
Aerial Insights: Advancing Nitrogen Estimation in Field Crops using Multispectral Imaging 
 

 

Amir M. Chegoonian 1, Keshav D. Singh 1*, Charles M. Geddes 1, Christian Hansen 2, and Hongquan Wang 1 

 
1 Agriculture and Agri-Food Canada (AAFC), Lethbridge Research and Development Centre, Lethbridge, AB, Canada.  

2 John Deere & Company, Wheatland County, Strathmore, AB, Canada. 

 

 

 

Keywords: Multispectral imaging, Nitrogen content, Machine learning, Nitrogen use efficiency, Crop management. 

 

 

Abstract 

 

Estimating the nitrogen (N) content of crops is crucial for determining key indicators such as nitrogen use efficiency (NUE). Traditionally, most 

methods for assessing N content have been destructive, time-consuming, and labor-intensive. In this study, we present a non-destructive approach 

using unmanned aerial vehicle (UAV) multispectral imagery to estimate crop nitrogen content at various growth stages. Multispectral drone data 

were collected over canola and wheat fields at three growth stages across two experimental sites in Alberta, Canada, over two growing seasons 

(2023–2024). Simultaneously, leaf tissue samples were gathered from different nitrogen treatment levels, each replicated four times. Multiple 

machine learning (ML) models were developed and tested to predict plant nitrogen uptake. Our findings indicate that multispectral imagery can 

estimate N content in canola with a root mean square error (RMSE) ranging from 0.38 to 0.71 and a coefficient of determination (R²) between 0.77 

and 0.92. For wheat, the RMSE values ranged from 0.33 to 0.68, with R² values between 0.5 and 0.89. The models showed good transferability 

across both study sites and two years, suggesting the feasibility of scaling N-content estimation to broader areas. Overall, our results highlight the 

strong potential of UAV-based multispectral imaging as a reliable, non-invasive tool for estimating nitrogen-related parameters, including plant N-

uptake and NUE. 

 

 

1. Introduction 

In precision agriculture, nitrogen (N) fertilizer is vital for 

improving crop yields and enhancing nutritional quality 

(Raghuram et al., 2022). However, the overuse and inefficient 

application of N fertilizers contribute significantly to greenhouse 

gas (GHG) emissions and pose considerable environmental risks 

(Herman et al., 1995). Therefore, accurately monitoring crop 

nitrogen status across various growth stages is critical for 

maintaining an optimal soil-plant nitrogen balance (Yousfi et al., 

2019) and for assessing nitrogen-use efficiency (NUE). 

 

Traditional methods for determining plant nitrogen content rely 

on destructive sampling techniques, which are often subjective, 

labor-intensive, time-consuming, and costly. In contrast, high-

throughput multispectral imaging (MSI) has emerged as a 

promising non-destructive alternative for measuring plant 

nitrogen uptake, offering scalability for large-scale agricultural 

monitoring (Perich et al., 2021). 

 

While remote sensing has been used for crop traits estimation for 

over a decade (Perich et al., 2021; Thieme et al., 2024), most of 

the earlier work focused on satellite-based observations (Thieme 

et al., 2024). Even with the increasing adoption of unmanned 

aerial vehicles (UAVs), their use has primarily been limited to 

mapping applications (Thieme et al., 2024; Valarezo-Plaza et al., 

2024). Consequently, estimating crop N-content has remained a 

complex and often impractical task with traditional airborne 

remote sensing systems (Loozen et al., 2018). However, recent 

advancements in compact, lightweight multispectral sensors 

specifically designed for UAV platforms have enabled a range of 

new capabilities that were previously inaccessible (Phang et al., 

2023). Among these, estimating nitrogen content has become 
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especially valuable due to its implications for both agricultural 

productivity and environmental sustainability. 

 

A number of recent studies have explored the feasibility of 

estimating N-content using  multispectral and hyperspectral 

imagery (Chegoonian et al., 2024; Peddle et al., 2024). For 

example, one study successfully employed data fusion 

techniques and machine learning algorithms to estimate nitrogen 

levels in winter wheat (Ding et al., 2022). By combining 

multispectral, RGB, and thermal infrared imagery, the study 

demonstrated that machine learning models can effectively 

predict nitrogen content. Similarly, UAV-based hyperspectral 

imaging has been used to estimate nitrogen in paddy rice, with 

vegetation indices and ML approaches accurately capturing both 

leaf and whole-plant nitrogen levels at various growth stages 

(Wang et al., 2021). 

 

In this study, we present findings on nitrogen content estimation 

in canola and wheat crops subjected to different nitrogen 

treatments. Using two years of multispectral imagery collected 

via UAV, we evaluated the performance of six machine learning 

models: Partial Least Squares Regression (PLSR), Support 

Vector Regression (SVR), Extreme Gradient Boosting 

(XGBoost), multi-layer perceptron artificial neural networks 

(ANN), Random Forest (RF), and Gradient Boosting Regression 

(GBR). Model predictions were validated using ground-truth 

data obtained from leaf tissue sampling conducted throughout the 

growing season in two sites in Alberta, Canada. The following 

sections provide a comprehensive overview of the methodology, 

followed by detailed results and discussion. 
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2. Materials and Methods 

2.1 Study Sites 

The study was carried out on two sites: an Agriculture and Agri-

Food Canada (AAFC) trial at Lethbridge County (Fairfield farm 

- 49°42'12.7"N, 112°41'51.4"W) in Southern Alberta and a John-

Deere  (JD) trial at Wheatland County (Strathmore - 

51°3'30.17"N, 113°10'26.34"W) in central Alberta. For 

simplicity, the former trial will be referred to as “AAFC” and the 

latter as “JD” in the following text. While the former site was 

seeded by spring wheat and canola for 2023 and 2024, the latter 

was only planned in 2024.  

 

These two sites were selected based on uniform soil fertility, 

texture, and moisture characteristics. AAFC-Fairfield is an 

irrigated site, and it has an average temperature of 14°c and 

accumulated precipitation of ~200 mm during the growing 

season, while these values are 13°c and ~250 mm for the JD-

Strathmore trial, which is a rain-fed site. The landscape of the 

AAFC field is gently rolling with a very low slope of around 2%, 

where the dominant soil is an Orthic Dark Brown Chernozem. In 

contrast, the JD trial exhibits a hummocky or ridged, medium-

relief terrain with a steeper, limiting slope of approximately 9%. 

Here, the soils include both Orthic Dark Brown Chernozem and 

Calcareous Dark Brown Chernozem on moderately coarse-

textured sediments. Together, these diverse soil and weather 

characteristics guarantee that the results of this study could 

represent irrigated and non-irrigated agricultural fields in 

Alberta.  

 

2.2 Experimental Design 

The experimental design of the trials followed a randomized 

complete block design (RCBD), with Lethbridge having 10 

treatments and 4 replicates (40 plots total) and Strathmore having 

10 treatments and 2 replicates (20 plots total), including untreated 

control plots. The field trials ensured uniform soil fertility, 

texture, and moisture conditions, with nitrogen applied at 

variable rates based on location-specific equipment and 

capabilities.  

 

At AAFC, plots measured 2.5m × 6m with 2.5m pathways and 

4m alleyways, while JD plots were 76.2m × 12.2m with 12.2m 

pathways. The seeding rate was 120 seeds/m² for canola and 300 

seeds/m² for wheat. Nitrogen treatments included an untreated 

control, 100% nitrogen at seeding, and various split applications 

between seeding time and in-crop, i.e., 90%-10%, 80%-20%, 

70%-30%, 60%-40%, 50%-50%, 70%-0%, 50%-20%, 50%-0%. 

The only difference between this design for 2024 and the design 

for 2023 was the addition of three extra treatments, bringing the 

total to ten treatments per crop compared to seven treatments in 

2023. We used 46-0-0 fertilizer, with UAN applied at late 

tillering for wheat and at the 4-6 leaf stage in canola prior to 

bolting. These treatments helped assess the effects of different 

nitrogen application strategies on crop yield and quality. Figure 

1 shows the location of two sites within Alberta and Canada as 

well as the location of canola and wheat trials in the AAFC and 

JD sites. 

 

Figure 1. The geographical location of field trials (a) in Canada, 

(b) in Lethbridge County agricultural division, (c) in Wheatland 

County, and (d) showing canola and wheat plots at Fairfield and 

Strathmore trials with their associated UAN application at and 

after seeding. 

 

2.3 Data Acquisition 

Figure 2 presents a workflow chart of the methodology used in 

this study. Data collection included soil samples for pre-seeding 

and post-harvest nitrogen levels, as well as weather data from on-

site stations monitoring rainfall, temperature, and soil moisture.  

 

 
Figure 2. A flowchart of the methodology of the study. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-8-2025 
46th Canadian Symposium on Remote Sensing (CSRS) 

“From Mountains to Kitchens: Remote Sensing Innovations for Water, Food & Security”, 16–19 June 2025, Lethbridge, Canada

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-8-2025-7-2025 | © Author(s) 2025. CC BY 4.0 License.

 
8



 

For MSI imaging, a RedEdge multispectral camera (MicaSense, 

Inc., Seattle, WA, USA) mounted on a DJI-M300 RTK drone (SZ 

DJI Technology Co., Ltd., Shenzhen, China) gathered imagery 

during in-crop nitrogen application (Baseline - BL), two 

intermediate dates (~30DAT and ~60DAT), and during crop 

maturity before harvesting (only for the AAFC trial). UAV flight 

altitude was set to 25m above ground level (AGL), with the 

imaging speed of 2.5 m/s. The flight parameters were established 

with the overlap of 80%-85% in forward and lateral directions 

that resulted in a ground sampling distance (GSD) of 1.63 cm/pix. 

A D-RTK2 GNSS base station was deployed during the image 

acquisition to improve the positional accuracy. Imagery was 

captured on sunny days around solar noon and calibrated using 

the known values of a white reflectance panel along with the 

downwelling irradiance sensor (DLS-2) to compensate for the 

variable incident light conditions (Panigrahi et al., 2025). Figure 

3 shows some steps of UAV data collection conducted in this 

project. 

 

 

Figure 3. Photos of some steps of data collection conducted in 

this project. (a) UAV equipped with MSI sensor before flight, (b) 

calibration tarp used for radiometric calibration of taken images, 

(c) UAV over the crops with GPS instrument to orthorectify 

images. 

 

Coinciding with UAV image capture, soil and leaf tissue samples 

were also collected for nutrient analysis at the Down to Earth 

Labs, Lethbridge, AB (www.downtoearthlabs.com). After crop 

harvest, grain yield, protein content, and nitrogen content were 

measured for wheat, while yield, protein, nitrogen, and oil 

content were measured for canola using a John Deere 

HarvestLab™ 3000 sensor. These ground-truth data were then 

matched with their corresponding image values and extracted by 

averaging reflectance values over corresponding plots. This 

results in 263 matchups (N) for each crop for which ground-truth 

N-content and multispectral reflectance values are known. 

 

2.4 Image Processing and Analysis 

Imagery data were processed using a commercial software 

package (Pix4D) and further analyzed using open-source Label 

Studio and Python packages to generate geo-referenced 

orthomosaic maps (Figure 4), extract plot-based reflectance 

values, and develop ML models, respectively.  

 

  
Figure 4. UAV captured MSI orthomosaic imagery generated for 

canola (left), and wheat (right) field trials in Lethbridge, AB. MSI 

images are visualized in true-color composition. 

 

We then used PLSR, as a regression technique, since it is suitable 

for data with multicollinearity, making it useful for modeling 

spectral data (Geladi et al., 1986). SVR, based on Support Vector 

Machines, was also employed as it excels in handling non-linear 

relationships by mapping data to a higher-dimensional space 

(Drucker et al., 1997). XGBoost, GBR, and RF, as ensemble 

learning methods, which are popular for their speed and 

performance in structured data, especially with tabular data 

(Chen and Guestrin 2016), were also tested. Lastly, we 

investigated ANN as it leverages layers of interconnected nodes 

to capture complex patterns, making it adaptable across various 

datasets, particularly those with high-dimensional features 

(LeCun et al., 2015).  

 

These ML models were trained by considering 80% of matchups 

and evaluated by the remaining in a five-fold cross-validation 

approach that set aside one fifth of the data in each round as 

unseen data. During the training phase, hyperparameters of the 

models were determined using a grid search algorithm that uses 

one fifth of training data for validation. 

 

The performance of the models was evaluated based on their 

accuracy in estimating nitrogen uptake in terms of Coefficient of 

Determination (R2), Slope, Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) estimates. The formulation of these 

evaluation metrics are provided in Equations 1-4, where: 𝑦𝑖 is the 

observed value, 𝑦̂𝑖  is the predicted value, 𝑦̅ is the mean of 

observed values, n is the number of observations, and 𝑦̅̂ is the 

mean of predicted values. 

 

 

Eq. 1 

 

Eq. 2 

 

Eq. 3 

 

Eq. 4 

. 

 

3. Results and Discussion 

3.1 Canola 

Table 1 shows the evaluation results for estimating nitrogen 

content in canola at AAFC and JD sites using different machine 

learning models for both MSI dataset in 2023 and 2024 years. 

The results suggests that MSI data can retrieve N-content in 
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canola with reasonably high accuracy (R² > 0.8 and RMSE ≈ 0.5). 

Although all six tested models perform well, RF shows the best 

accuracy for MSI data. 

 

Table 1. The results of nitrogen content estimation in canola at 

the AAFC and JD sites, utilizing various machine learning 

models. N shows the number of samples. Best performances are 

highlighted in bold text. 

Model Metric 

MSI 

AAFC JD 

2023 2024 2024 

PLSR 
R2 0.92 0.78 0.84 

RMSE 0.39% 0.63% 0.44% 

SVR 
R2 0.92 0.84 0.84 

RMSE 0.38% 0.62% 0.45% 

XGBOOST 
R2 0.77 0.81 0.82 

RMSE 0.59% 0.71% 0.47% 

ANN 
R2 0.91 0.89 0.13 

RMSE 0.38% 0.5% 0.87% 

RF 
R2 0.93 0.9 0.87 

RMSE 0.38% 0.49% 0.4% 

GBR 
R2 0.8 0.83 0.84 

RMSE 0.71% 0.69% 0.46% 

 N 84 119 60 

 

 

To gain a more comprehensive understanding of model 

performance and limitations, we combined all available data—

regardless of location (AAFC and JD sites) or year (2023 and 

2024)—and used this aggregated dataset to train and test the 

machine learning models. This approach allowed us to evaluate 

model generalizability across varying conditions. The results of 

this assessment are presented in Figure 5. 

 

 

Figure 5. Evaluation results for nitrogen content estimation in 

canola using MSI data with different ML algorithms for all 

samples collected in two locations (AAFC, JD) and two years 

(2023 and 2024). 

This assessment revealed the strong performance of the SVR 

model in estimating canola nitrogen uptake using MSI data, 

followed closely by the Random Forest (RF) model. The superior 

performance of SVR in this context may be attributed to its 

robustness in handling larger datasets and managing uncertainties 

more effectively than RF. With the exception of PLSR, all other 

tested models were able to predict nitrogen uptake from MSI data 

with R² > 0.80. 

 

3.2 Wheat 

Table 2 shows the evaluation results for estimating nitrogen 

content in canola at AAFC and JD sites using different machine 

learning models for MSI dataset in 2023 and 2024 years. The 

result shows that MSI data can retrieve N-content in wheat with 

reasonably high accuracy (R² > 0.7 and RMSE ≈ 0.6). Despite 

the good performance of all six tested models, SVR shows the 

best accuracy. 

 

Table 2. Presents the assessment results of nitrogen content 

estimation in wheat at the AAFC and JD sites, utilizing various 

machine learning models with MSI dataset for the years 2023 and 

2024. N shows the number of samples. Best performances are 

highlighted in bold text. 

Model Metric 

MSI 

AAFC JD 

2023 2024 2024 

PLSR 
R2 0.82 0.67 0.75 

RMSE 0.39% 0.57% 0.4% 

SVR 
R2 0.87 0.69 0.8 

RMSE 0.35% 0.56% 0.36% 

XGBOOST 
R2 0.71 0.57 0.63 

RMSE 0.52% 0.68% 0.47% 

ANN 
R2 0.89 0.65 0.75 

RMSE 0.33% 0.6% 0.4% 

RF 
R2 0.6 0.59 0.7 

RMSE 0.65% 0.67% 0.43% 

GBR 
R2 0.53 0.5 0.69 

RMSE 0.74% 0.75% 0.45% 

 N 84 119 60 

 

We also asses the models based on combining all available data, 

regardless of locations and years to evaluate model 

generalizability across varying conditions. The results of this 

assessment are presented in Figure 6. 

 

 

Figure 6. Evaluation results for nitrogen content estimation in 

wheat using MSI data with different ML algorithms for all 

samples collected in two locations (AAFC, JD) and two years 

(2023-2024). 

 

The stronger performance of SVR (R² ≈ 0.7 and RMSE ≈ 0.5%) 

compared to the other models for estimating the N-content of 

wheat using MSI data is drawn in Figure 6. SVR substantially 

outperformed the other models (10% higher accuracy). Again, 

the superior performance of SVR may be attributed to its 

robustness in handling larger datasets and managing uncertainties 
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more effectively. All other models predict nitrogen uptake from 

MSI data with an R² < 0.60, with PLSR showing the lowest 

accuracy, a similar finding to what has been observed for canola. 

Overall, the estimation of N-content in wheat shows a substantial 

decrement in accuracy compared to predicting N-content in 

canola. The superior performance of the canola models suggests 

that differences in plant structure and spectral reflectance 

influence predictive accuracy. This is supported by findings in 

previous studies (Liu et al., 2023). 

 

4. Conclusion 

The results from this study demonstrated that N-uptake of canola 

and wheat crop could be estimated using multispectral drone 

sensors with high accuracy indicated by a high coefficient of 

determination (R² > 0.7) and low root mean square error (RMSE 

< 0.5) during the growing season. This promises that ML models, 

particularly SVR that overcome the other two models, could be 

applicable across different regions and crop types. However, the 

study faced limitations, particularly the small dataset size, which 

restricted the robustness of conclusions. Overfitting remains a 

concern with such a limited dataset, and future research should 

aim to incorporate more data from additional trials at diverse 

climatic regions to ensure broader generalizability.  

 

The strong performance of the models may serve as a benchmark 

for future research. A key avenue for further investigation could 

involve exploring high-resolution hyperspectral imagery to 

estimate N uptake, allowing for a comparison of different 

datasets and methodologies to evaluate their relative advantages. 

This would provide deeper insights into the capabilities of 

optimal wavebands selection using advanced imaging 

technologies and refine current methods for assessing nitrogen 

dynamics in crops. 

 

These findings represent an initial step in a larger effort to 

employ imaging technologies for more precise nitrogen 

management in agriculture. Accurate nitrogen uptake estimates 

can lead to improved nitrogen use efficiency assessments across 

different treatments and farming practices. In the long-term, this 

will likely have broader economic and environmental impacts by 

reducing nitrogen losses to the environment through leaching, 

emissions, or volatilization. 
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