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Abstract

Accurate extraction of roof structures from aerial imagery is a critical step in the creation of detailed 3D models for digital heritage
reconstruction. This study explores a hybrid methodology that combines prompt-based segmentation with structured vector recon-
struction to enhance the extraction of roof skeletons from Very High Resolution (VHR) orthophotos. Using HEAT (Holistic Edge
Attention Transformer) as the primary reconstruction model, we fine-tuned it on a domain-specific dataset containing representative
gabled and hipped roofs to adapt to the unique geometries found in the city of Jena, Germany. To test whether prior roof isola-
tion could improve reconstruction performance, we integrated mask outputs from two segmentation models — RobustSAM and
LangSAM — into the HEAT pipeline. While segmentation offered visually precise results in several instances, overall evaluation
revealed that prior segmentation did not consistently improve HEAT’s reconstruction accuracy. These findings underscore HEAT’s
robustness and adaptability, especially when properly fine-tuned. Moreover, while SAM variants did not significantly boost per-
formance here, their ease of use and potential for improvement through domain-specific fine-tuning suggest promising applications

in other contexts.

1. Introduction

Digital heritage preservation plays a crucial role in protecting
and safeguarding cultural identities, enabling people to exper-
ience their historical urban environment virtually (UNESCO,
2003). Through different approaches in digital reconstruc-
tion, no longer existing (or altered) buildings can be restored
and visualized, facilitating research, education, and cultural en-
gagement (Miinster, 2019). Among the critical elements in
achieving authentic digital urban reconstructions are accurate
3D buildings, specifically detailed roof structures, which sig-
nificantly define the visual integrity of the building itself. The
present research contributes to our ongoing efforts in develop-
ing a comprehensive 4D city application, aimed at supporting
urban history education and research (Miinster et al., 2024).

3D city models are classified into Levels of Detail (LOD-0 to
LOD-4), each indicating an increasing geometric and semantic
complexity (Tan et al., 2023). LOD-0 and LOD-1 provide basic
terrain and extruded footprints, often insufficient for detailed
spatial analysis (Krafczek and Jabari, 2021). LOD-2 adds real-
istic roof geometries and building parts, enabling applications
such as shadow simulation, runoff analysis, and solar potential
mapping (Biljecki and Dehbi, 2019; Li et al., 2025). Higher
LODs (LOD-3 and LOD-4) incorporate fagade and interior de-
tails, overlapping with BIM domains for advanced facility man-
agement and virtual planning (Sun et al., 2019).

Among these, LOD-2 strikes a balance between geometric real-
ism and computational feasibility, making it particularly valu-
able for applications that require structural accuracy at the sur-
face level, especially in the context of historical modeling and
analysis of roof types (Tan et al., 2023; Krafczek and Jabari,
2021). The accurate extraction of building roofs is an essen-
tial step in the creation of LOD-2 models. As OpenStreetMap
(OSM) does not provide roof shape types in all regions, the

building footprints can be utilized for LOD-1 generation only
through simple extrusions. However, LOD-2 requires the iden-
tification of the inner roof structures, which cannot be obtained
from footprints alone. To achieve this, Very High Resolution
(VHR) satellite imagery and aerial orthophotos can be very use-
ful. They provide a mostly unobstructed top-down view, en-
abling the possibility of detecting the roof skeletons. However,
extracting accurate roof structures remains challenging due to
image resolution limits, occlusions, and variations in roof geo-
metry.

2. Related Work
2.1 Methods for Roof Skeleton Detection

Recent advances in deep learning models have shown prom-
ising results in automated feature extraction, particularly in roof
structure reconstruction (Campoverde et al., 2024). Most re-
cent state-of-the-art models include an end-to-end neural sys-
tem. Methods like L-CNN (Zhou et al., 2019) and HAWP (Xue
et al., 2020) follow, despite their differences, a similar two-
stage approach: initially detecting corner features from the in-
put image and subsequently classifying edge candidates based
on these detected corners using a score-based classifier. Among
them is HEAT — Holistic Edge Attention Transformer for Struc-
tured Reconstruction (Chen et al., 2022). In this approach, edge
features are initialized using trigonometric positional encoding,
followed by its fusion to the edge candidates. Finally, it uses
two transformer decoders (image and edge) to classify each
edge candidate (Chen et al., 2022).

2.2 Methods for Segmentation

The Segment Anything Model (SAM), introduced by Kirillov
et al. (2023), marked a significant advance in prompt-based
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segmentation. It can generate high-quality masks from simple
inputs such as bounding boxes or clicks, even in zero-shot
settings (Kirillov et al., 2023). This flexibility allows SAM
to be adapted to diverse scenarios, including VHR imagery.
Its foundational performance makes it an excellent candidate
for specific tasks like roof segmentation. Building on SAM,
task-specific variants like RobustSAM (Chen et al., 2024) and
LangSAM (Medeiros, 2023) have emerged. Although de-
tailed peer-reviewed studies are limited, RobustSAM emphas-
izes making SAM less sensitive to low-quality and degraded
images, enhancing segmentation accuracy under challenging
imaging conditions (Chen et al., 2024). On the other hand,
LangSAM (Language Segment Anything), built on Segment
Anything Model 2 and GroundingDINO, combines SAM with
language prompts, guiding segmentation through intuitive text
prompts offering user-friendly control (Medeiros, 2023).

Other deep learning models for building footprint extraction
from VHR imagery also remain crucial. Architectures such as
U-Net (Ronneberger et al., 2015), DeepLabv3+ (Chen et al.,
2018), and Res-U-Net have served as effective baselines, typ-
ically yielding around 70-80 percent Intersection over Union
(IoU) when adequately trained with sufficient data (Yuan, 2018;
Zhang et al., 2018). Recent transformer-based approaches, in-
cluding Transformer-U-Net and Swin Transformer hybrids, in-
troduce global attention mechanisms, handling complex urban
layouts better and further improving segmentation accuracy
(Song et al., 2023; Xiao et al., 2022).

This study explores a methodology that integrates
segmentation-based object isolation with structural vector
reconstruction to improve the accuracy of roof shape extrac-
tion. It aims to develop and evaluate a pipeline combining SAM
segmentation methods (RobustSAM! and LangSAM?) with
structured roof reconstruction algorithm (HEAT?) on VHR
imagery. As a preliminary step in the research, the approach
presented herein was intentionally tested on simple, quadrilat-
eral roof structures to ensure clear, interpretable results to serve
as a proof of concept. By first validating our methodology
against simpler roof geometries, we can rigorously assess
the fundamental feasibility, accuracy improvements, and
integration effectiveness of our methodology.

3. Methodology
3.1 Data Description and Pre-processing

The dataset used in the research are VHR (GSD 0.2 m) aerial or-
thophotos of the city of Jena, Germany from the year 2023, re-
trieved from the Thuringian state geoportal website (https://
geoportal.thueringen.de/). Around 9000+ buildings were
extracted (Figure 1) from the image through OSM building
footprints via the Overpass API. The buildings were cropped
after overlaying the polygons on the image with a 2 meter pad-
ding ensuring complete coverage of the buildings.

Since the extracted building patches were of varying sizes and
in GeoTIFF format, they were not suitable for direct input to our
downstream model. To meet the model’s requirements, each
patch was first converted to a PNG format and resized to a fixed
resolution of 256x256 pixels. This standardization, however,

! https://github.com/robustsam/RobustSAM

2 https://github.com/luca-medeiros/
lang-segment-anything

3 https://github.com/woodfrog/heat

Figure 1. 9000+ buildings extracted from the aerial image via
Overpass APL.

resulted in a loss of georeferencing information. To preserve
spatial context, georeferencing metadata, including bounding
coordinates and scaling factors, was extracted beforehand and
saved as accompanying JSON files. These would later be used
to restore the geographic reference of the model’s output.

3.2 HEAT: Holistic Edge Attention Transformer for
Structured Reconstruction

We decided to use HEAT because one of its modules is spe-
cifically designed for outdoor structured vector reconstruction,
making it particularly well suited for tasks like roof extrac-
tion. Among the available models, HEAT stands out for its
state-of-the-art performance in reconstruction tasks, as demon-
strated in its original benchmark results (Chen et al., 2022). The
HEAT model provides two pre-trained checkpoints trained and
evaluated on satellite image patches from cities such as Paris,
Las Vegas, and Atlanta, sourced from the SpaceNet Challenge
(Van Etten et al., 2019). Its open-source availability with pre-
trained weights made it a practical choice for our study.

The HEAT model is designed to extract a structured graph of
corners and connecting edges from an image, such as those
found in building roof outlines. It operates in two main stages.
First, it predicts potential corner points across the image us-
ing a convolutional backbone combined with position-aware
encodings and attention mechanisms. These corner candidates
are refined through non-maximum suppression to select high-
confidence points. Next, it constructs all possible edge connec-
tions between detected corners and represents each edge as a
feature vector. These edge features are enriched with contex-
tual visual information by sampling image features along the
line connecting each corner pair, using deformable attention.

HEAT then classifies which of these edge candidates are valid
using two transformer decoders: one that processes image-
aware features and another that uses only geometric information
derived from corner positions. Both decoders share weights and
jointly optimize the edge classification task. This dual-branch
design ensures that structural patterns are reinforced, even in
cases where image texture is ambiguous. The result is a ro-
bust prediction of planar wireframes representing the structure
of building roofs.

As most buildings in the test city featured diverse roof types
such as sloped and gabled structures, we fine-tuned the model to
better suit our dataset, since the original model had been trained
primarily on flat roofs using around 2000 image samples. To
perform this fine-tuning, we used a set of 30 manually annot-
ated roof images from our dataset, which contains primarily
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Figure 2. Network architecture of the HEAT model, illustrating
the two-stage process of corner detection and edge classification
using transformer decoders. Modified from Chen et al. (2022).

simple roof types comprising of gabled and hipped structures.
An additional set of 20 samples was reserved for evaluation.
Instead of retraining the entire model, we selectively fine-tuned
only the corner detection and edge classification modules using
these annotations. This strategy allowed us to adapt the model
to the varying roof types present in our dataset while retaining
the benefits of the learned features from the pre-trained model.

We fine-tuned the model using a batch size of 2 and a learning
rate of 0.0002, optimized with AdamW. Training lasted for 400
epochs, reducing the learning rate at epoch 300. Only the parts
responsible for detecting corners and classifying edges were up-
dated, while the rest of the model remained frozen. We kept key
settings from the original model, such as corner loss weights
and edge sampling. Later, we evaluated HEAT, both independ-
ently and together with segmentation outputs from RobustSAM
and LangSAM, to see how they affect the final roof skeleton
results.

3.3 Segmentation Methods: RobustSAM and LangSAM

We used SAM variants primarily due to their adaptability.
SAM’s support for prompt-based interaction allows targeted
segmentation through manual or automated prompts. Robust-
SAM, fine-tuned and tested on degraded images, has been put
to test for handling noise and low-quality images. Alternatively,
we also test LangSAM. It’s powerful text-based prompts signi-
ficantly aid in targeting specific semantic classes.

RobustSAM is a fine-tuned variant of the SAM model, de-
veloped to perform better on degraded, low-resolution, or noisy
images. In our study, we tested both supported prompt types —
point-based and bounding box — to guide segmentation. Point-
based prompts offered greater precision by allowing interact-
ive selection of specific roof regions, while bounding boxes
provided broader spatial context. This allowed us to compare
how each prompt type influenced segmentation quality.

Built on top of Segment Anything Model 2 and Grounding-
DINO, LangSAM enables intuitive text-based commands to
guide the mask generation. Two modes of operation were avail-
able for LangSAM: 1) an interactive web-based interface and
2) a Python library. While the interface allowed easy visu-
alization and adjustment of prompt sensitivity (e.g., box and
text thresholds), it lacked flexibility in exporting segmentation
masks in a format suitable for downstream use in HEAT. In
contrast, the library version offered full control over mask ex-
traction and enabled batch processing across multiple images.
Both segmentation outputs were later integrated with the HEAT
model for downstream structured reconstruction and perform-
ance evaluation.

4. Results and Evaluations

This section presents the results of our experiments, divided
into two major components: 1) the fine-tuning evaluation of
the HEAT model and 2) a comparative analysis of segmentation
performance using RobustSAM and LangSAM.

4.1 HEAT Fine-Tuning

To evaluate the effectiveness of the HEAT fine-tuning process,
we compared the model performance before and after training
on our annotated dataset. Key metrics — precision, recall, and
F-1-score — were used to quantify improvements in corner de-
tection and edge classification. The refined model demonstrated
a notable reduction in false corners and spurious edges (Fig-
ure 3). It accurately captured simple roof geometries, such as
gabled and hipped structures, with significantly improved co-
herence and fewer geometric artifacts. Table 1 shows the quant-
itative evaluation of the original versus the fine-tuned HEAT
model.

FINE-TUNED ORIGINAL  FINE-TUNED

Jorsrg

ORIGINAL

Figure 3. Results for HEAT showing the improvement in
reconstruction for simple geometries. Left: result with original
model; Right: result after fine-tuning.

The consistent improvement across all metrics highlights the
model’s flexibility in learning domain-specific features and its
capacity to produce more structured and reliable outputs. The
results were achieved without any prior segmentation of the in-
put imagery, indicating that the HEAT model, when fine-tuned,
can effectively distinguish roof features from surrounding con-
tent in cases of simple roof types. Nevertheless, we proceed
to evaluate whether integrating pre-segmented masks from Ro-
bustSAM and LangSAM contributes further to reconstruction
accuracy or not.

4.2 Segmentation Methods

We first examined the standalone performance of the two seg-
mentation models RobustSAM and LangSAM on our image
patches. These models were applied to isolate roof regions from
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Metric Original Fine-tuned HEAT+RS HEAT+LS
Corner Prec 0.38 0.65 0.73 0.73
Corner Recall ~ 0.85 0.83 0.78 0.72
F-1 Score 0.52 0.73 0.75 0.72
Edge Prec 0.49 0.79 0.78 0.76
Edge Recall 0.61 0.71 0.69 0.60
F-1 Score 0.54 0.75 0.73 0.67
Region Prec 0.62 0.72 0.75 0.67
Region Recall ~ 0.61 0.60 0.62 0.52
F-1 Score 0.61 0.66 0.67 0.58

Table 1. Quantitative evaluation of original vs. fine-tuned HEAT
model.

the background using prompt-based inputs: point clicks and
bounding boxes for RobustSAM and natural language prompts
for LangSAM. A total of 50 building samples were used for
evaluation representing a diverse set of roof geometries.

During evaluation, we observed notable differences between
the two prompt modes available in RobustSAM. As shown in
Figure 4, bounding box prompts sometimes captured additional
elements near the target structure, resulting in unwanted isol-
ated segments (highlighted with green circles). In contrast,
point-based prompts provided finer control over the segmenta-
tion, enabling more precise isolation of the roof region without
accidental inclusion of background objects. Based on these ob-
servations, we adopted point-based prompting as the preferred
mode for subsequent reconstruction tasks.

BOUNDING-BOX BOUNDING-BOX

POINT-BASED
|

Figure 4. Comparison of RobustSAM segmentation using
bounding box (left) vs. point-based prompts (right). Green
circles indicate undesired isolated segments in the bounding box
results.

We then evaluated the segmentation quality of LangSAM using
natural language prompts. The text prompt “roof” was consist-
ently used throughout the entire processing pipeline to extract
roof regions from each image (Figure 5). At first inspection,
LangSAM delivered promising and visually coherent segment-
ation masks. The use of language-based prompts enabled intu-
itive and semantically meaningful region selection, and in most
cases, the segmentation performance was remarkably effective,
even when the text prompt was highly unspecific like “roof™.

Based on both qualitative visual assessments and quantitative
evaluation metrics, the performance of RobustSAM and Lang-
SAM appears comparably strong. The IoU and pixel accuracy
values suggest that there is no significant difference between the

INPUT

OVERLAY

Figure 5. Overlay results from prompt-based segmentation
model LangSAM. The prompt “roof” was used as input prompt.

two methods in terms of overall segmentation quality (Table 2).
While both models demonstrate the ability to successfully isol-
ate roof structures in most cases, challenges remain in more
complex scenarios — particularly where low contrast between
roof and surrounding regions exists. Finally, when these seg-
mented outputs were integrated into the HEAT model to guide
vector reconstruction, the overall improvements were found to
be limited.

RobustSAM LangSAM
IoU PA IoU PA
0.7718 0.9036 ‘ 0.7176 0.8842

Table 2. Segmentation performance of RobustSAM and
LangSAM.

5. Conclusion

The primary objective of this study was to investigate whether
the integration of prior segmentation — specifically using mask
outputs from prompt-based models like RobustSAM and Lang-
SAM — could enhance the performance of the HEAT model in
roof skeleton reconstruction. By isolating roof regions in ad-
vance and supplying these refined inputs to the HEAT pipeline,
we aimed to assess whether this preprocessing step would lead
to more accurate and structurally coherent vector reconstruc-
tions compared to using raw imagery alone. However, on av-
erage, the segmentation process did not substantially affect the
quality of vector reconstructions. In cases where the segment-
ation masks were accurate and covered the entire roof, the res-
ulting vector reconstructions were largely unaffected (Figure 6
a, b). In instances where segmentation failed to capture the full
extent of the roof — such as omitting parts of the structure —
HEAT struggled to generate complete wireframes due to miss-
ing visual information (Figure 6 e). Similarly, when non-roof
regions were incorrectly included in the mask, the model occa-
sionally misinterpreted the context, leading to inaccurate edge
constructions (Figure 6 c).

Overall, these outcomes indicate that segmentation had a lim-
ited impact on performance and in some cases even introduced
challenges rather than resolving them. This suggests that the
benefit of prior segmentation is highly dependent on the quality
and precision of the mask, and that HEAT’s performance, es-
pecially on simpler roof geometries, remains relatively robust
even without explicit object isolation.
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Input RobustSAM (RS)  LangSAM (LS)

HEAT

HEAT with RS HEAT with LS

Figure 6. Qualitative evaluations of roof structure reconstruction with and without segmentation.

While segmentation did not yield significant improvements in
this study, it still remains a powerful tool. Our findings sug-
gest that with further fine-tuning on diverse roof types and
varying image conditions, prompt-based segmentation models
have strong potential in various applications. Although the pre-
trained SAM variants did not show major benefits in our spe-
cific pipeline, it is important to acknowledge that they were not
trained or fine-tuned on our dataset. This gives a reasonable
benefit of doubt, and it cannot be concluded that these models
lack utility in general. Trained and refined on custom datasets,
such models may still offer valuable contributions to future roof
reconstruction workflows, underscoring their broader potential.

These findings also suggest that much of the HEAT model’s
performance is owed to its fine-tuning process. By exposing
the model to a wide range of representative roof geometries
during training, it learns to internally differentiate roofs from

non-roof regions, reducing its dependence on external segment-
ation cues. Therefore, the model’s success is tied to how well
it has been fine-tuned to recognize domain-specific patterns.
With enough exposure to representative samples, particularly
those that capture complex roof geometries, the HEAT model
becomes capable of distinguishing relevant structural cues —
even in the presence of background noise. Thus, rather than re-
lying heavily on prior segmentation, further performance gains
may be achieved by expanding and diversifying the fine-tuning
dataset.

6. Future work

In the preprocessing stage of our pipeline, geospatial metadata,
such as bounding coordinates and scaling factors, were extrac-
ted from the original GeoTIFF image patches prior to their con-
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version and resizing for the HEAT model. This step ensured
that the georeferencing information was preserved, allowing us
to later reassign real-world spatial extents to the model’s out-
put predictions. This geospatial anchoring sets the stage for
the next phase of our research — fusing the HEAT-generated
2D roof skeletons with 3D data such as LiDAR point clouds or
Digital Surface Models (DSMs) to create detailed and accurate
3D wireframe representations of rooftops. While this work was
mainly targeted on improving the models of the 4D city applic-
ation regarding urban history education, the implications ex-
tend well beyond this scope. By enabling geo-accurate and se-
mantically precise roof reconstructions, the proposed methodo-
logy can potentially benefit a range of urban analytics and plan-
ning domains like photovoltaic potential analysis, green roof
planning and other structural inspection tasks.
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