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Abstract

Historical Rural Settlements (HRS) are recognised by ICOMOS-IFLA as tangible cultural heritage, where plane forms 
preserve multi-layered morphological value accrued over successive eras. These plane forms not only reflect past settlement 
planning and community interactions but also reveal contrasts between vestigial historical cores and more recent modern 
developments. Although digital documentation has become a mainstream conservation approach, it often overlooks the 
interpretive dimension that connects raw geometric data with cultural significance. To address this gap and manage the 
complexity of large-scale image acquisition, annotation, and analysis, this study treats image-based artificial intelligence (AI) as 
a cultural sensor for HRS morphology. A re-peatable, open-source workflow that integrates high-resolution remote sensing, 
expert-driven annotation, hierarchical segmentation (Mask R-CNN), and building(polygon) regularisation was proposed. In the 
Taihang Baxing (THBX) region of China, 778 HRS samples were processed through a two-stage model with several supportive 
techniques: the first differentiates historical and modern regions, and the second extracts building footprints within each region. 
Validation on THBX demonstrates reliable differentiation of hierarchical plane forms and efficient generation of a vectorised 
digital documentation dataset. By embedding geospatial registra-tion and building regularisation tools, the workflow ensures 
downstream usability for use cases like geospatial statistics, quantitative morphology and evolutionary mechanisms, providing 
insights for the rural planning consequently. The proposed workflow emphas-ises heritage morphological value and digital 
documentation as guiding principles, demonstrating that AI as technical agents can perceptually interpret cultural significance. 
It can serve as a tool for extracting and highlighting the historical value of HRS in the formulation of conservation strategies and 
development plans, contributing to sustainable and inclusive rural heritage management.

1. Introduction

Rural settlements are clusters of buildings in rural areas that
provide multifunctional spaces for rural living and play an im-
portant role in managing the local population and shaping re-
gional and cultural identity (Gong et al., 2022). The forma-
tion of rural settlements is the result of long-term interaction
between human society and the natural environment (Shi et
al., 2022). This interaction has evolved and accumulated over
time, endowing rural settlements with significant cultural signi-
ficance and historical value (Tarrafa Pereira da Silva and Pereira
Roders, 2012). According to the principles of ICOMOS-IFLA,
rural settlements, as a physical aspect of rural areas, should be
regarded as tangible cultural heritage. Different regions of rural
settlements are linked to different historical periods, so when
they are discussed as heritage, their types and degrees vary
(ICOMOS-IFLA, 2017). Historical rural settlements (HRS) are
those that were formed in earlier periods and retain traces of
the built environment and social activities of different periods,
representing a type of heritage with historical significance and
value (Yuan et al., 2024). Unlike typical tangible built herit-
age, such as archaeological sites and historic buildings, HRS
is a type of living, dynamic heritage that is constantly oper-
ating and involves multiple stakeholders (Du and Shi, 2019).
Therefore, rural settlements are constantly subject to internal

or external interventions. Currently, industrialisation and urb-
anisation threaten rural settlements by both neglect and over-
exploitation, making rural heritage increasingly vulnerable to
abandonment, loss, or drastic transformation (Bai et al., 2023).
Faced with such challenges, the historical value and cultural
identity that HRS has accumulated over many years appear even
more fragile and require conservation measures. With the emer-
gence of digital twin perspectives and related technologies, the
digital documentation of tangible cultural heritage has become
an novelly effective means of conservation (Argyridou et al.,
2023). Although there is still debate about relative authenticity,
the advantages of digital documentation over invasive physical
methods are that it does not harm the essence of the heritage,
is highly efficient, and can be combined with more interpret-
ive information (Galeazzi, 2018). There are already research
and engineering initiatives that have applied concepts and tech-
niques from the digital documentation of small-scale tangible
heritage to the conservation of HRS (Nancarrow et al., 2021).
Specifically, the popularity of open remote sensing image ser-
vices and the improvement of UAV orthophoto and street view
image capture provide a solid foundation for digital document-
ation.

Plane form is an attribute of HRS that suit for digital document-
ation. They are 2-D illustrations of the spatial relationships
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between buildings within HRS from a bird’s-eye-view (Zhu
and Liu, 2023), reflecting the macro-level orderly integration
of settlement construction, mostly from an individual micro-
level perspective. Pre-existing plane forms in HRS are stable
and resistant to fundamental alters, so it also has the features
of “palimpsest”. The plane forms corresponding to areas de-
veloped in different periods are overlapped like layers, which is
also a part of the built environmental value of HRS as cultural
heritage. According to TheBurraCharter, the first step in
investigating and managing places of cultural significance (cul-
tural heritage places) is to understand their significance (Aus-
tralia ICOMOS, 2013). By studying the plane forms associated
with different periods in HRS, the wisdom of settlement plan-
ning and the social interaction patterns of rural communities in
different eras can be discovered. Thus, identifying plane forms
related to early stages of development in historical rural settle-
ments through human knowledge and experience helps judge
and reveal their cumulative cultural significance and provides
a perceptible basis for their historical and morphological value
(Ding, 2021). Recently, with the development of artificial intel-
ligence (AI), image analysis based on deep learning has contrib-
uted to the trend of HRS digital archiving and has already been
linked to plane forms. Deep learning-based image analysis has
not only enhanced the automation of image interpretation but
also accelerated the preliminary screening of spatial features
in rural settlements, significantly reducing the cost and time re-
quired for subsequent manual analysis and field surveys (Aamir
et al., 2023). Reviewing relevant research, deep learning has
already performed well in such field, with generating datasets
of rural plane forms with broad adoption across diverse research
and intervention contexts (Deng et al., 2024). However, dif-
ferent AI models are mostly used to capture the overall plane
forms of villages (Zhang et al., 2021) or to classify the physical
characteristics of buildings (Wang et al., 2023), rather than to
detect the layered features of the internal plane forms of HRS
from a cultural perspective. Limited studies have demonstrated
the potential of AI to detect plane forms in historical regions at
the box-level, but has not explained its segmentation capabilit-
ies at the mask-level (Tao et al., 2023). Therefore, intelligent
hierarchical recording of HRS region-level plane forms based
on AI is a feasible goal.

To bridge the gap, this paper first aims to demonstrate the cul-
tural experience of AI-based image analysis as a sensor in the
recognition of plane forms in HRS, i.e., the ability to distin-
guish between regions with obvious historical value in terms of
plane forms and regions that exhibit a higher degree of modern-
isation. A complete and robust digital documentation workflow
based on expected positive interpretation results is established
to manage the extracted hierarchical data of HRS plane forms,
using several technical steps to optimise AI performance. Open
source and standardisation are the principles of this workflow,
ensuring broad optimisation possibilities and low barriers to
use. A case study at Taihang Baxing (THBX) in China was
performed, generating a hierarchically local plane forms data-
set while demonstrating potential use cases.

2. Methodology

2.1 Workflow

Figure 1 illustrates the key steps included in the digital doc-
umentation workflow. Three technical parts were involved,
which are distinguished by colour for visualisation. Generat-
ing image data based on deep learning is the most critical step

(Red), which manifests itself in the form of performing instance
segmentation tasks in computer vision. It includes two suc-
cessive deep learning modelling (DLM) steps. The first step
generates region-level hierarchical data, recorded as DLM(A),
while the second step infers the building footprint locations and
masks within the region, defined as DLM(B). To support two
DLMs respectively, the input data needs to undergo different
preprocessing (Blue). The basic image data was collected from
open remote sensing map services, and before being input into
DLM(A), historical regions and modern regions were annot-
ated based on knowledge and evidence. For DLM(B), only the
building footprints are labelled, which does not require relev-
ant survey experience, but requires the identification of repres-
entative remote sensing images of HRS. After executing two
DLMs, post-processing also helps to produce optimised res-
ults (Green). After completing DLM(A), instances in the two
classes are merged. Remote sensing images will use the two
types of semantic boundaries after fusion as a reference for seg-
mentation, outputting semantic sub-images that highlight his-
torical regions, modern regions, and backgrounds, and then per-
forming DLM(B) data pre-processing and inference based on
them. Subsequently, the DLM(B) inference results will be re-
organised, and at this point, the building footprints in different
sub-images will be automatically categorised. Finally, in order
to ensure that the digitally archived dataset can be used more
widely, building regularisation (Li et al., 2022b) and geospatial
registration (Loudon et al., 1980) will be embedded.

2.2 Data Collection

China has a long history of agricultural development, which
has given rise to a large number of rural settlements (Li et al.,
2022a). As history progressed, the plane forms of Chinese rural
settlements have undergone a transition from micro-scale self-
organisation during the imperial period to macro-scale institu-
tionalised construction in modern times, reflecting the progress
of construction technology and the extension of the state’s cent-
ralised governance logic into rural areas (Jin, 1983). In the
early days of Reform and Opening-up era, rural settlement con-
struction was further standardised and unified with policy sup-
port (Ye and Huang, 2016). During this period, plane forms
of HRS were regarded as “inefficient” and “disorder” spatial
forms sometimes (Min, 1994), since their heritage value was
largely overlooked. Nation-led rural settlement construction
practices gradually followed common strategies such as unified
design, regular planning, centralised procurement, and mass
implementation, with the plane forms became increasingly reg-
ular and grid-like consequently (Wang et al., 2017). In many
HRS, this trend led to a morphological rupture between newly
constructed areas and the historical cores. Logically, reviewing
the changes in the construction of China’s HRS, historical re-
gions in the HRS are defined as areas built during the Chinese
imperial era, and their plane forms often have self-organising
features. In contrast, modern regions refer to areas in the HRS
that were built in modern China, with more geometric and reg-
ular plane forms.

Fortunately, due to cost-saving considerations and practical
constraints, many historical core regions were not demolished
(Zhao, 1982), making them crucial samples for research on in-
vestigation and conservation of rural cultural heritage places. In
order to preserve traditional culture, China recently requires the
construction of revitalised villages with local identities, while
discovering the morphological value retained in the plane forms
of Chinese HRS is crucial to this (Zhou et al., 2019). Therefore,
conducting this study in China has practical significance.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1029-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1030



Figure 1. The digital documentation workflow of recording plane forms of HRS hierarchically

THBX has historically served as an important transportation
route for communication between its neighbouring areas for
several centuries (Figure 2a). In previous studies, THBX has
been shown to retain significant amounts of HRS (Yuan et al.,
2024). The HRS dataset used in this study is the “List of
Traditional Chinese Villages (TCV)” published by Ministry of
Housing and Urban-Rural Development of the People’s Re-
public of China since 2012. The HRS on the list are recog-
nised by a committee of experts in the conservation and devel-
opment of rural settlement, and the latest entries are updated
every two years. As illustrated in Figure 2b, they are usually
rich in historical information and cultural landscapes, with their
plane forms, retaining significant historical identities (Nie et al.,
2023). Totally, there are 778 HRS in the list located in THBX.

With the development of open high resolution remote sensing
imagery services, it is not a hardship to collect raw plane forms
data of the HRS. More and more service providers are making
their customised global remote sensing imagery freely avail-
able, which makes it possible to obtain remote sensing imagery

Figure 2.
(a) Spatial dataset of HRS in THBX (Yuan et al., 2024)
(b) Difference of plane forms in THBX’s HRS

for a defined range at specific geographic coordinates through
crawler-like tools. Thus, the plane form of a particular HRS
can be read by examining remote sensing imagery within a spe-
cific area around its coordinate. After attempts and statistics,
4 square kilometres is a reasonable range as it can cover the
complete plane form of each HRS in THBX as well as limit
the invalid information within the extracted remote sensing im-
ages. ESRI World Imagery Basemap (up to one-meter) was
selected as the base remote sensing dataset because it ensures
image quality and geospatial accuracy. The map works seam-
lessly with ArcGIS Pro, significantly optimising the technical
efficiency of the entire process from data acquisition to ana-
lysis.

2.3 Data Pre-processing

The proposed workflow involves two parts of customised deep
learning of remote sensing images, and the data they require
needs to be pre-processed differently. DLM(A) needs to differ-
entiate and label the historical regions in HRS from the modern
ones in the remote sensing image. The knowledge accumulated
from field research in THBX and the HRS high-resolution or-
thophoto with modelled point cloud acquired via UAV provided
the groundwork for this task, enabling accurate boundary de-
termination between regions. The reason for labelling the mod-
ern region is to provide a contrast to the annotation of historical
regions in order to highlight its typical character. Totally, 31 in-
vestigated HRS were labelled as samples and Figure 3a shows
an example with essential supporting evidence and process.

In order to record a complete categorised documentation of
HRS plane forms, the extraction of building footprints is in-
dispensable. Due to the vast extent of THBX, the availability
of the remote sensing images from different areas varies from
time to time, resulting in extreme differences in the colour style
of the extracted ones. Previous attempts at solving this problem
have triggered topic of colour consistency in remote sensing im-
ages (Zuo et al., 2024). However, to ensure the generalisation of
this workflow, the VGG-16 model pre-trained on the ImageNET
dataset is used for feature analysis of extracted remote sensing
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Figure 3. (a) Region-level annotations
(b) Building footprints annotations

images (Simonyan and Zisserman, 2015). This approach en-
sures access to information that is purely reflective of visual
content rather than specific to a particular task. Afterwards,
feature clustering is performed for the remote sensing images
to obtain the centrally located 30 HRS for building footprint
annotation. It is worth noting that buildings are small-scale in-
stances in the 4 square kilometres of remote sensing images
compared to the region-level annotation. As shown in Figure
3b, a complete image and its annotations need to be segmented
into small patches of a certain size and ensure the overlap ratio
between neighbouring ones before inputting it into DLM(B). In
this paper, the remote sensing images used for training are par-
titioned according to a size of 256*256 pixels, which balances
computational cost with information completeness. Eventually,
regular data augmentation methods are also performed, includ-
ing random rotations, random zooms, horizontal/vertical flips,
and photometric transformations (Mumuni and Mumuni, 2022).

2.4 Deep Learning Model

In the proposed workflow, the technical steps strongly rely on
the classical Mask R-CNN whose capability and performance
has been proved in the past (He et al., 2017, Deng et al., 2024)
. The implementation of deep learning modelling (DLM) re-
lies on the MMDetection toolbox. DLMs training is imple-
mented on Ubuntu 22.04 with an Intel(R) Xeon(R) Platinum
8352V CPU and an NVIDIA RTX 4090 GPU (24GB), using Py-
Torch 2.5.1 and CUDA 12.6. ResNeXt101 is consistently adop-
ted for its strong feature extraction capability, while the batch
size is set to 2 for DLM(A) and 4 for DLM(B) to accommodate
GPU memory constraints. 100 full epochs are performed with
a learning rate of 0.001. As usual, the annotated samples are
divided into training set, validation set and in the ratio of 7:3
for model training to ensure that it has reliable robustness. The
dividing principle is at intra-sample level, i.e., at least one of
the series of images from each HRS is included in each sets,
in order to allow the DLM to maximise the learning and val-
idation of annotated features of each remote sensing images.
The testing set is no longer created separately, but all images
in HRS are used for inference to directly express the general-
isation ability of the DLMs. Accuracy and Loss Function were
used to measure the convergence of model training, while Preci-
sion, Recall, f1 score, and mean Average Precision (mAP) were
used to quantify the intrinsic performance of the model. They
are commonly used evaluation metrics (Deng et al., 2024).

The evaluation of the inference quality represents the authentic
stability and adaptability of the model.

2.5 Data Post-processing

The first step of data post-processing is located between
DLM(A) and DLM(B). The results expected to be obtained
after DLM(A) inference are at the region-level. So this work-
flow will segment the remotely sensed image of HRS based
on the mask generated by DLM(A) detection. Although dir-
ectly classifying and labelling building footprints (historical
and modern) is valuable for the discovery of building-level rural
heritage (Wang et al., 2023), it must be recognised that the re-
newal of building roof materials poses a risk to era judgement,
which in turn affects the distinguishing of the region-level plane
forms of the HRS. Specifically, using a pre-trained instance seg-
mentation model from MMDetection, masks of historical and
modern regions are extracted and applied to retain only target
pixels while setting all background to black for accurate fore-
ground visualisation. To prevent loss of semantically import-
ant but unsegmented areas, all predicted mask are merged via
a pixel-wise logical Boolean OR operation and set to black, al-
lowing background regions to be explicitly preserved for more
complete and robust analysis.

The second step of data post-processing begins with geospatial
registration, using affine transformation to convert raster spa-
tial coordinates to geospatial coordinates (Loudon et al., 1980).
Meanwhile, for accomplishing the task of building footprint
regularisation, the GeoAI, which has risen to prominence in
recent years, provides a great help. As a concept, Geospa-
tial artificial intelligence (GeoAI) is an abstract workflow that
applies AI techniques fused with geospatial data, science, and
technology to accelerate real-world understanding (Janowicz et
al., 2020). GeoAI is a Python package that built following the
workflow, hosted by the Open Geospatial Solutions (Opengeos)
GitHub organisation. A variety of widely validated building
footprint regularisation methods have been included, as well
as interactive and visualised user interface. Consequently, util-
ising GeoAI’s services not only makes the proposed workflow
more concise and useful, but also allows for the future output
of HRS plane forms that can be adapted to geospatial analyses
(Wu, 2024).

3. Results

3.1 Evaluation of DLM Performance

The evaluation of model training and performance begins with
the learning curves. As illustrated in Figure 4, both models con-
verged after 100 training epochs, with steadily increasing accur-
acy and significantly decreasing loss, indicating effective and
stable training. DLM(A) reached a final accuracy of 98.93%,
with a loss stabilizing around 0.18. DLM(B) performed bet-
ter, achieving 99.21% accuracy, with loss reduced to around
0.15. The total training times for the two models were 5 hours
23 minutes 21 seconds and 54 hours 27 minutes 9 seconds,
respectively, both within an acceptable range, considering the
mass input small-scale instances of DLM(B). To further assess
the performance, four standard metrics were computed: Preci-
sion, Recall, F1-score, and mAP, as summarised in Table 1. The
evaluation results indicate that DLM(B) outperformed DLM(A)
across most metrics, with an mAP of 0.758 vs. 0.699, Pre-
cision of 0.816 vs. 0.733, and F1 Score of 0.784 vs. 0.759.
The performance gap may be attributed to the clearer and more
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Figure 4. Accuracy and Loss of (a) DLM(A), (b) DLM(B)

DLM Perfomance Metrics
mAP Precision Recall F1 Score

DLM(A) 0.712 0.733 0.786 0.759
DLM(B) 0.748 0.816 0.725 0.768

Table 1. Comparison of DLM performance metrics

structured features of building footprints. Notably, DLM(A)
achieved a relatively higher Recall score (0.786 vs. 0.755), sug-
gesting greater sensitivity in capturing fuzzy or spatially diffuse
historic regions. With comparison to existing research (Deng et
al., 2024), both DLMs demonstrated solid performance in their
respective tasks, providing reliable support for downstream fea-
ture recognition and general objects extraction.

3.2 Review of Generalisation Test

To further evaluate the practical capacity of the model and ad-
vance the digital documentation of HRS, the well-performing
model from the previous section was applied to all HRS
samples through a full-scale automated pipeline, resulting in
the vectorised plane forms dataset of HRS in THBX with geo-
graphical coordinates. Figure 5 presents several representative
examples, where the model successfully differentiates between
historical and modern regions with coherent planning layouts,
demonstrating its practical utility and accuracy for digital docu-
mentation. To verify consistency between the model results and
the initial sample selection logic, all detection outcomes were
categorised and analysed: (1) no detected regions, (2) historical
regions only, (3) modern regions only, and (4) coexisting his-
torical and modern regions (best matches the sampling reason).
As shown in Figure 6, the category (4) comprises the highest
proportion, indicating that the samples generally exhibit hybrid
spatial characteristics and validating their representativeness in
documenting HRS diversity.

Figure 5. HRS plane forms hierarchical record dataset (Partial)

3.3 Use Case: Geospatial Statistics

To demonstrate the practical utility of the produced dataset,
this section presents an initial use case from a geospatial per-

Figure 6. Proportion of different coexisting categories

spective. First, the region ratio between historical and modern
regions was calculated for each HRS sample, and the results
were visualised as a spatial distribution map. As shown in Fig-
ure 7a, the proportion of historical region varies across samples
and displays spatial clustering or dispersion patterns across the
THBX, indicating geospatial sensitivity and analytical relev-
ance. Second, to assess the suitability of the ratio data for spa-
tial analysis, a Global Moran’s I test was conducted. The results
indicate that there is a statistically significant spatial clustering
effect (Figure 7b), representing that the ratio change is depend-
ent on spatial location.

Figure 7. (a) Geo-visualisation of the historical/modern ratio
(b) Global Moran’s Index

4. Discussion

4.1 Insights and Contributions

With a considerable amount of exploration of the concept of
deep learning-based image analysis as a sensor in the field of
built environment research, it is clear that it has the potential to
expand the dimensions of the first-hand data collected. Com-
pared with general rural settlements, the plane forms of HRS
retain more complex historical information, which is particu-
larly important for understanding and highlighting the heritage
morphological value. Initially, it is important to extract the his-
torical information condensed in the plane forms from the cur-
rent built environment from the HRS, which is like a palimpsest.
However, the trend toward intelligentisation of related techno-
logies has not been fully integrated into such research topics.
Therefore, in this paper, the contribution of deep learning tech-
nology to the extraction of historical information from HRS
plane forms is explored, and a procedural and automated work-
flow is built around this core. The proposed workflow clarifies
the availability of open high-resolution remote sensing images
and provides a temporally morphological interpretation in the
HRS digital documentation.. Given that changes in the built
environment and even social relations in the development of
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rural settlements can be reflected in their plane forms, the HRS
plane forms need to be interpreted in a chronological manner.
In China, this interpretation can be preliminarily implemented
in the hierarchical classification of historical regions and mod-
ern regions. Therefore, the plane forms of HRS are not only
represented by single current characteristics, but also by the ex-
tent and pattern of change. This perspective on change is more
appropriate for HRS because it is more in line with HRS’s pos-
itioning as a kind of living heritage. It is hoped that this work-
flow, and the resulting digital documentation dataset of HRS
plane forms, will contribute to and provide insights into a vari-
ety of domains.

First, compared with the previous research paradigm of treating
HRS and even rural settlements as single entities in plane forms,
and the application paradigm of using computer vision to dir-
ectly extract building footprints, this study verifies the ability
of AI to classify region-level plane forms in HRS through pixel
feature classification. Observed from remote sensing images of
HRS, the certified historical regions (often officially designated
conservation areas) have unique plane forms. However, al-
though judging historical morphological information based on
regional characteristics can avoid the biases from roof materials
renewal, it is highly dependent on the quality or knowledge of
the sensors (often experts in the fields of architecture or urban
and rural planning). Fortunately, the experiments in this pa-
per verify that features recognised based on human professions
can also be identified impartially by AI, which has extraordin-
ary significance in terms of both concept and application. It
demonstrates that AI has broader potential in the investigation
of plane forms in HRS, becoming a cognitive co-constructor in
understanding heritage, and also produces acceptable explan-
ations from the perspective of technical agents, verifying that
historical regions in HRS do have special visual features.

Second, based on the new advantages of AI mentioned above, a
digital documentation workflow that bridges the gaps between
different technologies was produced in this study. The proposed
workflow is interlinked and can truly output a HRS plane forms
hierarchical digital dataset format that is applicable to most re-
search with novel temporal perspective. The region-level de-
tection results based on deep learning can be regarded as la-
bels for building footprints in this workflow. By segmenting
the remote sensing image patches corresponding to the region
mask, representing irrelevant areas in black and maintaining the
original image size, multiple extraction results from the same
HRS can be easily re-merged. Building regularisation in the
workflow can simplify and vectorise the pixelated mask bound-
aries of building footprint extraction, reducing redundant in-
formation while optimising the visualisation of the dataset. It is
clear that this workflow originated from straightforward, prac-
tical interdisciplinary heritage morphology research, can be dir-
ectly replicated to support HRS plane form surveys, and can be
optimised by incorporating other algorithmic technologies ac-
cording to different needs. GeoAI was integrated into the fi-
nal step of the workflow, which retained the geo-information
of the output dataset, allowing it to be used for larger-scale
geospatial analysis. Moreover, another contribution of this pa-
per is the hierarchical dataset of plane forms generated using
THBX’s HRS as an example. The current interest in research-
ing THBX rural heritage does not match its confirmed histor-
ical and cultural value, with most focusing on geospatial distri-
bution that already integrated with temporal perspective rather
than settlement morphology. Therefore, the customised dataset
from this workflow is a commitment to specific research cases

in this paper, which may inspire more morphological research
on THBX’s HRS, which can, in turn, promote this recording
format more widely, forming a recognised HRS digital record-
ing format and form a publicly recognised standard.

4.2 Limitations and Future Opportunities

It must be noted that this paper still has many limitations, which
also represent opportunities for future research on this topic.
First, the THBX results need to be further examined to sum-
marise the unidentified and misidentified issues that arise. Un-
like typical AI-based computer vision tasks, where high accur-
acy rates can be used to determine the excellence of the output
model, in heritage research, especially when it comes to con-
firming critical information, human effort is needed to check
the results, because what matters is simply “yes” or “no”, rather
than the correction rate. That is why digital technology is more
suitable as an aid to heritage investigation rather than as a dom-
inant force; fieldwork remains the core (Moullou et al., 2024).
In the dataset produced by this study, another point that can be
continuously optimised in the future involves both the acquisi-
tion of remote sensing images and the recording of plane forms.
Due to the close proximity or direct adjacency of different HRS,
building footprints from other settlements that are not of interest
need to be manually removed when recording data. One pos-
sible solution is based on the widespread historical regions in
HRS and their special plane forms. First, such historical regions
can be identified, and then continuous or close locations can be
summarised through distance clustering methods like DBSCAN
algorithm to derive the specific property rights scope of HRS
(Zhang et al., 2021). For China, a national-level geospatial dis-
tribution dataset of rural buildings has been fully established
(Deng et al., 2024), and the intelligent identification of prop-
erty boundaries for specific rural settlements is an important
data dimensional expansion initiative similar to AI-based iden-
tification and digital documentation of HRS plane forms.

Secondly, since this paper is conducted from a structural per-
spective, no comparison between deep learning models was
conducted. Although completing this part of the work is com-
mon in the core content of other research on this topic, it is
undeniable that the core concept it reflects is also an emphasis
on the quality of results (Chen et al., 2021). However, this part
of the work is time-consuming and deviates from the main fo-
cus of this paper, so it has been left for future research. The
proposed workflow does not embed DLM in code and scripts,
so the relevant technical modules are always open to be op-
timised based on evidence from sources relevant to this topic.
Third, the morphological information that needs to be extrac-
ted from HRS in layers is diverse. For example, the external
space of buildings, as represented by road forms, reflects the
social logic of settlements. Because this characteristic, like
historical plane forms, is difficult to change completely, it is
also applicable to the workflow proposed in this article, but re-
quires changes in annotations (Jia et al., 2023). The constraint
encountered in this study in achieving this task is the quality
of remote sensing images. Higher resolution and unobstruc-
ted remote sensing images would be very useful, as they would
generate high-quality annotations that are critical for supervised
learning. In addition, 3-D geo-information represented by ter-
rain also significantly affects the emergence and evolution of
HRS plane forms, which is a key point in settlement morpho-
logy. The THBX in this paper is located in a predominantly
mountainous terrain, and previous studies have also proven that
the generation of HRS in THBX is affected by multi-scale ter-
rain (Yuan et al., 2024), which means their plane forms can
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be documented and visualised better supported by integrating
3-D reconstruction and geo-information. Therefore, future op-
portunities may lie in identifying and validating whether spe-
cific 3-D geo-information datasets can be integrated (Jurado-
Rodrı́guez et al., 2024). The final limitation is also related to
3-D geo-information, too. Specifically, the use of point cloud
models in this study is only an empirical reference, while other
studies have already incorporated them into deep learning mod-
elling and achieved satisfactory results in rural building auto-
matic classification (Meng et al., 2022). Such fusion learning
of multimodal data may provide new insights into future work-
flow updates and result quality for this research topic.

5. Conclusion

With the close integration of cultural heritage conservation and
advanced technology, the digital documentation is being ser-
iously considered and widely adopted. As for built heritage,
data-driven digital documentation captures and preserves its
physical existence, and digitises heritage information from a di-
gital twin perspective, which is suitable for further analysis. As
a living type of built heritage, rural settlements are constantly
dynamic, generating and accumulating similar or different in-
formation. On the recommendation of ICOMOS-IFLA, rural
settlements are considered to be a highly valuable type of her-
itage due to their unique landscapes. In the impact of over-
development and non-development, support is needed to pro-
tect the physical existence of rural settlements represented by
HRS and to extract their potential heritage value. The plane
forms examined in this study is not merely a visual representa-
tion of spatial distribution in rural settlements, but a spatial car-
rier of heritage value. As HRS have undergone various stages
of social development, the plane forms shaped in different peri-
ods exhibit both differentiation and coexistence through cumu-
lative layering, thus forming the composite spatial structure of
present-day HRS in alignment with the “palimpsest” criteria for
rural heritage as defined by ICOMOS-IFLA.

Therefore, this paper introduces the idea of using AI-based
tools as heritage history information sensors, and uses this to
create a workflow that is close to automation, allowing HRS, a
representative of rural cultural heritage places, to be digitally re-
corded in the plane form data of publicly available remote sens-
ing images, while at the same time identifying important histor-
ically interpretive information. At THBX, an exploratory case
study conducted in this historically and culturally significant re-
gion of China showed that the proposed workflow revealed the
potential of AI model in perceiving plane form features that are
often judged based on human knowledge. In this workflow, the
identification of plane forms of historical regions in HRS based
on AI technical agents creates a cultural experience dimension
for the plane form data of HRS, which is ultimately integrated
into a vectorised, regularised, layered record data set that sum-
marises and highlights the morphological value at the core of
HRS. Such a latent aspect can promote the in-depth develop-
ment of rural heritage conservation and research, and unlock the
potential of digital technology to efficiently interpret more her-
itage information. Despite its limitations, this procedural work-
flow can still serve as a useful tool for the hierarchical archiv-
ing of HRS plane forms, helping to advance the structuring and
regularisation of morphology information in rural cultural her-
itage places. The presented work demonstrates the practical-
ity of transferring techno-optimism to a more social and cul-
tural focus in data-driven heritage conservation. Regarding fu-
ture plans, use cases based on customised digital documentation

datasets will be explored, and the possibility of identifying and
extracting more types of heritage information will be integrated.
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