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Abstract 
 
This study aims to non-destructively diagnose the growth condition of old-giant-trees designated as natural heritage by identifying 
vegetation indices and wavelength ranges using hyperspectral images. The main findings are as follows. First, the study established a 
method for acquiring hyperspectral images of trees in outdoor environments. It recommends a 20-meter standoff distance, which 
enables full coverage of the canopy region while ensuring stable acquisition of spectral data from the leaves. Second, vegetation 
indices suitable for diagnosing tree vigor were derived for zelkova, ginkgo, and pine, which are tree species that account for a high 
proportion of old-giant-trees designated as natural heritage. The results show that vegetation indices can effectively replace 
conventional light efficiency indicators. In the case of zelkova, the specific bands used to calculate indices with high correlation to 
light efficiency were identified. Third, a regression equation for the light efficiency indicator was developed and applied to canopy-
level hyperspectral images, demonstrating that vegetation indices derived from selected wavelength ranges can be used to diagnose 
tree growth condition. This study is significant in that it proposes a method for quantitatively diagnosing the growth condition of old- 
giant-trees across their entire canopy using hyperspectral images. The findings can be applied as a scientific, non-destructive 
management technique for conserving the physiological characteristics and historical value of old-giant-trees designated as natural 
heritage. 
 
 

1. Introduction 

To preserve the value of old-giant-trees designated as national 
natural heritage, continuous monitoring of their growth 
condition is essential. However, these trees, while historically 
significant, are also physiologically aged and thus highly 
sensitive to changes in their growth condition. As a result, 
diagnostic methods involving direct physical contact may 
damage tissue and potentially disrupt physiological functions 
over time. Moreover, most old-giant-trees have considerable 
height and complex structures, making structural access 
difficult. This underscores the need to develop a technique for 
managing tree vigor through a non-contact approach. 
Although attempts have been made to diagnose tree growth 
condition using hyperspectral images, acquiring such images in 
outdoor environments typically requires a short imaging 
distance, which limits their applicability for diagnosing the 
vigor of old-giant-trees. PARK(2023) diagnosed the health of 
zelkova using a ground-based spectroradiometer (PSR-1100F) 
to extract point-based hyperspectral data and analyzed its 
correlation with light efficiency indicators, ultimately 
identifying suitable vegetation indices and wavelength ranges. 
By capturing images at a distance of 2-3 cm from the sensor 
using harvested zelkova leaves, the study obtained pure data 
minimally affected by atmospheric noise, which is an important 
contribution. However, because the imaging was performed on 
individual leaves at close range, the method is difficult to apply 
to large trees such as old-giant-trees. 

If hyperspectral images can be used to diagnose tree vigor, it 
would enable more quantitative diagnostics and scientific 
management without harming natural heritage. Therefore, this 
study aims to diagnose the growth condition of old-giant-trees 
designated as natural heritage through non-destructive means by 
identifying appropriate vegetation indices and wavelength 
ranges based on hyperspectral images. 
 

2. Materials and Methods 

This study followed a sequential process of collecting leaves 
and measuring light efficiency indicators, hyperspectral imaging 
of both leaves and canopies, preprocessing the images, 
analyzing correlations between vegetation indices and light 
efficiency indicators, selecting appropriate wavelength ranges, 
and diagnosing tree growth condition through regression 
analysis. The study focused on three tree species: zelkova 
(Zelkova serrata(Thunb.) Makino), ginkgo (Ginkgo biloba L.), 
and pine (Pinus densiflora Siebold & Zucc.), which are 
frequently designated as old-giant-trees within natural heritage 
and are key targets for conservation management. To ensure 
operability of the equipment and efficiency of the research 
process, the study was conducted at the Korea National 
University of Heritage, located in Buyeo-gun, 
Chungcheongnam-do, South Korea. This location provided 
continuous access for the research team and convenient 
conditions for storing and installing equipment. Based on these 
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considerations, three vigorous young trees from each species 
were selected (Figure 1). 

 

a.  Zelkova 

 

b. Ginko 

 

c.  Pine 

Figure 1. Target canopies for imaging 
 
2.1 Measurement of Light Efficiency Indicators 

Tree light efficiency was measured using five indicators: Fv/Fm, 
Y(II), NPQ, Y(NO), and Y(NPQ). Fv/Fm (Maximum Quantum 
Yield) represents the maximum quantum yield of 
photochemical reactions and serves as a indicator of 
photosynthetic capacity. In dark-adapted leaves, this value 
reflects the tree’s maximum potential for photosynthesis. Y(II) 
(Effective Quantum Yield) measures the effective quantum 
yield under ambient light and, like Fv/Fm, reflects 
photosynthetic capacity. NPQ (Non-Photochemical 
Fluorescence Quenching) indicates the amount of energy 
dissipated as heat via photoprotective mechanisms, which is an 
essential process for shielding plants from light-induced damage. 
Y(NO) represents the proportion of energy dissipated as heat 
and fluorescence through non-photochemical pathways. Higher 
values indicate a reduced capacity for photoprotection against 
light-induced damage. Y(NPQ) represents the proportion of 
NPQ and corresponds to the proportion of energy dissipated as 
heat. Higher values suggest stronger photoprotective capacity. 
Together, the ratios of Y(II), Y(NPQ), and Y(NO) help identify 
energy dissipated as heat and provide information about tree 
health. The sum of Y(II), Y(NPQ), and Y(NO) should equal 1. 
When Y(NO) exceeds Y(NPQ), it may indicate compromised 
tree health. 
Leaves were collected from the east, west, and south-facing 
sides of each tree, excluding the north-facing side due to 
insufficient sunlight. For zelkova and ginkgo, 80 leaves per 
species were collected, with 40 from the front surface and 40 
from the back surface. Pine leaves, which do not have 
distinguishable surfaces, were collected in a set of 40. Light 
efficiency indicators were measured using the MINI-PAM-II 
model by WALZ. A dark adaptation clip was attached to the 
measurement site to block ambient light, and the samples were 
dark-adapted for 20 minutes before measuring Fv/Fm. The Ft 
value, used as a reference for measuring Fv/Fm, was set by 
adjusting the sensor’s light intensity to a range of 250-500 using 
the Measuring Light Intense setting. Through the Induction 
Curve experiment, the effective quantum yield Y(II), the 
proportion of energy dissipated as heat Y(NPQ), the amount of 
energy emitted as fluorescence Y(NO), and the amount of 
energy dissipated as heat NPQ were measured (Figure 2). 

 
a.  Dark adaptation of leaves 

 
b. Induction Curve 

Figure 2. Process of measuring light efficiency indicators 
 
2.2 Hyperspectral Imaging 

Since hyperspectral imaging is highly sensitive to light intensity, 
imaging was conducted during periods when solar elevation 
was high and light intensity was sufficient, specifically, when 
photosynthetic activity was expected to be optimal. Leaf and 
canopy imaging was carried out from the east and south-facing 
sides between 9:00 AM and 3:00 PM, when light intensity 
ranged from 800 to 1,200 mol/㎡/s. The standoff distance was 
set to 20 meters to ensure full coverage of each tree, allowing 
for application of the method in diagnosing the growth 
condition of the entire canopy. The camera height was fixed at 
1.7-1.8 meters to accommodate the length of the connection 
cable. A white reflectance panel was installed so that it would 
be included in the image. The hyperspectral camera used was 
the Fx10e model by Specim. Under these conditions, the camera 
was configured with an exposure time of 6.3-7 milliseconds and 
a frame rate of 28-33 Hz. For leaf imaging, a 120×150 cm 
measurement panel was constructed by mounting a black, non-
reflective cloth onto a metal frame, and leaves were fixed onto 
the panel for imaging (Figure 3). 

 

Figure 3. Leaves fixed onto the measurement panel 
 
2.3 Preprocessing 

To correct the spectral reflectance of hyperspectral images to 
100%, normalization was performed using HyScope by 
Geostory. The reflectance of the white reference panel within 
the images was set to 99%. After normalization, spectral 
smoothing was applied using the Savitzky-Golay method in 
ENVI. To separate the leaves from the background in the 
canopy images, anomaly detection was employed. The Degree 
of Smoothing Polynomial was set to 7, 0, and 2, which were 
values chosen for their ability to preserve the original spectral 
characteristics while correcting spectral reflectance values 
exceeding 100. Anomaly detection was also applied to separate 
the leaves from the background in the hyperspectral images of 
leaves. For canopy hyperspectral images, the CIVE method was 
used to distinguish the canopy from surrounding complex 
backgrounds. 
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2.4 Correlation Analysis 

A correlation analysis was performed between the vegetation 
indices and light efficiency indicators. The vegetation indices 
analyzed included NDVI, GNDVI, GCI, MCARI, RENDVI, 
MRENDVI, CRI1·2, and ARI1·2, while the light efficiency 
indicators included Y(II), Y(NO), Y(NPQ), Fv/Fm, and NPQ. 
To calculate correlation coefficients, the spectral bands used to 
derive vegetation indices in previous studies were modified by 
±30 nm. Bands were selected if the correlation coefficient 
between a vegetation index and a light efficiency indicator was 
0.35 or higher and the p-value indicated statistical significance 
at 5% or less (P ≤ 0.05). 

 
2.5 Regression Analysis 

The correlation between vegetation indices, calculated using the 
selected wavelength ranges, and light efficiency indicators was 
examined, along with an evaluation of similarity between the 
indicators. Stepwise linear regression was conducted by setting 
light efficiency indicators as dependent variables and vegetation 
indices as independent variables for each tree species. Variables 
showing multicollinearity were excluded from the model. The 
fit of the regression models was validated using the Durbin-
Watson test and t-tests. The resulting regression equations 
between light efficiency indicators and vegetation indices were 
then applied to canopy hyperspectral images to diagnose tree 
growth condition. 
 

3. Result and Discussion 

3.1 Selection of Wavelength Ranges Suitable for 
Diagnosing Tree Vigor 

Vegetation indices are calculated from specific combinations of 
band values, and hyperspectral images are composed of bands 
segmented at the nanometer scale. The results of vegetation 
indices can vary substantially depending on the band values 
used in their calculation. Therefore, to derive vegetation indices 
suitable for diagnosing tree vigor from leaf images taken at a 
distance of 20 meters, it is essential to carefully select 
appropriate bands. In this study, the bands used to calculate 
vegetation indices that showed strong correlations with light 
efficiency indicators were selected. 
 
3.1.1 Zelkova showed correlation coefficients of 0.4 or 
higher between Y(II) and several vegetation indices including 
NDVI, GNDVI, GCI, and RENDVI. Accordingly, bands used 
in vegetation indices that exhibited correlation coefficients of 
0.4 or greater with Y(II) were selected. The wavelength ranges 
suitable for diagnosing tree vigor in zelkova were as follows: in 
the NIR region, 781 nm and 763 nm for NDVI, GNDVI, and 
GCI; in the RED region, 731 nm, 718 nm, 690 nm, and 687 nm 
for RENDVI and MRENDVI, and 695 nm, 692 nm, and 660 nm 
for CRI2 and MCARI; in the Green region, 501 nm for CRI1 
and CRI2, 539 nm for CRI1, 550 nm for GNDVI and GCI, 540 
nm and 523 nm for PRI, and 543 nm for MCARI; in the Blue 
region, 407 nm for MRENDVI. 
Ginkgo showed the highest number of vegetation indices with 
correlation coefficients of 0.3 or higher with Y(NO), including 
NDVI, GNDVI, RENDVI, PRI, CRI1 and CRI2. Based on this, 
bands used in vegetation indices that showed correlation 
coefficients of 0.3 or greater with Y(NO) were selected. The 
wavelength ranges suitable for diagnosing tree vigor in ginkgo 
were as follows: in the NIR region, 792 nm and 776 nm for 
NDVI, GNDVI, and GCI; in the RED region, 746 nm and 669 

nm for RENDVI and MRENDVI, and 692 nm, 676 nm, and 660 
nm for CRI2 and MCARI; in the Green region, 470 nm for 
CRI1 and CRI2, 548 nm for CRI1, 543 nm and 531 nm for 
MCARI and GCI, and 551 nm and 531 nm for PRI; in the Blue 
region, 412 nm for MRENDVI.  
Pine showed correlation coefficients of 0.35 or higher between 
Y(NPQ) and vegetation indices including PRI, MCARI, 
RENDVI, and MRENDVI. Based on this, bands used in 
vegetation indices with correlation coefficients of 0.35 or 
greater with Y(NPQ) were selected. The wavelength ranges 
suitable for diagnosing tree vigor in pine were as follows: in the 
NIR region, 776 nm, 768 nm, and 763 nm for NDVI, GNDVI,  
and GCI; in the RED region, 747 nm and 691 nm for RENDVI 
and MRENDVI, and 660 nm and 645 nm for MCARI; in the 
Green region, 514 nm and 497 nm for CRI1, 550 nm and 543 
nm for MCARI and GCI, and 551 nm and 531 nm for PRI; in 
the Blue region, 432 nm for MRENDVI. 
 
3.1.2 Comparison of wavelength ranges selected by tree 
species: Wavelength ranges selected as suitable for diagnosing 
tree vigor were compared across species to identify associations 
with specific bands or vegetation indices (Figure 4). For 
zelkova, ginkgo, and pine, GNDVI and GCI produced the 
highest correlation coefficients when the same wavelengths 
were used across species, indicating that the two indices likely 
exhibit similar spectral behavior. For PRI, ginkgo and pine 
shared the wavelengths 551 nm and 531 nm, while zelkova used 
540 nm and 523 nm. For MCARI, ginkgo and zelkova shared 
692 nm, 660 nm, and 543 nm, while pine used 660 nm, 645 nm, 
and 550 nm. GNDVI in ginkgo and PRI in both ginkgo and pine 
shared 531 nm. All three species shared 660 nm in the red 
region for MCARI. In ginkgo, RENDVI and MRENDVI shared 
red-region wavelengths of 746 nm and 699 nm. The red region 
in MCARI, RENDVI, and MRENDVI, which are narrow-band 
vegetation indices sensitive to tree stress, spanned a broad range 
from 660 nm to 746 nm. In contrast, the correlation coefficients 
for the selected wavelengths were 0.35 or below for NDVI, 
GNDVI, CRI1, CRI2, and GCI in pine, and for PRI in zelkova. 
 
3.2  Diagnosis of Tree Growth condition Using Correlation 
and Regression Analysis 

3.2.1 Correlation between vegetation indices derived from 
selected wavelengths and light efficiency: In zelkova, the 
vegetation indices NDVI, GNDVI, PRI, GCI, MCARI, 
RENDVI, MRENDVI, and CRI1 and CRI2 each exhibited 
significant correlations with Y(II), with coefficients of 0.4 or 
higher at the 0.01 significance level. Notably, Y(II) showed 
strong positive correlations with NDVI, GNDVI, GCI, and 
RENDVI. Because Y(II) increases when photosynthetic 
efficiency under ambient light is high, and these indices also 
rise when the tree has sufficient chlorophyll and water content, 
this correlation reflects a healthy growth state. Conversely, 
Y(II) demonstrated a strong negative correlation with MCARI. 
Since high MCARI values indicate reduced chlorophyll content, 
this negative correlation with Y(II) is expected (Table 1). 
 

 NDVI GNDVI PRI GCI MCARI RENDVI MRENDVI CRI1 CRI2 

Y(NPQ) -0.282* -0.318** 0.194 -0.326** 0.273* -0.279* -0.275 -0.219 -0.253* 

NPQ -0.073 -0.132 0.042 -0.145 0.163 -0.051 -0.124 -0.033 -0.089 

Fv/Fm 0.173 0.128 -0.104 0.098 -0.159 0.159 0.182 0.108 0.071 

Y(II) 0.451** 0.450** -0.336** 0.457** -0.367** 0.463** 0.395** 0.362** 0.388** 

Y(NO) -0.147 -0.090 0.135 -0.087 0.054 -0.168 -0.086 -0.154 -0.111 
*   p<0.05, ** p<0.01 
Table 1. Correlation Analysis Between Vegetation Indices and 

Light Efficiency in Zelkova 
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Figure 4. VI Wavelength Bands Selected for Each Species 
 

In ginkgo, the vegetation indices NDVI, GNDVI, PRI, GCI, 
MCARI, RENDVI, MRENDVI, and CRI1 and CRI2 exhibited 
correlation coefficients of 0.38 or higher with Y(NO) at the 0.01 
significance level. Notably, Y(NO) showed strong negative 
correlations with NDVI, GNDVI, GCI, and CRI1 and CRI2, 
while MCARI and PRI demonstrated strong positive 
correlations. As Y(NO) increased, NDVI, GNDVI, GCI, and 
RENDVI tended to decrease. Because Y(NO) represents the 
amount of energy emitted as fluorescence, its value becomes 
larger when the tree is in poor health. In contrast, NDVI, 
GNDVI, GCI, and RENDVI are indices that reflect chlorophyll 
and water content in trees and increase under healthy conditions, 
resulting in a negative relationship with Y(NO). Since higher 
MCARI values indicate lower chlorophyll content, a positive 
correlation with Y(NO) is expected (Table 2). 
 

 NDVI GNDVI PRI GCI MCARI RENDVI MRENDVI CRI1 CRI2 

Y(NPQ) 0.292* 0.208 -0.105 0.137 -0.221 0.318* 0.242* 0.194 -0.270 

NPQ 0.259* 0.272* -0.237 0.243* -0.261 0.250* 0.195 0.245 0.222 

Fv/Fm 0.296** 0.282* -0.282 0.256 -0.322 0.325** 0.318 ** 0.303 0.216 

Y(II) 0.027 0.130 -0.205* 0.187 -0.135 -0.020 0.049 0.135 0.336** 

Y(NO) -0.417** -0.453** 0.426** -0.442 ** 0.478** -0.384** -0.383** -0.443** -0.442** 
*   p<0.05, ** p<0.01 
Table 2. Correlation Analysis Between Vegetation Indices and 

Light Efficiency in Ginkgo 
 
In pine, the vegetation indices PRI, MCARI, RENDVI, and 
MRENDVI exhibited significant correlations of 0.35 or higher 
with Y(NPQ) at the 0.01 significance level. Notably, Y(NPQ) 
showed strong negative correlations with MRENDVI, RENDVI, 
and MCARI, while PRI demonstrated a positive correlation. As 
Y(NPQ) increased, the values of RENDVI, MRENDVI, 
MCARI, and NDVI tended to decrease. Y(NPQ) represents 
energy dissipation through non-photochemical quenching, and 

although its value may be relatively high when the tree is 
healthier compared to Y(NO), it generally increases during poor 
health as excess light energy is released as heat. Because NDVI, 
RENDVI, and MRENDVI increase with higher chlorophyll and 
water content under healthy conditions, they exhibit negative 
correlations with Y(NPQ) (Table 3). 
 

 NDVI GNDVI PRI GCI MCARI RENDVI MRENDVI CRI1 CRI2 

Y(NPQ) -0.266 0.097 0.357* 0.062 -0.369* -0.406* -0.416** 0.026 0.046 

NPQ -0.231 0.132 0.242 0.100 -0.310 -0.341* -0.361** 0.161 0.201 

Fv/Fm 0.107 0.070 -0.024 0.073 -0.117 -0.004 -0.049 0.297 0.135 

Y(II) 0.075 0.047 -0.169 0.053 0.036 0.118 0.105 0.223 0.200 

Y(NO) 0.165 -0.136 -0.152 -0.110 0.298 0.248 0.270 -0.250 -0.245 

*   p<0.05, ** p<0.01 
Table 3. Correlation Analysis Between Vegetation Indices and 

Light Efficiency in Pine 
 
3.2.2 Derivation of regression equations between light 
efficiency indicators and vegetation indices: For zelkova, the 
Variance Inflation Factor (VIF), an indicator used to assess 
multicollinearity, was 1, indicating that multicollinearity was 
not an issue. Accordingly, GCI was interpreted as having an 
impact on light efficiency. GCI explained 29.6% of the variance 
in Y(II), and the regression model (F = 29.037) was statistically 
significant at the p < 0.01 level. The Durbin-Watson statistic 
was 1.609, which is close to 2, indicating low residual 
autocorrelation and showing that the regression model was 
appropriate. The t-test result indicated that the slope relative to 
the intercept was 0.001 or lower, confirming the statistical 
significance of the regression model (Table 4). The regression 
equation derived from the analysis between Y(II) and GCI is as 
follows (Eq 1). 
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dependent 
variable 

Independent 
Variable B β t R R² F 

Y(Ⅱ) 

constant 0.156  8.699**    

GCI 0.024 0.544 5.389** 0.544 0.296 29.037** 

*   p<0.05, ** p<0.01 

Table 4. Regression Analysis for Zelkova 
 

,   (1) 
 
For ginkgo, the VIF was 1, indicating that multicollinearity was 
not an issue. Accordingly, MCARI was interpreted as having an 
impact on light efficiency. MCARI explained 30.5% of the 
variance in Y(NO), and the regression model (F = 27.622) was 
statistically significant at the p < 0.001 level. The Durbin-
Watson statistic was 1.871, which is close to 2, indicating low 
residual autocorrelation and showing that the regression model 
was appropriate. The t-test result indicated that the slope 
relative to the intercept was 0.001 or lower, confirming the 
statistical significance of the regression model (Table 5). The 
regression equation derived from the analysis between Y(NO) 
and MCARI is as follows (Eq 2). 
 
dependent 
variable 

Independent 
Variable B β t R R² F 

Y(NO) 

constant 0.144  9.595**    

MCARI 0.015 0.552 5.256** 0.552 0.305 27.622** 

*   p<0.05, ** p<0.01 

Table 5. Regression Analysis for Ginkgo 
 

,   (2) 
 
 For pine, the VIF was 1, indicating that multicollinearity was 
not an issue. Accordingly, MRENDVI was interpreted as 
having an impact on light efficiency. MRENDVI explained 
22.8% of the variance in Y(NPQ), and the regression model (F 
= 9.430) was statistically significant at the p < 0.04 level. The 

Durbin-Watson statistic was 2.017, which is very close to 2, 
indicating low residual autocorrelation and showing that the 
regression model was appropriate. The t-test result indicated 
that the slope relative to the intercept was 0.004 or lower, 
confirming the statistical significance of the regression model 
(Table 6). The regression equation derived from the analysis 
between Y(NPQ) and MRENDVI is as follows (Eq 3). 
 
dependent 
variable 

Independent 
Variable B β t R R² F 

Y(NPQ) 
constant 0.775  

7.498** 
   

MRENDVI -0.401 -0.477 -3.071* 0.477 0.228 9.430** 

*   p<0.05, ** p<0.01 

Table 6. Regression Analysis for Pine 
 

,   (3) 
 
3.2.3 Diagnosis of tree growth condition using vegetation 
index analysis: Vegetation indices calculated from the bands 
selected through correlation analysis were applied to the 
hyperspectral images of the trees to validate the results. 
Subsequently, light efficiency values were estimated using the 
derived regression equations, enabling health diagnoses for each 
individual large tree. 
To assess the growth condition of zelkova, GCI was selected as 
the vegetation index most suitable for health diagnosis based on 
vegetation index comparison, correlation analysis, and 
regression analysis. The vegetation index calculated from the 
selected bands was applied to the hyperspectral image of 
zelkova, and the results were examined (Figure 5). The 
vegetation index ranged from 0 to 15, with higher GCI values 
reflecting better health. In zelkova, values between 0.6 and 10 
were most commonly observed. Based on the regression 
equation, Y(II) values below 0.133 were classified as indicating 
poor health, while values of 0.133 or higher were considered 
healthy. The Y(II) analysis showed that most values exceeded 
0.168, suggesting that the majority of leaves comprising the 
canopy were in good condition. 

   
a.  GCI                                                                                                                          b.  Y(Ⅱ) 

Figure 5.  Results of Zelkova Vigor Diagnosis 
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To assess the growth condition of ginkgo, MCARI was selected 
as the vegetation index most effective for health diagnosis based 
on vegetation index comparison, correlation analysis, and 
regression analysis. The vegetation index calculated from the 
selected bands was applied to the hyperspectral image of ginkgo, 
and the results were examined (Figure 6). The vegetation index 
ranged from 0 to 10, with higher MCARI values reflecting 
poorer health. In ginkgo, values between 0 and 5 were most 
frequently observed. Based on the regression equation, Y(NO) 
values above 0.276 were classified as indicating poor health. 
The Y(NO) analysis showed that most of the ginkgo were 
in a healthy condition up to approximately 0.30. As Y(NO) 
values increase toward the green range, areas appearing green 
rather than yellow in the image were interpreted as being in 
poorer condition. 

To assess the growth condition of pine, MRENDVI was 
selected as the vegetation index most effective for health 
diagnosis based on vegetation index comparison, correlation 
analysis, and regression analysis. The vegetation index 
calculated from the selected bands was applied to the 
hyperspectral image of pine, and the results were examined 
(Figure 7). The vegetation index ranged from 0 to 1, with values 
between 0.2 and 0.7 indicating healthy conditions. In pine, 
values between 0.43 and 0.68 were the most frequent. Based on 
the regression equation, Y(NPQ) values outside the range of 
0.458 to 0.628 were considered indicative of poor health. The 
Y(NPQ) analysis showed that most values fell between 0.4 and 
0.6, confirming that the tree was generally in good health. 
 

      
a.  MCARI                                                                                                                        b.  Y(NO) 

Figure 6.  Results of Ginkgo Vigor Diagnosis 

    
a.  MRENDVI                                                                                        b.  Y(NO) 

Figure 7.  Results of Pine Vigor Diagnosis 
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4. Conclusions 

The results of this study are summarized as follows. 
First, a method for acquiring hyperspectral images of trees in 
outdoor environments was established. Imaging conditions were 
defined for a 20-meter standoff distance, which enables full 
coverage of the canopy region of old-giant-trees while 
maintaining stable acquisition of spectral data from the leaves. 
The hyperspectral camera used was the Fx10e model by Specim. 
Under light intensity conditions between 800 and 1,200 
mol/㎡/s, the camera settings were configured with an exposure 
time of 6.3 to 7 milliseconds and a frame rate of 28 to 33 Hz. 
Second, vegetation indices suitable for diagnosing tree vigor 
were identified for zelkova, ginkgo, and pine, which are species 
frequently designated as natural heritage old-giant-trees. The 
results confirmed that vegetation indices can serve as 
alternatives to light efficiency indicators. GCI was found to 
impact Y(II) in zelkova, MCARI to impact Y(NO) in ginkgo, 
and MRENDVI to impact Y(NPQ) in pine. In cases where 
strong correlations were observed between vegetation indices 
and light efficiency indicators, the associated bands used in 
calculating the indices were presented. 
Third, regression equations for light efficiency indicators were 
derived, demonstrating that tree growth conditions can be 
diagnosed using vegetation indices calculated from the selected 
wavelength ranges. Specifically, regression equations were 
developed for Y(II) and GCI in zelkova, Y(NO) and MCARI in 
ginkgo, and Y(NPQ) and MRENDVI in pine. These equations 
were applied to the trees’ hyperspectral images to diagnose their 
growth conditions. 
The results of this study offer a non-destructive, scientific 
management technique for conserving the physiological traits 
and historical value of old-giant-trees designated as natural 
heritage. However, the analysis was limited to a subset of 
designated species, and the correlation between light efficiency 
measured at the leaf level and image data may be reduced due to 
long-range imaging. To improve field applicability across all 
designated old-giant-tree species, future research should expand 
the analysis to additional species and develop methods for more 
accurately acquiring spectral data from leaves. 
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