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Abstract

Since 2016, our group has developed a modular 4D world web-visualisation software framework for both mobile and desktop
devices. A major challenge is to obtain and compile 4D world models at large scale. This article proposes to (a) highlight our data
retrieval pipeline and (b) geolocalisation as both rough and fine positioning as well as (c) 3D data processing to blend 3D assets with
digital elevation models for seamless 3D environments. Main results include a validation of different approaches for rough and fine
level geolocalisation by using Large Language and Vision Language Models as well as key point matchers and a preprocessing of
3D assets to generate 3D environments. The article shows results from the validation of these pipelines with ground-truth material
taken from our datasets of 75,000 3D mesh models and 1.5 M images.

1. Introduction

Since 2016, our group has developed a modular 4D web-
visualisation software framework for 4D city and 4D content
browsing to test and validate design hypotheses in virtual, aug-
mented, and 2.5D visualisation on mobile and desktop devices
(Miinster, 2018). As user acceptance of native applications is
decreasing (Bender, 2020), especially for specific and short-
term use, as relevant for most cityscape scenarios (Reips, 2002),
this is a browser-based web application.

Multiple strategies are applied to gather, process, and serve dif-
ferent types of data. On the one hand, users can contribute and
upload content manually. On the other hand, data should also
be queried and processed from various data sources automatic-
ally as much as possible to in order to create a virtual world that
the application is to visualise. In former articles we highlighted
the prospected research agenda (Miinster et al., 2020) as well
as technological venues (Miinster et al., 2021a,b, 2024c), but
also conceptual challenges to automatically reconstruct the past
(Miinster et al., 2022, 2024a).

This article proposes to (a) highlight our data retrieval pipeline
and (b) geolocalisation as both rough and fine positioning as
well as (c) 3D data processing to blend 3D assets with digital
elevation models for seamless 3D environments.

2. State of the Art

During the past two decades, numerous digital image archives
containing vast numbers of photographs have been set up
(Miinster et al., 2018; Capurro et al., 2024). This comprises
collections of user-generated contemporary photographs, but
also historic photo collections and image bases with geographic
coverage as, e.g., Google Street View. For the 3D worlds,
large-scale datasets such as Objaverse including 10.2 million
3D models (Deitke et al., 2023) or ShapeNet including 50k 3D
models (Chang et al., 2015) and repositories such as Sketchfab
hosting several 100k heritage items (Flynn, 2022) have been
amassed. As an overlapping area, there are several automated
3D model creation processes that utilise existent imagery (Sna-
vely et al., 2007; Stathopoulou et al., 2019; Wu et al., 2021;

Maiwald et al., 2023b) with large-scale 2D/3D datasets com-
piled such as MVImgNet2.0 (Wu et al., 2024) and MegaScenes
(Tung et al., 2025). Despite various approaches, a still open ma-
jor task is the provision of sufficient metadata to spatialise and
temporalise this material (Miinster, 2023). Varied approaches
are used for Al-based metadata enrichment (e.g. Orzechowski
et al., 2025), but also for creating multimodal 3D representa-
tions (e.g. Rusnak and Kaplan, 2025).

Geo-based data is visualised in various web-based portals, in-
creasingly using a 3D approach. Schindler and Dellaert (2012)
were among the first to make historical photographs accessible
on the web in relation to 3D models. Other applications intro-
duced time-evolving 3D city models incorporating multi-media
such as photographs and other historical documents (Blettery
et al., 2020; Jaillot et al., 2021), or augmented realities on mo-
bile devices (Hasselman et al., 2023). Though, precise spatial
and temporal location of the data remains challenging, requir-
ing either a rich set of metadata or manual work involved. With
regards to spatialisation of photographs, there are several ap-
plications to support this task by either clicking corresponding
points (Blanc et al., 2018) or using a rephotography approach
(Schaffland et al., 2020). However, both approaches still require
manual input. Other approaches include the geolocalisation via
images (Pramanick et al., 2022; Vivanco Cepeda et al., 2023;
Wang et al., 2024; Kulkarni et al., 2024; Xu et al., 2024) and
texts (e.g. Singh and Aneja, 2024).

Figure 1. Browser-based mobile application showing textured
3D models of historical buildings and points of interest.
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3. Multi-user interfaces

The 4D visualisation framework consists of two main applica-
tions: 1) The 4Dcity app is a mobile application covering cul-
tural tourism and education (Figure 1). Used in situ, the user
can explore how their surrounding might have looked in the
past. 2) the 4D Browser targets scholars interested in architec-
tural history and urban development. The user browses histor-
ical images on a city-scale (Figure 2). In both applications, the
user can use a time slider to filter the data that also affects the
visualisation.

Figure 2. Graphical user interface of the 4D Browser application.

The applications share the same backend and database that has
been fed with data from different repositories in the past. How-
ever, there are many historical photographs that cannot be found
in those big repositories, as they are held by local residents
or small-town archives. To exploit this potential, several user
contests have been organised to gather additional, hitherto un-
seen photographs. In this regard, the applications have been
enhanced. Users can upload historical images, but also repho-
tograph existing ones. To this end, user accounts have been
introduced, including a dashboard where the users can check
their contributions. A moderator validates all uploaded content
in order to make it available for everyone.

While the contribution by individual users is a great chance to
acquire historical data that otherwise would remain hidden, the
amount of data is rather marginal and only relevant on a small
scale. To this end, an automatic ingestion and processing of
publicly available data is required in order to present appropri-
ate datasets on a larger scale.

4. Data Retrieval and Enrichment

4.1 3D Data

The initial dataset utilised in 3DBigDataSpace stems from dif-
ferent data collections and was compiled between 11/2023 and
04/2025 (Table 1). To retrieve legally accessible content, we se-
lected CC-0 or CC-BY licensed content only. For data retrieval,
we used a series of server-side scripts in Python and PHP feed-
ing into an SQL database and Unix file storage.

4.2 Images Data

Various large-scale data resources are available nowadays. The
Google Landmark v2 dataset from 2020 contains 4.7 M images
of landmarks (Weyand et al., 2020). For the Landmark dataset,
we translated each location into coordinates by (a) requesting
Wikimedia coordinates, and in case of no results (b) retrieving
OSM coordinates or (c) Google Place coordinates via geopy,

Data source No. Description

Europeana 8,708 The Europeana 3D dataset con-
tains validated metadata and is
utilised to provide ground truth
data. The metadata retrieval has

been conducted via the Europeana
Python framework. !

Objaverse 55,614 The Objaverse 1.0 dataset in-

1.0 cludes 800,000 3D objects with
those selected by us which are
classified as Cultural Heritage
(Deitke et al., 2023). It has been
compiled by the Paul Allen in-
stitute. The datasets are mainly
retrieved from open-licensed con-
tent held by SketchFab.

The 5DCulture dataset was com-
piled in the eponymous project
in 2024. The dataset includes
various mainly low-poly models
of single buildings from different
age in the cities of Trento, Sion,
Amsterdam, Dresden and Jena.
The dataset was used to test the
Zenodo pipeline.

Objaverse 2,407 A set of models from the Smith-
XL- sonian museum is included in the
Smithsonian ObjaverseXL dataset of 10.2 M
3D meshes.

LiDAR 3D buildings were seg-
mented via OSM ground plots
into single building models.
These models are used for map-
ping and multi-LOD approaches.

5DCulture 8,406

LiDAR 3D
Buildings

1,374

Table 1. 3D data sources.

and selected those landmarks with keywords referring to built
structures. Europeana holds 1.3 M images tagged with “build-
ing” for which we retrieved images with provided location co-
ordinates. Other data sources include the already compiled set
of images in the 4D Browser and collections made available by
Fortepan (CC-BY-SA-3.0) and Pol Meyert — a Belgian photo-
grapher (Table 2).

4.3 Data Storage

For data storage, the Objaverse 1.0 Cultural Heritage dataset
and the 5SDCulture dataset were ingested in Zenodo via the Zen-
odo Toolbox (Miinster et al., 2024b).> To ensure long-term
availability and citability, building models and image sources
have been uploaded to Zenodo, which are accompanied by
Europeana Data Model (EDM) and METS/MODS XMLs (Fig-
ure 3). In processing the visual data, particular attention has
been paid to privacy concerns. A two-stage process involving
person detection and detailed segmentation has been implemen-
ted to mask individuals while preserving as much architectural
visual material as possible.

Thumbnails of the 3D models were rendered from five perspect-
ives and in various resolutions using an automated pipeline to
address different immediate use cases. To manage this amount
of data and the different versions, a database is updated in real-
time with each upload or update process.

! https://github.com/europeana/rd-europeana-python-api
2 nttps://github.com/Digital-Humanities-Jena/
zenodo-toolbox
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Data source  No. Description

Wikimedia 124,896 A subset of the Google Land-
Commons mark v2 dataset from 2020
containing 4.7 M images of
landmarks of which 980,000
images have been georefer-
enced and 125,000 refer to
built structures.
Europeana 1,318,086  Photographs tagged as built
Buildings structures in the Europeana.
Fortepan 18,816 The Fortepan dataset was
compiled from various data
sources from 1860 till 2008.
4D Browser 34,486 This is an already integrated
dataset collection of positioned and
oriented historical and con-
temporary city photographs.
Architectural 75,000 The Belgian photographer Pol
photo data- Mayert donated a set of ar-
set chitectural photographs which
were processed via the Zenodo
pipeline.

Table 2. 2D data sources.

« Conversion of OBJ and MTL to GLB
« Automated Rendering of Thumbnails using Blender API
« Extract & Calculate Metadata of Models

File Operations

« Identify latest Record Version and retrieve its Data
« Create Record / New Version & Retrieve Identifiers
« Generate EDM and MetsMods XMLs
« Upload Files into Record Deposition
« Construct Record Title & Description
o with Model Metadata, Filetables and Changelogs
« Construct Record Metadata & Validate it

Zenodo Record
Initialization

Publish Zenodo Record & Retrieve Response Data
Update SQLite DB with new links and identifiers via API
Export Updated Links as CSV via API or Dashboard
Update Zenodo DOls in 4D Applications

Publishing
Operations

Figure 3. General process flow for using the Zenodo API.

This database is accompanied by a dashboard and an API, en-
abling the retrieval of the latest direct links to the model or im-
age sources on Zenodo in addition to contextual information
like data types, previous version DOIs or dataset identifiers.
Furthermore, the latest DOIs are stored in the object data of
the 4D applications and will therefore be available through its
APL

Each Zenodo record contains extracted and aggregated
metadata, tables with direct links to main files and thumbnails
as well as changelogs. Using the dashboard, directly exporting
CSVs of query results allow for direct implementations of the
data hosted on Zenodo without any additional queries. While
retrievals from Zenodo are limited, the current rate is sufficient
for positional field-of-view applications in real-time. This ap-
proach not only secures the data, but also facilitates its use in
scientific, educational and creative contexts.

5. Geolocalisation

For retrieving a geolocalisation from descriptions, we bench-
marked several LLMs with the Europeana dataset which has
already approved coordinates. A specific comparison in-
cluded (a) Spacy with a large-scale English language model

(en_core_web_lg) as transformer-based model, (b) Llama 3.2-
3B and (c) DeepSeek R1 Distill Qwen 1.5B as lightweight
LLMs and (d) DeepSeek R-1 as full-scale LLM. The best res-
ults were achieved by DeepSeek-R1 with 82 % recognition rate
for countries and 46 % for cities (Figure 4). An important find-
ing was that the other models were significantly less accurate
with only 30 % correct countries identified by Spacy.

100,0%
80,0%
60,0%

40,0%
20,0%
0,0%

Country State Region City

m 'DeepSeek-R1’
'deepseek-ai/DeepSeek-R1-Distill-Qwen-1.58"
'meta-llama/Llama-3.2-3B'

'en_core_web_lIg'

Figure 4. Matching between text-based model retrieved and
human-assigned location information from the Europeana
dataset (n = 2,465).

Another step involves identifying the specific object shown in
the 3D model. To accomplish this, we render the model into a
series of images and employ a content-based image retrieval
(CBIR) script to identify similar images. We benchmarked
three geolocalisation frameworks with the Europeana 3D ren-
derings. Those are PLONK (Dufour et al., 2024), GeoCLIP
(Vivanco Cepeda et al., 2023) and OrienterNet (Sarlin et al.,
2023).

With regards to its performance GeoCLIP and PLONK as
image-only approaches performed not well with less than 5 %
retrieval rate at country level (Figure 5). OrienterNet uses given
textual location information — in our case taken from the Deep-
seek R-1 results from the text-based geolocalisation. Not sur-
prisingly, the retrieval rate is comparably high, although con-
taining a high level of locations not retrieved.

40,0%
30,0%
20,0%
10,0%
o0% M — —
Country State Region City
B PLONK_YFCC GeoCLIP OrienterNet

Figure 5. Matching between image-based model retrieved and
human-assigned location information from the Europeana
dataset (n = 242).

We tested the recognition of places for historical images of
Dresden from the 4D Browser dataset. In that case, PLONK
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reached 60.4 % retrieval rate at city level, with GeoCLIP reach-
ing 41.5 %. OrienterNet did also successfully retrieve both
city and borough information at 55.1 % with city name given

(Figure 6).

State City

100,0%
80,0%
60,0%
40,0%
20,0%

0,0%

Country Borough

B PLONK_YFCC & geopy.geocoders.GoogleV3
B GeoCLIP & geopy.geocoders.GoogleV3

OrienterNet

Figure 6. Matching between historical images and
human-assigned location information for data from the 4D
Browser dataset (n = 1.168).

For selecting images of architectural exteriors, we use a VGG-
16-based classifier. The classifier was extended from a previ-

ous version (Miinster et al., 2024c) and now trained with 6,830
manually oriented photographs and other images. The classi-
fied files belonging to two classes with 2,715 images showing
architectural exteriors and 4,115 images not showing architec-
tural exterior. For training, 5,464 files were used — including
nine variants by data augmentation per file — and for validation
we used 1,366 files.

Training and Validation Accuracy

0.95 \/ -

Training and Validation Loss

Training Loss
validation Loss

0,93

— Training Accuracy
0.88 validation Accuracy

] - 10 ] 5 10

Figure 7. VGG-16-based training and validation accuracy and
loss for classification of architectural exteriors/others.

The accuracy of the validation dataset is above 0.90 with loss
of 0.30 (Figure 7). The classifier is used to automate the step
to identify architectural exteriors as a prerequisite for further
processing in the pipeline.

To gain a good ratio between true and false positives as well as
negatives, we currently only judge on an image if the predictor
certainty is 90 % or higher. For validation, we tested the classi-
fier with a subset of the Dresden images from the 4D Browser

dataset which exclusively contains exteriors. Correct detection
rate is 86.2 % with 12.2 % false negatives and 1.6 % with pre-
dictor certainty below threshold (Table 3).

Accepted 506
Declined 72

Table 3. Validation with 4D Browser dataset (n = 587).

6. Large-scale Image Pose Estimation

In order to display historical images within the 3D/4D envir-
onment, their poses need to be estimated. Feature extraction
and image matching for pose estimation has been possible for
quite some time, even for a very large photographic dataset on
a city scale Agarwal et al. (2011). The vast majority of ap-
proaches work with contemporary images in this regard. For
historical images, this however proves highly challenging. Ex-
isting approaches either needed a lot of manual adjustments or
were only applicable to a small set of images on a much smal-
ler scale Maiwald et al. (2023a). However, recent advances in
image matching approaches bring us closer to the goal of spa-
tialising historical images on a city scale.

Our proposed pipeline combines the repeatability of DISK key-
points (Tyszkiewicz et al., 2020) and the pairwise matching per-
formance of the MASt3R model (Leroy et al., 2024). We extract
all available DISK keypoints without limitation, which helps
with cases where the limited number of points do not cover the
whole image. MASt3R extracts a dense point map representa-
tion, which results in significantly more matches. We keep 10k
matches on a coarse grid. We use the DISK keypoints as an-
chor points to make it manageable for Structure from Motion
(SfM). Moreover, we filter the matching image pairs based on
a high inlier match number (1000). This way, we obtain mod-
els with relatively few false positive matches. A downside of
such a large number of keypoint matches is that SfM becomes
very slow for > 1000 images. To alleviate this problem, we
partition the city model into N = 30 clusters. Within these
clusters, we use an ensemble of image content-based global re-
trieval methods — AnyLoc (Keetha et al., 2023) and Megal.oc
(Berton and Masone, 2025). We use the available approximate
GPS coordinates for clustering.

The Fortepan photo archive contains over 200,000 photos
across many countries and cities. The collection includes in-
door, outdoor, portrait, group photo and document type photos,
among others. Out of these, only the outdoor images are us-
able for cityscape reconstruction, with little distractors covering
the buildings. Using image classification is a straightforward
way to filter out the unusable classes, thus reducing processing
time. In practice, however, the boundary between these classes
is blurry. Most in-the-wild photos contain people or vehicles as
the main object and the buildings to be reconstructed are con-
sidered the background. That means that it’s difficult to distin-
guish between portraits and or group photos with a blank back-
ground and in-the-wild photos with a usable background.

Another option is to apply semantic segmentation on the dy-
namic classes (people, vehicles, vegetation, sky, etc.) and cal-
culate the ratio of these pixels. We find that filtering based on
this ratio would discard images that depict crowded scenes but
contain strong geometric information. Instead, we use these
semantic masks to remove the feature points from dynamic ob-
jects as seen in in Figure 8.
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Figure 8. Masked keypoints: purple points correspond to 3D
points in scene, red keypoints are unmatched 2D points.
Dynamic objects do not have keypoints.

The Fortepan photo archive contains a combination of human
annotated place names, rough GPS coordinates and image de-
scription. Often the precise street/square address is written in
the description without the corresponding GPS metadata. We
use a Large Language Model (LLM) to parse location inform-
ation from the description if it is available and use a geocoding
service to turn them into GPS coordinates. Images without any
metadata can be geolocalised at different granularity based on
Section 5.

We use OrienterNet (Sarlin et al., 2023) to further refine the po-
sitions. This achieves two goals: Firstly, refine location inform-
ation from the (incomplete) street level to a more fine-grained
location. Secondly, perturb the GPS coordinates that are at the
exact same coordinates, often caused by using geocoding ser-
vices. This helps with the nearest neighbour query. Finally, we
keep images of Budapest in a 6 km radius from the city centre to
include only the densely (photographed), older part of the city.
This results in 41,671 images.

We use KMeans clustering to divide the images into N = 30
clusters. The resulting clusters can be seen in Figure 9. The
clusters have approximately the same geometrical size which
means that the number of images in each cluster varies depend-
ing on the density of the photos.
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Figure 9. Location and distribution of the 30 clusters. Note that
the refined GPS coordinates align well to the streets.

In each cluster we query the top 50 most similar images within
the cluster using both models. We use a threshold ¢4ny10c and
tmegaloc to discard pairs with a low similarity score. We always
keep at least 10 pairs per image regardless of the threshold to

account for hard to match cases which is common in the historic
setting. We obtain the thresholds by calibrating the retrieval
models to maximise the true positive rate while minimizing the
false positive rate using a RoC curve. We consider an image
pair a true positive if their distance is less than d = 150m. We
calculate the thresholds on both the Budapest subset as well as
the whole dataset and achieve similar thresholds. This means
that the retrieval methods work similarly at city and world scale.
The obtained thresholds are tanyioc = 0.40 and tpegatoc =
0.25.

Doppelgangers are still a challenge in the historical domain.
The inherent ambiguity of appearance/temporal changes do not
necessarily mean a different place. Or inversely, different look-
ing places are not necessarily different. Most notable examples
are bridges, symmetric churches and large hotel buildings with
similar looking sides. Partitioning the dataset into clusters also
helps with this problem. As opposed to having a single large
scene with multiple incorrect matches with doppelgangers, the
result is a set of smaller components with fewer false positive
matches (doppelgangers). It does not accumulate, making it
easier to discover and separate.

We compare the proposed pipeline to the baseline method using
10k DISK feature points and the LightGlue (Lindenberger et al.,
2023) matcher by listing the number of reconstructed images,
number of models and number of images in the largest model
for the top 5 clusters in Table 4. Figure 10 shows the qualitative
comparison of the largest scene from cluster 12.

Cluster Id 6 17 9 28 12
DISK + LightGlue (Baseline)

reconstructed models 11 11 3 7 4
reconstructed images 733 770 599 447 471
images in biggest model 310 227 531 154 376
DISK + MASt3R (Ours)

reconstructed models 20 13 6 17 9
reconstructed images 1406 1356 968 979 904
images in biggest model 548 764 800 316 688

Table 4. Statistics of the 5 biggest clusters ignoring models with
fewer than 20 images.

t ‘;%»
Figure 10. Automatic reconstruction of cluster 12. Left: DISK +
LightGlue (Baseline). Right: DISK + MASt3R (Ours).

In conclusion, our proposed pipeline manages to reconstruct on
average twice as many images from the dataset, compared to the
baseline, process them faster by filtering the image pair candid-
ates. The accuracy is slightly lower which can be easily im-
proved. It is more robust to doppelgangers and avoids matching
dynamic objects at different places.
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7. 4D World Model Generation

Within the described 4D applications, different types of data
are visualised: terrain data, 3D models of buildings, spatialised
images, and points of interest augmenting buildings with ad-
ditional data. The latter are queried at runtime from Wikidata
and other databases. The terrain is retrieved from public APIs.
The majority of the 3D building models are generated from data
queried from OpenStreetMap (OSM). By simple extrusion of
the building footprints, 3D geometries of LOD-1 (Level of De-
tail) can be generated only having flat roofs.

Another option is the integration of 3D models from other re-
positories. Photogrammetric or manual modeling processes are
capable of producing a high level of detail and visual quality.
However, the detailed scan of the building and its environment
often does not fit to the approximated terrain. To address this
challenge, a straightforward algorithm has been formulated to
facilitate the adaptation of the photogrammetric model’s envir-
onment to the ground. The following steps must be assessed:

1. Detection of building vertices
2. Shifting of the building’s ground vertex to the terrain
3. Projection of the environment to the terrain plane

The initial step involves the integration of the floor plane of the
corresponding building queried from OSM. The vertices of the
model are iterated and a ray casting is used to check an en-
countering with the OSM plane. If this is the case, the vertex
is declared as belonging to the building; otherwise, it is part of
the environment. With the building vertices known, the deepest
building vertex can be calculated to align the building part of
the model with the ground first. In the last step, an iteration on
the environment vertices and a ray casting again is performed to
determine the distances to the ground. Each vertex is then shif-
ted to the ground. The result is a mapping of the environment
to the ground (Figure 11).

Figure 11. Screenshots of the visualised Pernstejn Castle. Left:
Without ground projection — the model floats above the ground,
the sky is visible and the scanned trees cover parts of the
building. Right: With ground projection — alignment to the
ground and no coverage.

Furthermore, two more optimisation techniques were tested: In
order to reduce the model size, it is also possible to discard
every environment vertex, if the building is only needed in the
visualisation. However, if the environment is also to be shown
in the visualisation, and the structure of it should also be kept,
a weighted shifting of the environment vertices is possible. The
displacement of vertices is determined by their distance from
the building component of the model and the edges. Vertices
in closer proximity to the edge will undergo a greater displace-
ment than those in closer proximity to the building (Figure 12).

Figure 12. Left: Projection of the environment directly onto the
terrain. Right: Blending the environment for a softer connection
to the ground.

8. Application

For testing this functionality we are collaborating with several
institutions, resulting in curated scenes in currently 7 countries:

e Amsterdam (NL): Valkenburg at 1,800 modelled by Uni-
versity of Amsterdam

e Dresden (DE): 3D model with various time layers and
5000+ images

e Pernstejn (CZ): 3D scan of Castle Pernstejn

e Valais (CH): 3D city model with 3 temporal layers recon-
structed by EPFL

e Trento (IT): 3D reconstruction of the historical states by
FBK

e Budapest (HU): 10k images of historic Budapest

e Leuven (BE): university quarter 3D model created by KU
Leuven

e Jena (DE): 5,000 images and 3 temporal layers of cadastral
data

9. Future Prospects

The 4D Browser and 4D City applications have been developed
since 2016 via various projects at national and European scale.
With regards to next steps, visual parameters and designs for
3D/4D visualisations of past architecture are yet rarely empiric-
ally validated (Miinster et al., 2024b). Consequently, a currently
starting next task will be to investigate and enhance the design
of 3D/4D representations particularly considering the sparsity
of historic data. Concerning 4D modelling, open research tasks
are to reduce the number and quality of historical images ne-
cessary to enable the use of dense matching and the creation of
historical (generalised) 3D models.

Figure 13. Screenshot of the 4D Browser of Castle Pernstejn
with ingested 3D scan (Mikhail Volkov, CC-BY) (left) and
Google 3D tile extension (right) in the 4D Browser.
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Another approach currently under development is a large-scale
automated workflow for orientation including contemporary
data and 3D models. For data handling, the ingestion of LIDAR
data and Google 3D Tiles as well as the parametric re-meshing
seems promising to enhancing a contemporary visual experi-
ence (Figure 13).

Finally, we currently conduct tests to enhance the model coher-
ence by Al-generated content as predicted facade textures or
roof features. Beside the technical and design challenges, this
also contains various methodical challenges about if and how
Al can generate valid hypothesis of the past (Miinster et al.,
20244d).
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