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Abstract
Cultural Heritage (CH) monuments are strongly characterized by detailed architectural elements, inherent complexity, and hetero-
geneity and therefore present unique challenges regarding 3D Semantic Segmentation (3DSS), which is a useful tool for documenta-
tion enhancement and for empowering preservation actions. This study explores the generalization capability of recent deep learning
3DSS architectures applied to cultural heritage (CH) point cloud data. Using the ArCH benchmark, we evaluate five representative
models, including PointNet, PointNet++, Point Transformer v1, v2 and Omni-Adaptive CNNs. All models are assessed using a
uniform pipeline and limited input features (XYZ and RGB). Both qualitative and quantitative results indicate that Point Trans-
former v1 achieves strong performance on unseen CH data (61.3 mIoU), suggesting a potential link between architectural design
and generalization ability in CH domain. These findings highlighting the need for further research under varying configurations and
broader evaluation settings, especially for recent deep learning architecturs e.g., transformers.

1. Introduction

IN recent years, Deep Learning (DL) algorithms have demon-
strated strong generalization capabilities across indoor, out-

door and hybrid environments. Generalization refers to model’s
ability to capture the underlying data patterns from the training
set while avoiding overfitting (Neyshabur et al., 2017; Zhang
et al., 2016). To robustly assess generalization capability, the
models are typically evaluated on unseen data, i.e., data not
used during training or validation. The notion of “unseen data”
can vary. For instance, portions of the same object could be
excluded from training and validation sets or entirely new ob-
jects that share similar characteristics with those used in train-
ing. Evaluating DL models using new objects with similar char-
acteristics, instead of portions of the same object, offers a more
rigorous assessment of their generalization capability, indicat-
ing model robustness and applicability in novel environments.
Cultural Heritage (CH) monuments are characterized by com-
plex architectural elements which exhibit high heterogeneity
and variability (Pierdicca et al., 2020). To this end, deep learn-
ing architectures for 3D semantic segmentation often struggle
to generalize effectively to unseen CH data, despite demon-
strating strong performance in less complex environments like
e.g., an office. Recent applications in the CH domain revealed
a weak generalization capability, especially using unseen data
from monuments that were not partially included in the train-
ing set (Cao and Scaioni, 2021; Pierdicca et al., 2020). Addi-
tionally, the application of recent 3DSS DL architectures, espe-
cially transformers, on point clouds of cultural heritage remains
underexplored (Cao and Scaioni, 2021; Matrone et al., 2020a;
Pierdicca et al., 2020; Zhao et al., 2024). Based on the above,
the following research questions are posed:
• Can recent deep learning architectures for 3D semantic

segmentation, generalize effectively using cultural herit-
age data? and

• Which are the factors influencing the generalization cap-
abilities of recent 3D semantic segmentation algorithms in
the aspect of CH data?

To address these questions, this study investigates the 3DSS
task within the CH domain, by comparing and analysing the

generalization capability of recent 3DSS algorithms using CH
data. The evaluation procedure is specifically designed to assess
the generalization capability of the 3DSS models. Furthermore,
an analysis of the generalization capability of each 3DSS model
considering its architecture is conducted, aiming at initiating a
preliminary exploration into the relationship between model ar-
chitecture and generalization on the CH domain. To sum up,
the contributions of this study are:
• A comparison of recent, underexplored DL 3DSS al-

gorithms using CH data.
• A preliminary exploration into the relationship between

3DSS model architectures and generalization on the CH
domain.

• Achieving SoTA performance on the ArCH benchmark
(Matrone et al., 2020b), using only the XYZ coordinates
and RGB values.

2. Related Work

2.1 Point Cloud 3D Semantic Segmentation

Semantic Segmentation is defined as the association of each ele-
ment of the data under process with a meaningful label. Using
3D point clouds each 3D point is associated with a label, in-
dicating its category. In general, 3DSS methods are classified
into the -Point, -Dimensionality Reduction, -Discretization, -
Graph and -Hybrid based methods (Betsas et al., 2025). The
Point Based methods use the raw 3D point cloud to extract
meaningful features for 3DSS and can be further classified into
the Point-wise MLP e.g., PointNet(Qi et al., 2017), and Point-
Net++(Qi et al., 2017), Point Convolution (Thomas et al., 2019),
Recurrent Neural Networks (Huang et al., 2018) and Attention
mechanism & Transformers, categories e.g., Point Transformer
v1 (PTv1) (Zhao et al., 2021) and Point Transformer v2 (PTV2)
(Wu et al., 2022). The Discretization based methods transform
the given point cloud to a new 3D or multi-dimensional dis-
crete representation and then apply convolution for 3DSS e.g.,
OACNNs (Peng et al., 2024). In this effort, four -Point and
one -Discretization based methods i.e., PointNet, PointNet++,
PTv1, PTv2 and OACNNs, are compared regarding their gen-
eralization capability on CH data.
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2.2 3D Semantic Segmentation on CH data

Traditional machine learning (ML) algorithms, such as Ran-
dom Forest, have demonstrated strong performance in 3DSS
involving applications in CH domain. However, these meth-
ods typically exhibit limited generalization capabilities when
applied to previously unseen scenes (Grilli et al., 2019; Grilli
and Remondino, 2019). Moreover, achieving improved gen-
eralization with traditional ML approaches often necessitates
a specialized manual extraction and evaluation of handcrafted
features (Grilli and Remondino, 2020). To handle this limita-
tion, Pierdicca et al. (2020) built on top of the DGCNN (Phan et
al., 2018) network proposing a modified version of it, suitable
for 3DSS on CH data. In detail, the modified DGCNN incor-
porates as input the original and normalized 3D coordinates,
the colors, expressed in HSV color space, and the normal vec-
tors. The proposed architecture was applied on the ArCH data-
set achieving SoTA results in terms of generalization capability
(Matrone et al., 2020a). Moreover, Cao and Scaioni 2021 also
built on top of the DGCNN network and proposed the 3DLEB-
Net, a label-efficient network that aimed to improve generaliza-
tion capability while reducing the required amount of labeled
data during training. Recently, Zhao et al. (2024) proposed
the DSC-Net aiming to capture the fine details of the ArCH
dataset by including a discriminative spatial contextual atten-
tion mechanism. The DSC-Net achieved high-end results using
k-fold cross validation on the ArCH datasets, demonstrating the
effectiveness and potential of attention-based methods in the
CH domain. Another line of methods, use the mature 2D Se-
mantic Segmentation methods on images and then project the
labels in 3D space using voting techniques (Murtiyoso et al.,
2022), achieving high-end results even in CH data (Pellis et al.,
2022a,b). However, the projection process unavoidably leads
to a loss of spatial and semantic information. In this effort, we
mainly compare Point based methods because they theoretic-
ally preserve the fine-grained spatial information presented in
detailed 3D point clouds.

3. Experiment Setup and Methodology

In general, the ArCH dataset includes 17 annotated scenes ac-
quired using various sensors, including DSLR and LiDAR. Of
these, 15 scenes are designated for training and 2 for testing.
In this effort, each 3DSS model was trained on the 15 training
scenes and validated using the “B SMV” scene. The “A SMG”
test scene, which was excluded during training and validation,
served as a fully unseen dataset to evaluate generalization. After
training, the model checkpoint achieving the highest validation
mIoU was selected for testing on scene A. All the experiments
were conducted using only the XYZ coordinates and RGB val-
ues i.e., excluding normals etc. Additionally, the hardware spe-
cifications of the computing system used for training, valida-
tion and testing of the recent 3DSS algorithms, are presented in
Table 1. In this effort, five deep learning 3DSS algorithms were

Asus ROG
Zephyrus G15

CPU GPU RAM
Ryzen 9
5900HS
3,3 GHz

NVDIA GeForce
RTX 3070 (8GB)

40 GB
DDR5

Table 1. Hardware specifications of the computing system used
for training and evaluating the 3DSS models

trained and evaluated on CH data, the PointNet, PointNet++,
PTv1, PTv2 and OACNNs. To achieve that, existing GitHub
implementations of them were exploited (Table 2). Specific-

DL Algorithm GitHub Repository

PointNet https://github.com/yanx27/
Pointnet Pointnet2 pytorchPointNet++

Point Transformer v1
https://github.com/Pointcept/
PointceptPoint Transformer v2

Omni-Adaptive CNNs

Table 2. GitHub repositories for each DL 3DSS architecture

ally, Pointcept (Pointcept-Codebase, 2025) is an open-source
codebase designed for point cloud perception tasks. It incorpor-
ates a wide range of recent 3DSS algorithms, along with pre-
processing pipelines tailored to commonly used 3DSS bench-
marks. Notably, Pointcept includes the original implementa-
tions of PTv1, PTv2 and OA-CNNs, along with many configur-
ation files. However, the ArCH dataset is not natively suppor-
ted within the Pointcept repository, and therefore, the necessary
configuration and preprocessing files required to apply the in-
cluded 3DSS methods to ArCH are not provided. To address
this gap, all the auxiliary files, such as configuration files and
preprocessing scripts, have been developed to enable the applic-
ation of PTv1, PTv2 and OA-CNNs to the ArCH dataset within
Pointcept. Finally, to facilitate the application of PointNet and
PointNet++ on the ArCH dataset using their PyTorch imple-
mentation (Table 2), a dedicated data loader script has been
developed. Apart from the necessary auxiliary files, the DL
algorithms typically involve numerous hyperparameters that re-
quire careful tuning to optimize performance; however, in this
study the best settings provided for each model, regarding the
S3DIS benchmark, were retained without further modification.
Key examples include the learning rate, weight decay, and the
number of training epochs, among others. Table 3 provides a
summary of selected hyperparameters and implementation de-
tails specific to each algorithm considered in this study.
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PointNet 20 0.001 0.005 Adam 3 16

Negative
Log

Likelihood
0.059

PointNet++ 20 0.001 0.005 Adam 3 16
Negative

Log
Likelihood

0.035

PTv1 100 0.006 0.05 AdamW 33 1
Cross

Entropy 0.648

PTv2 100 0.006 0,05 AdamW 22 1
Cross

Entropy 0.375

OA-CNNs 100 0.001 0.02 AdamW 15 1
Cross

Entropy 0.328

Table 3. Summary of the main hyperparameters and
implementation details for each deep learning algorithm

evaluated in this study

Deep learning algorithms performing 3DSS are commonly eval-
uated using a range of performance metrics, such as Accuracy,
Precision, Recall, F1-score, and Intersection over Union (IoU),
among others. In this effort, the per-class Accuracy (Eq 1), Pre-
cision (Eq 2), Recall (Eq 3), F1-score (Eq 4) and IoU (Eq 5) as
well as their mean values are calculated. Of course, the Point-
cept codebase includes the implementations of these metrics;
however, we also evaluated the performance of each algorithm
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using SciKit Learn (SciKit-Learn, 2025) python module, for
consistency among the compared methods.

OAcc =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− score = 2
Precision×Recall

Precision+Recall
(4)

IoU =
TP

TP + FP + FN
(5)

where: TP = True Positives
TN = True Negatives
FP = False Positives
FN = False Negatives

Data augmentation is a well-established technique employed
to enhance the generalization capability of DL models. Spe-
cifically, various transformations such as rotation, scaling, and
jittering, are applied to the training data in order to generate
additional, synthetic instances. The primary objective of data
augmentation is to increase the diversity and variability within
the training set, thereby enabling the model to generalize more
effectively to unseen data. The Pointcept codebase contains dif-
ferent data augmentation techniques, defined in the configura-
tion file of each 3DSS DL model. In the present study, data aug-
mentation was enabled; however, the default settings provided
for each model were retained without further modification. In
Table 4, the specific data augmentation strategies applied during
the training of each 3DSS method are summarized.

Data Augmentation PTv1 PTv2 OACNNs
CenterShift ✓ ✓ ✓
RandomScale ✓ ✓ ✓
RandomFlip ✓ ✓ ✓
RandomJitter ✓ ✓ ✓
ChromaticAutoContrast ✓ ✓ ✓
ChromaticTranslation ✓ ✓ ✓
ChromaticJitter ✓ ✓ ✓
GridSample ✓ ✓ ✓
SphereCrop ✓ ✓ ✓
CenterShift ✓ ✓ ✓
NormalizeColor ✓ ✓ ✓
RandomDropout ✓
RandomRotate (x, y, z) ✓
ElasticDistortion ✓
ShufflePoint ✓

Table 4. Data augmentation techniques applied during training
to PTv1, PTv2, and OACNNs models

4. Experimental Results

In general, the performance of the 3DSS DL methods on the
ArCH benchmark, is evaluated through both quantitative met-
rics and qualitative visualizations. This section presents the
evaluation results for the PointNet, PointNet++, PTv1, PTv2
and OACNNs methods. For each method, the best perform-
ing model, selected based on the validation performance, was
applied to the “SMG A” test scene of the ArCH dataset. The
quantitative results are summarized in Tables 5, 6, 7, 8, and 9,

which present the mean and per-class, IoU, Accuracy, Preci-
sion, Recall and F1-score metrics, respectively. Complement-
ing these metrics, Figures 1, 2, and 3 illustrate different visual
comparisons among the recent DL methods.

(a) Ground Truth

(b) PTv1 Prediction

(c) PTv2 Prediction

(d) OACNNs Prediction

Figure 1. Qualitative Analysis on SMG A test scene (Left View)

                              (a) Ground Truth

(b) PTv1 Prediction

(c) PTv2 Prediction

(d) OACNNs Prediction

Figure 2. Qualitative Analysis on SMG A test scene (Right
View)
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DL Model Train-
ing

Valida-
tion Test mIoU Arch Column Mold-

ings Floor Door
Window Wall Stairs Vault Roof Other

PointNet all B A 0.098 0.000 0.000 0.000 0.000 0.000 0.428 0.000 0.000 0.547 0.000
PointNet++ all B A 0.038 0.000 0.000 0.000 0.000 0.000 0.380 0.000 0.000 0.000 0.000

DGCNN all B A 0.376 0.001 0.233 0.108 0.614 0.085 0.681 0.282 0.555 0.826 n/a
DGCNN

Mod+3Dfeat all B A 0.599 0.210 0.795 0.451 0.867 0.087 0.765 0.391 0.866 0.963 n/a

OACNNs all B A 0.237 0.037 0.519 0.047 0.47 0.067 0.471 0.152 0.347 0.228 0.033

PTv1 all B A 0.556
(0.613) 0.539 0.881 0.364 0.731 0.190 0.778 0.550 0.804 0.674 0.04

PTv2 all B A 0.199 0.023 0.416 0.003 0.453 0.000 0.698 0.001 0.090 0.248 0.055

Table 5. The mIoU and Per-class IoU for each 3DSS DL method evaluated on the “A SMG” test scene. PTv1 achieves 61.3% mIoU
excluding the “Other” class, similarly to the compared methods. The results for the DGCNN and its variants were collected by the

ArCH benchmark.

DL
Model

Train-
ing

Valida-
tion Test mAcc Arch Column Mold-

ings Floor Door
Window Wall Stairs Vault Roof Other

DGCNN all B A 0.784 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DGCNNM
od+3Dfeat all B A 0.914 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

OACNNs all B A 0.889 0.64 0.98 0.926 0.869 0.987 0.79 0.991 0.916 0.828 0.958
PTv1 all B A 0.963 0.989 0.997 0.943 0.957 0.986 0.902 0.994 0.972 0.928 0.942

PTv2 all B A 0.909 0.870 0.981 0.925 0.872 0.992 0.849 0.991 0.878 0.826 0.911

Table 6. The mAcc and Per-class Accuracy for each 3DSS DL method evaluated on the “A SMG” test scene. The results for the
DGCNN and its variants were collected by the ArCH benchmark.

DL Model Train-
ing

Valida-
tion Test mPre Arch Column Mold-

ings Floor Door
Window Wall Stairs Vault Roof Other

DGCNN all B A 0.822 0.001 0.886 0.173 0.883 0.186 0.729 0.389 0.625 0.959 n/a
DGCNNM
od+3Dfeat all B A 0.917 0.532 0.849 0.650 0.957 0.135 0.879 0.466 0.891 0.975 n/a

OACNNs all B A 0.584 0.038 0.527 0.772 0.489 0.143 0.84 0.841 0.798 0.993 0.405
PTv1 all B A 0.737 0.646 0.998 0.705 0.797 0.272 0.808 0.61 0.823 0.976 0.127
PTv2 all B A 0.379 0.026 0.570 0.515 0.500 0.000 0.705 0.013 0.421 0.954 0.088

Table 7. The mPrec and Per-class Precision for each 3DSS DL method evaluated on the “A SMG” test scene. The results for the
DGCNN and its variants were collected by the ArCH benchmark.

DL Model Train-
ing

Valida-
tion Test mPre Arch Column Mold-

ings Floor Door
Window Wall Stairs Vault Roof Other

DGCNN all B A 0.784 0.002 0.240 0.226 0.668 0.136 0.912 0.509 0.833 0.856 n/a
DGCNNM
od+3Dfeat all B A 0.914 0.258 0.925 0.596 0.903 0.196 0.855 0.710 0.969 0.988 n/a

OACNNs all B A 0.431 0.926 0.973 0.048 0.934 0.112 0.518 0.156 0.381 0.229 0.035
PTv1 all B A 0.759 0.767 0.883 0.431 0.899 0.390 0.956 0.85 0.972 0.686 0.074

PTv2 all B A 0.310 0.196 0.607 0.003 0.829 0.000 0.986 0.001 0.102 0.251 0.125

Table 8. The mRec and Per-class Recall for each 3DSS DL method evaluated on the “A SMG” test scene. The results for the DGCNN
and its variants were collected by the ArCH benchmark.

DL
Model

Train-
ing

Valida-
tion Test mF1 Arch Column Mold-

ings Floor Door
Window Wall Stairs Vault Roof Other

DGCNN all B A 0.794 0.001 0.378 0.196 0.761 0.157 0.811 0.441 0.714 0.905 n/a
DGCNNM
od+3Dfeat all B A 0.915 0.347 0.886 0.622 0.929 0.160 0.867 0.563 0.928 0.982 n/a

OACNNs all B A 0.379 0.073 0.684 0.091 0.642 0.126 0.641 0.264 0.515 0.373 0.064
PTv1 all B A 0.736 0.701 0.937 0.535 0.845 0.320 0.876 0.710 0.892 0.806 0.093

PTv2 all B A 0.275 0.045 0.588 0.007 0.624 0.000 0.822 0.001 0.165 0.397 0.104

Table 9. The mF1-score and Per-class F1-score for each 3DSS DL method evaluated on the “A SMG” test scene. The results for the
DGCNN and its variants were collected by the ArCH benchmark.
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(a) Ground Truth

(b) PTv1 Prediction

(c) PTv2 Prediction

(d) OACNNs Prediction

Figure 3. Qualitative Analysis on “SMG A” test scene (Vaults)

Furthermore, the training loss per epoch for each method is de-
picted in Figure 4 and the evaluation loss per epoch for each
method is presented in Figure 5

Figure 4. The training loss for PTv1, v2 and OACNNs models

Figure 5. The validation loss for PTv1, v2 and OACNNs models

5. Discussion

3D Semantic Segmentation plays a significant role in 3D digit-
ization and analysis of CH monuments. In general, CH monu-
ments are characterized by high variability, complexity and fine
details, revealing extreme challenges for the 3DSS algorithms
e.g. generalization capability. Most of the methods studying
DL 3DSS on CH data use either the original or a variant of
the DGCNN network (Cao and Scaioni, 2021; Cao et al., 2022;
Matrone et al., 2020a; Pierdicca et al., 2020). Additionally,
traditional DL methods like PointNet, PointNet++ struggle to
learn the complex patterns included in CH monuments (Tsarpalis,
2025). To the best of our knowledge, recent 3DSS algorithms,
like PTv1, PTv2 and OACNNs have not been evaluated on CH
3D point clouds yet, despite of their SoTA performance on other
domains. The experimental results presented in this study re-
veal a strong performance of PTv1 on th ArCH benchmark
compared to previous SoTA methods e.g., DGCNN and even to
recent architectures i.e., PTv2 and OACNNs, using only XYZ
and RGB. Based on the qualitative and quantitative analysis,
PTv1 seems to better handle the class imbalance problem, achiev-
ing improved results on the minor classes (Table 10, Figure 6
and 7), compared to SoTA. Also, PTv1 achieves high-end res-
ults, comparing to both SoTA and recent DL 3DSS methods,
on the repetitive classes like Column, Arch, and Vault (Fig-
ure 7). However, compared to PTv1, DGCNN Mod+3Dfeat
achieves high-end results on classes like Floor and Roof with a
strong per-class IoU difference of +13.6% and 28.9% respect-
ively (Table 5). The reduced performance of PTv1 on the Roof
category is mainly due to the misclassifciation of it as Floor.
Figures 1 and 2 revealed a strong performance of PTv1 on
the class Roof; however, when the roof is flat and in a differ-
ent level, PTv1 misclassifies it as Floor (Figure 8) and thus the
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IoU performance is significantly reduced. This could be attrib-
uted to the fact that the training data of the ArCH benchmark,
primarily consists of gable and hip roofs, rather than shed or
flat roof types. As a result, the network may mainly confuse
the roof with the upper floor surface (Figure 8). Finally, in the
dominant class of Wall, PTv1 achieve a slightly better IoU per-
formance than SoTA with approximately +1% difference. Wall
performance is mainly reduced due to the misclassifications of
Moldings class. PTv1 achieve to classiy Modlings class when
it is located under the Roof class; however it struggles to distin-
guished it from Wall (Figure 1, 2, 3, 6 and 7)

Class Percentage
(Training set)

SoTA
IoU

PTv1
IoU Difference

Arch 4% 21% 53.9% +32.9%
Columns 2.3% 79.5% 88.1% +8.6%

Door
Window 5% 0.87% 19% +18.3%

Stairs 0.7% 39.1% 55% +15.9%

Table 10. Per-Class IoU difference, for minor classes, between
SoTA and PTv1

Figure 6. Close view on the performance of PTv1 on stairs class
(yellow). Ground Truth (Up), PTv1 (Down)

Figure 7. Close view on the performance of PTv1 on repetitive
class e.g., columns, arches and vaults. Additionally, a close view

to columns, arch and moldings minor classes. Ground Truth
(Up), PTv1 (Down)

Figure 8. Close view on the performance of PTv1 on Roof class.
Ground Truth (Up & Middle), PTv1 (Down)

The ArCH benchmark includes more chapel scenes than porti-
cos (Cao et al., 2022). Also, there is not a predefined valida-
tion scene. Additionally, it provides two test scenes, one chapel

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-111-2025 | © Author(s) 2025. CC BY 4.0 License.

 
116



(SMG B) and one portico (SMG A). To assess the generaliza-
tion capability of the 3DSS methods, we chose the chapel scene
as the validation set and the portico scene as the test set. This
choice, allows the effective monitoring of the learning process
and a fair assessment of the generalization capability. In Fig-
ures 4 and 5 the per epoch training and evaluation loss plots are
respectively presented for each method. In general, the train-
ing losses are decreased smoothly. PTv1 and PTv2 experience
a plateau from epoch 20 to 60; however after the application
of the loss scheduler on epoch 60 both of them seem to further
reduce the training loss. The difference between them occur
to the validation loss. PTv1 achieves to gradually standard-
ize the validation loss after epoch 60, while PTv2 continues
to fluctuate, revealing that the learned patterns are not descript-
ive for the “B SMV” scene. Moreover, OACNNs training plot
is smoothly decreasing during the entire training period; how-
ever the validation loss follows that of PTv2 also revealing a
struggle of learned patterns describing the “B SMV” scene. All
the experiments revealed a higher validation than training loss
as expected. Table 3 presents for PTv1, PTv2 and OA-CNNs
a validation mIoU of 64.8%, 37.5% and 32.8%, respectively.
Meanwhile, PTv1, PTv2 and OACNNs achieve a test mIoU of
61.3%, 21.4% and 25.9%, respectively. PTv2 and OACNNs
experienced a -16.1% and -6.9% drop while PTv1 only a -3.5%
drop, between the validation mIoU and test mIoU.

In general, the ArCH dataset contains fine-grained 3D point
clouds of monuments with high variability and heterogeneity.
The vector attention of PTv1 seem to better capture the fine-
detailed CH data patterns than the other 3DSS architectures,
including PTv2. Specifically, PTv1 vector attention mechan-
ism modulates each channel of the value vector by a separate
vector attention. While offering high representational capacity,
this approach leads to drastically increase the learnable para-
meters of the network, as we go deeper, flirting with overfitting
and preventing the deployment of deeper networks (Wu et al.,
2022). This was led Wu et al. (2022), grouping the channels
and applying group attention, reducing the learnable parameters
and increasing models’ depth. Despite PTv2 being an architec-
tural successor to PTv1 and generally demonstrating superior
performance across various benchmarks (Wu et al., 2022), this
study reveals a seemingly contradictory finding: PTv1 achieved
better generalization capability than PTv2 on the ArCH dataset.
A hypothetical explanation of this finding could be that PTv1 at-
tention as a more expressive implementation captures better the
underlying patterns of the highly detailed CH data; however, in
this study we do not exhaust models’ fine-tuning and therefore,
further systematic hyperparameter optimization and architec-
tural exploration are necessary to draw definitive conclusions
regarding the generalization capabilities and the factors influ-
encing performance for PTv1, PTv2, OACNNs and other DL
3DSS methods, in CH domain. Furthermore, it is important to
take into account the computational constraints encounter dur-
ing this study. Table 1 presents the hardware specifications of
the system used during training and inference, revealed limited
computational resources. Consequently, the large point clouds
were cropped into many smaller scenes to facilitate processing.
This necessary process could potentially hinder the extraction
of global features leading to lower, than the optimal, perform-
ance. Despite these limitations, PTv1 achieved high-end results
compared to SoTA methods in CH domain. The comparative
assessment of PTv1 and PTv2 architectures in this study under-
scores a potential association between their network architec-
ture and their generalization capabilities, particularly in the con-
text of highly detailed 3D point cloud data. In general, the in-

ference time is significantly influenced by the available compu-
tation power (Table 1). In the presented experiments the infer-
ence time varies significantly. Specifically, although the PTv1
algorithm achieves the best results, it requires nearly 5 hours to
process the “SMG A” scene. In comparison, PTv2 requires ap-
proximately 2 hours, while OACNNs complete the inference of
“SMG A” scene, in about 1 hour. These results highlight a crit-
ical trade-off between semantic segmentation performance and
computational efficiency. Overall, transformers seem to have
the capability to express the underlying patterns in CH data and
achieve high-end results in 3DSS using a proper hyper para-
meter tuning and sufficient computational resources.

6. Conclusions

This study, presents a comparative assessment of the general-
ization capability of PointNet, PointNet++, PTv1, PTv2 and
OACNNs algorithms using the ArCH benchmark. All the al-
gorithms are evaluated on the benchmark by assessing, detailed
qualitative and quantitative results, revealing high-end results
for PTv1. While this is contradictory as PTv2 being an archi-
tectural successor to PTv1, comparing PTv1 and PTv2 archi-
tectures revealed a potential association between their network
architecture and their generalization capabilities, particularly in
the context of highly detailed 3D point cloud data. However,
further systematic hyperparameter optimization and architec-
tural exploration are necessary to draw definitive conclusions
regarding the generalization capabilities and the factors influ-
encing performance for PTv1, PTv2, and OACNNs in CH do-
main, despite the great performance achieved by PTv1 regard-
ing the challenging CH data. Afterall, transformers seem to
have the capability to express the underlying patterns in CH
data and achieve high-end results in 3DSS using a proper hyper
parameter tuning and sufficient computational resources.
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