade device), its error stochastic are accur-
ately known and characterized by 3,.;;. Consequently, the
main source of uncertainty in the alignment problem comes
from the estimated poses’ covariances X5t ;. Therefore, once
the weighted least squares solution converges, the 52 primarily
indicates whether 3. ; has been modeled properly.

3. Experiments

To validate the proposed method, we conduct four experiments
using data sequences from the datasets: EuROC MAV and
TUM. Both datasets provide synchronized visual-inertial in-
door data with high-quality ground truth. The visual data con-
sists of monochrome stereo images. For simplicity, we refer to
the data sequences used in the experiments as Dataset I, 11, III,
and IV, respectively. Each dataset exhibits unique characterist-
ics and presents different levels of difficulty for VIO, leading to
varying state covariance behavior.

We use Open-VINS to estimate the trajectory and its state co-
variance for all four datasets. Since these datasets have been
thoroughly evaluated in their original studies, we adopt their es-
timation configurations to ensure optimal trajectory estimation
performance.

Both weighted and unweighted trajectory alignments are per-
formed and compared. In the weighted alignment, the estim-
ated state covariance from VIO serves as the stochastic model.
In the unweighted approach, the standard deviation of 3D trans-
lations is fixed at 1 m, following the assumption in Umeyama’s
method, which implicitly treats all observations as having uni-
form and isotropic uncertainty.

Since the state covariance of the reference trajectory is also
required as an input for estimation, we use the translational
accuracy reported by the dataset publishers—approximately
1 mm~—for both EUROC MAV and TUM-based data.

3.1 Dataset Characteristics

In general, Datasets I, II, III, and IV are arranged in increas-
ing order of estimation difficulty. Their state covariances are
plotted in Figure 2.

Dataset I is based on the TUM Room 3 data sequence, which
exhibits overall small covariances for both rotational and trans-
lational components. The data features smooth motion and con-
sistent visual clarity, allowing VIO to perform optimally. How-
ever, a significant amount of circular motion (as seen in Fig-
ure 4) and near-static orientation variations introduce additional
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Figure 2. State covariance of estimated trajectory from Dataset I, II, III, I'V.

challenges to the alignment process, as discussed in (Tombrink
etal., 2024).

Dataset II corresponds to the TUM Room 2 sequence, which
shows large covariance values for the translation components
at the beginning of the estimated trajectory. This can be at-
tributed to the handheld dynamic initialization, which makes
IMU-related initialization more challenging.

Dataset III comes from the EuROC MAV Vicon Room 01-03
sequence and exhibits increased covariance in both rotation and
translation. In this dataset, independent automatic exposure
control is enabled for each camera, leading to different shut-
ter times and image brightness variations. These factors make
stereo matching and feature tracking more challenging.

Dataset IV is based on the EUROC MAV Machine Hall 05 se-
quence, which introduces much more rapid motion compared to
Dataset III. This significantly increases the difficulty of VIO es-
timation due to additional error sources, including motion blur
in visual data, abrupt IMU error accumulation, and exacerbated
time synchronization errors. These challenges are reflected in
the much higher translational covariances shown in Figure 2.

4. Results

4.1 Estimation of Alignment Parameters

After performing the least squares estimation for the align-
ment parameters, their values and associated statistical met-
rics are computed. Table 1 presents the estimated alignment
parameters, their standard deviations, and the a-posteriori vari-
ance factor of unit weight upon solution convergence for both
weighted and unweighted approaches. Standard deviations of
alignment estimates that are smaller, as well as a-posteriori vari-
ance factor values closer to 1, are highlighted in bold.

From Table 1, we observe that the weighted approach yields
significantly smaller standard deviations for the estimates. This
can be attributed to the fact that the VIO-estimated state cov-
ariance in the weighted approach is much smaller than in the
unweighted method, which assumes a constant covariance of
1 m? for the estimated trajectory. Additionally, its a-posteriori
variance factor is much closer to 1. Notably, in Dataset II, the
weighted method produces an a-posteriori variance factor of
0.967, compared to 1.472 -10~3 for the unweighted method.
By incorporating the VIO-based state covariance as the obser-
vation uncertainty model, a more reasonable stochastic model
is established, as reflected in the a-posteriori variance factor.

Notably, Dataset IV shows the most significant differences in
alignment parameter estimations between the unweighted and
weighted methods. The weighted and unweighted estimations
yield ¢, values of 4.322 and 4.299, t, values of -1.855 and -
1.888, r. values of 37.690 and 37.851, and A; values of 0.012
and -0.033, respectively. This variation is likely due to the large
state covariance of the estimated trajectory in Dataset IV. How-
ever, its a-posteriori variance factor of 1.960 still suggests that
the VIO-estimated state covariance remains underestimated.

Among all datasets, Dataset II provides the a-posteriori vari-
ance factor closest to 1, indicating a strong consistency between
the VIO-estimated state covariance and the residuals of the
alignment parameter estimation. This suggests a well-modeled
state uncertainty in the VIO system.

Cov(zi, x;)

pij = ©)

02,0,

Figure 3 presents heatmaps depicting the correlation between
alignment estimates for both weighted and unweighted meth-
ods, with values computed using Equation (9). The state
covariance-based trajectory alignment generally results in
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Dataset | Weighted | t; = 0y, [m] | ¢, £ ot [m] | t,+o04, [m] | r;E+op, [deg] | Ar+ op, [s] frg

I no 1.301 + 0.030|-0.433 + 0.037 | 1.171 + 0.029 |-174.422 + 1.359|0.004 + 0.028 |9.637 -10~*
yes 1.299 £ 0.001|-0.434 £ 0.001|1.173 £ 0.001|-174.535 £ 0.058|0.005 £ 0.001 | 0.643

I no 0.716 £ 0.030|-0.312 4 0.032|1.267 + 0.028 |-177.989 + 2.211{0.030 £ 0.045 |1.472 -103
yes 0.712 £ 0.001|-0.313 & 0.001 | 1.267 £ 0.001|-178.117 £ 0.087|0.030 £ 0.002 | 0.967

- no 0.944 + 0.028|2.064 + 0.027 |0.972 + 0.022|-6.479 + 0.849 |-0.006 + 0.026 |9.483 -10~*
yes  |0.945 £ 0.002]2.063 £ 0.002 |0.972 £+ 0.001 |-6.482 + 0.054 |-0.006 + 0.002| 0.308

v no 4.299 + 0.039|-1.888 + 0.035|0.544 £+ 0.033|37.851 £ 0.263 |-0.033 £ 0.029| 0.006
yes  |4.322 £ 0.003|-1.855 £+ 0.002|0.545 + 0.001|37.690 £ 0.029 [0.012 + 0.002 | 1.960

Table 1. Alignment parameter estimates, their standard deviations and a-posteriori variance factor.

lower correlation values (i.e., |p;,;| closer to zero), particularly
for correlations involving z-axis rotation. For instance, in Data-
set IV, the correlation between z-axis rotation and ¢, is 0.46
for the weighted method and -0.54 for the unweighted method.
Similarly, in Datasets II and III, the correlation between z-
axis rotation and ¢, is 0.48 and 0.55 for the weighted and un-
weighted methods, respectively. These findings suggest that
alignment parameter estimates are more independently con- -
strained by the input trajectory data rather than being strongly
coupled through their uncertainties. As a result, the weighted
approach yields a better-conditioned estimation process.
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Table 2 presents the numerical values of APE for both un-
weighted and weighted approaches. Translational and rota-
tional errors are reported in terms of their mean, standard devi-
ation, and root-mean-square error (RMSE). The smaller value
in each entry is bolded to highlight the contrast.
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ods is not substantial. The results indicate that the weighted
alignment yields smaller mean translational errors for Datasets |
and II. Specifically, Dataset I shows mean translational errors of
0.0643 m and 0.0645 m for the weighted and unweighted meth-
ods, respectively, while Dataset II reports 0.0817 m and 0.0818
m. Dataset III achieves lower mean rotational and RMSE val-
ues, with mean rotational errors of 2.6131° and 2.6157° for the
weighted and unweighted methods, respectively, and RMS ro-
tational errors of 2.6483° and 2.6508°. Additionally, Dataset
IV exhibits a smaller standard deviation in translational error,
measuring 0.0609 m for the weighted method and 0.0742 m
for the unweighted method.
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Dataset II exhibits the highest values across all rotational error
metrics, likely due to unstable VIO initialization and the pres-
ence of substantial circular motion, which complicates orienta-

tion alignment and amplifies orientation errors. Figure 3. Heatmap comparison of alignment parameter

correlations for Dataset I, 11, III, IV.
The largest difference in both translational and rotational errors

between the unweighted and weighted methods is observed in
Dataset I'V, which corresponds to its large state covariance. Ad-
ditionally, Dataset IV exhibits the highest translational error,
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aligning with its large state covariance in the estimated traject-
ory and the corresponding a-posteriori variance factor.

Translational error [m]| Rotational error [deg.]

Dataset | Configuration| Mean £+ o0; |RMS Mean + 0, |RMS

unweighted |0.0645 + 0.04020.0760 |1.1505 + 0.7347 |1.3651

weighted 0.0643 + 0.0407|0.0761 |1.1602 + 0.7765|1.3961

- unweighted |0.0818 + 0.0463|0.0940 |3.1679 + 2.0795|3.7910

weighted 0.0817 + 0.0467|0.0941 |3.1914 +2.1436|3.8445

unweighted |0.0489 + 0.0213|0.0533 |2.6157 + 0.4302|2.6508
111

weighted |0.0489 + 0.0213|0.0533 |2.6131 + 0.4302 |2.6483

unweighted |0.1712 + 0.0742|0.1866 |0.7258+ 0.3451 |0.8037

weighted 0.1899 + 0.0609 0.1994 |0.7630 + 0.4000|0.8615

Table 2. Comparison of translation and rotation errors across
datasets.

estimted

reference

—— reference

estimted

y [m]

x [m] x [m]

(a) Prior-alignment (b) Post-alignment

Figure 4. 2D visualization of the estimated and reference
trajectories for Dataset I, shown before and after alignment.

5. Conclusions

In this paper, we apply state covariance-based trajectory align-
ment using the estimated state covariance from a SOTA
filtering-based VIO system, Open-VINS. Additionally, we dis-
cuss an approach for assessing the quality of VIO state covari-
ance estimation based on the a-posteriori variance factor of unit
weight, which is computed after the convergence of weighted
alignment parameter estimation.

Both the alignment parameter estimation results and the traject-
ory evaluation outcomes are compared against those obtained
from the unweighted alignment approach. Statistical analysis
shows that the weighted method yields smaller standard devi-
ations in alignment state, generally lower alignment state cor-
relations, and a better a-posteriori variance factor compared to
the unweighted approach.

While the APE values from both methods do not show signi-
ficant differences, state covariance based trajectory alignment
demonstrates smaller mean translational and rotational errors,
as well as reduced standard deviations, for certain datasets.
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