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Abstract

This study investigates the impact of path tracing samples per pixel count on image quality in Blender, within the framework of
4D reconstructions of partly destroyed castles. These 4D models integrate both spatial and temporal dimensions. High-quality
rendering is essential for both research and communication purposes, but it comes with significant computational costs. The study
focuses on identifying a balance between visual quality and rendering time by analysing how image quality evolves with the number
of rendering iterations.
The evaluation uses the Mean Structural Similarity Index Measure (MSSIM), a perceptual metric that reflects human visual
sensitivity more effectively than traditional methods such as the Root Mean Square Error (RMSE) or the Peak Signal to Noise
Ratio (PSNR). Each test image is compared to a reference image used as the ground truth. Images are rendered with increasing
numbers of samples per pixel while maintaining all other scene parameters fixed to ensure comparability.
The study shows a clear MSSIM convergence, indicating that visual quality improves significantly with more iterations, but
converges after a certain threshold. Pixel-wise SSIM maps are also generated to provide local information into the spatial
distribution of similarity across the images. In addition, the study examines the role of Blender’s built-in denoising algorithms,
evaluating their effectiveness in enhancing perceived image quality and their potential to reduce necessary iteration counts.
By quantifying the relationship between samples per pixel and image quality, this research aims to define a rendering strategy
for heritage applications. The goal is to minimise rendering time without compromising the visual standards required for
documentation, analysis, and public dissemination of digital reconstructions.

1. Introduction

Ray tracing is used to convert a 3D model into a 2D image by
casting light rays into a scene. Unlike real-world light, which
propagates from light sources to objects, ray tracing follows
an inverse approach by casting rays from the camera into the
scene. Each ray can then interact with its environment and the
materials applied to the 3D models it encounters.

Other rendering methods have been developed to improve the
performance and accuracy of ray tracing. One example is
path tracing, used by the Cycles rendering engine (Blender,
2025) in the Blender modelling software, which allows for the
simulation of global illumination effects and the production
of photorealistic images. However, it is an iterative method
that requires a high number of iterations to reduce noise and
achieve a high-quality render. This study aims to analyse
the influence of key path tracing parameters, particularly the
number of iterations, on the visual quality of the generated
image. Here, the practical application is in the context of 4D
modelling of partly destroyed medieval heritage, meaning a 3D
reconstruction that incorporates a temporal dimension. The
objective is to determine the optimal settings that provide a
balance between processing time and rendering quality.

This approach is implemented within the framework of the
Interreg VI Project (2023-2025): ”Châteaux Rhénans - Burgen
am Oberrhein”, a cross-border initiative involving France,
Germany, and Switzerland, coordinated by the European
Collectivity of Alsace. Specifically, our methodology aligns
with Action 4.6 of the project, which focuses on the 3D
valorisation of heritage sites, thereby providing a dynamic and
innovative solution for digital heritage conservation and study.

2. Related Work

The use of ray tracing for rendering a 3D scene was introduced
by Whitted (1980). The principle involves following the
reverse path of light by casting rays from the virtual camera
towards the scene to determine interactions with objects.
When a ray encounters a surface with an applied material, it
reacts according to the material’s properties. These can be
described by a reflectance model such as the one proposed
by Phong (1975), though more advanced models based on the
Bidirectional Reflectance Distribution Function (BRDF) also
exist. Whitted’s model, while relatively simple to implement,
has a high computational cost due to the large number of
intersections that must be tested, which limits performance.
To address this, various methods have been developed to
improve the model. One such approach is that of Fujimoto
et al. (1986), which accelerates ray tracing by subdividing
the scene into a regular grid, thereby reducing the number
of intersection tests. Another method, introduced by Kay
and Kajiya (1986), employs a hierarchy of bounding volumes
(BVH) to further decrease the number of intersection tests and
enhance performance.

To overcome some of the limitations of classical ray tracing,
improved techniques have been developed, including path
tracing, introduced by Kajiya (1986). Its main advantage is
the incorporation of global illumination, allowing for a more
realistic simulation of light propagation. This method accounts
for indirect reflections and maintains energy balance across
light bounces, unlike traditional ray tracing, which primarily
handles direct and specular reflections. Path tracing involves
casting multiple rays in a stochastic manner and accumulating
the results. However, when only a small number of samples

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1387-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1387



is used, the final image may appear noisy. Research has been
conducted to analyse and compare this noise (Astuti et al.,
2022), as well as to reduce it (Parker et al., 2010; Yasenko et
al., 2020; Áfra, 2024).

Once the final image is computed, its evaluation generally relies
on human visual perception. The challenge then arises: ”How
should this image be assessed?” While the question may seem
straightforward, it is not easy to answer. Wang et al. (2002)
highlight this issue clearly. Wang et al. (2004) propose an initial
solution by introducing Structural Similarity Index Measure
(SSIM), a method that models human visual perception more
effectively than traditional Root Mean Square Error (RMSE) or
Peak Signal to Noise Ratio (PSNR) approaches. SSIM makes
use of the HSV colour space, which better represents human
perception of image quality. Variants of this method have
been developed (Wang et al., 2003; Behzadpour and Ghanbari,
2023), along with alternative evaluation techniques based on
different principles, such as Visual Information Fidelity (VIF)
(Sheikh and Bovik, 2006). Additionally, quality assessment
methods can be extended to other types of data, including range
images (Malpica and Bovik, 2009) or 3D synthesised views
(Battisti et al., 2015).

3. Methodology

A scene was created in Blender to serve as the basis for
rendering. It uses the Birkenfels castle, located in Ottrott,
around 30 kilometres from Strasbourg, Alsace, France. The
castle is thought to have been built in the XIIIth century, then
gradually abandoned in the early XVIth century. Figure 1 shows
its current state of preservation.

Figure 1. Aerial view of the current state of the Birkenfels castle
(Châteaux forts Alsace, 2025)

This scene, presented by figure 2, depicts the historical
reconstruction of Birkenfels Castle. It consists of several
meshes, with textures generated procedurally. The surrounding
terrain is composed of multiple meshes with varying densities,
depending on their distance from the castle. Vegetation models
are instanced across the terrain: smaller plants are positioned
near the castle, while trees populate more distant areas.
Lighting is provided by an HDR environment map, and no
volumetric effects or fog are present in the scene. All elements
were modelled using a parametric approach, as detailed by
Sommer et al. (2025). This scene is used to render images
using path tracing, with a progressively increasing number of
samples per pixel in order to study the visual quality of each

rendering. Among the various evaluation methods available,
the Mean Structural Similarity Index Measure (MSSIM) was
chosen (Wang et al., 2004). This decision is motivated by
the fact that MSSIM is widely used in the literature, which
facilitates comparison with previous studies and allows the
results to be placed in a broader scientific context.

3.1 Generation of the Image Dataset

Each rendered image has a size of 1920 × 1080 pixels. The
evaluation of images rendered using path tracing with varying
numbers of samples per pixel is made possible by generating a
large number of images, each with a specific samples per pixel
count. The rendering of these images is performed directly in
Blender with Cycles using the Python API. Once an image is
rendered with n samples per pixel, a new image is rendered with
n+ a samples per pixel (a being an integer step value between
each samples per pixel count). Depending on the case, each
image is then saved either before denoising, or after denoising
using OpenImageDenoise (OID) (Áfra, 2024), or using OptiX
(Parker et al., 2010). Each image is saved in the following
formats:

• JPG with 100% quality (hereafter referred to as JPG-100)

• JPG with 90% quality (hereafter referred to as JPG-90)

• JPG with 75% quality (hereafter referred to as JPG-75)

• PNG with 8-bit colour depth (hereafter referred to as
PNG-8)

• PNG with 16-bit colour depth (hereafter referred to as
PNG-16)

For each denoising method, the influence of the number of
samples per pixel on the visual quality of the image can then
be assessed. This analysis also takes into account the image
file format in order to determine whether compression has a
significant impact on the final visual quality.

3.2 Creation of a Reference Image

To evaluate the test dataset, a reference image is required to
serve as ground truth. This image must have significantly
higher quality than the images to which it will be compared.
It is therefore generated using the exact same scene and path
tracing parameters, but with a number of samples per pixel far
greater than that used for the test images. The reference image
plays a key role in the evaluation of the results. Its quality has
a direct impact on MSSIM scores, which is why it is essential
to ensure its high quality. Moreover, it must only serve as a
reference for data of the same type, so that the comparisons
remain valid. The reference image should approximate a
perfect image that has reached convergence, regardless of the
number of samples per pixel. This convergence can be assessed
using the MSSIM between two images rendered with very high
samples per pixel. The closer the MSSIM value is to 1, the
better the visual quality. It is therefore necessary to determine
a threshold beyond which the rendering converges and reaches
a visually satisfactory result. This threshold was estimated at
0.95 by Flynn et al. (2013), based on images assessed by several
independent observers. Anglada et al. (2022) adopted this
threshold to dynamically adapt scene rendering and accelerate
image generation using GPU processing.
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Figure 2. Reference image with 100,000 samples per pixel

(a) Without denoising (b) With OptiX denoising

Figure 3. Comparison between renders with 1 sample per pixel: (a) without denoising and (b) denoised with OptiX.

For the test dataset, achieving an MSSIM > 0.95 typically
requires several hundred samples per pixel. Therefore, it can
be estimated that a reference image must have at least 10,000
samples per pixel to be considered satisfactorily converged. To
validate this value, the MSSIM is calculated between an image
rendered with 10,000 samples per pixel and one rendered with
100,000. The resulting MSSIM value exceeds 0.99 regardless
of the denoising method, image format, or compression level.
Thus, it can be confirmed that from 10,000 samples per pixel
onwards, each image may be used as a reference for the test
datasets, provided they are of the same type. Unless otherwise
specified, each reference image used in the following sections
was rendered with 100,000 samples per pixel. Figure 2 shows
a reference image rendered with 100,000 samples per pixel and
denoised using OpenImageDenoise.

4. Evaluation of Images and Validation of Visual Quality

Each set of images (for example, all images denoised with
OpenImageDenoise and saved as JPG with 100% quality) is

evaluated against a reference image. An MSSIM value can thus
be associated with each image, and therefore with each iteration
count of the path tracing render. Figure 3 shows the importance
of these iterations. In the absence of denoising, the image
appears very noisy and dark because many pixels remain black.
The image is completely unusable. In comparison, the denoised
image appears much brighter, but very blurred, especially in
areas of vegetation. These 2 images have a MSSIM score
well below 0.95. For each set of images, when the MSSIM
value reaches 0.95, the rendering can be considered visually
satisfactory. The faster a denoising method or recording format
reaches and exceeds this value, the fewer samples per pixel are
required.

4.1 Use of the GPU for Path Tracing Rendering

Blender allows the use of a GPU to accelerate path tracing
rendering. For this study, the computer used is equipped with
a Nvidia Quadro RTX 6000 graphics card. This enables the
use of the Cycles Render Device OptiX. The rendering time is
significantly reduced, as shown in figure 4.
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Figure 4. Computing Time using GPU or CPU

However, it is also important to verify whether the use of the
GPU affects the final image quality, in order to ensure that the
subsequent evaluations are not biased by its use. To assess this,
sets of images were rendered both with and without denoising,
and both with and without GPU rendering. The images were
saved in JPG format with 100% quality, and an MSSIM
score was calculated for each image rendered with the same
number of samples per pixel. For example, an image rendered
with the GPU using 100 samples per pixel and denoised
with OptiX was compared to its CPU-rendered counterpart.
Figure 5 shows that denoising with OpenImageDenoise gives
an MSSIM score above 0.99 after only a few samples per pixel,
indicating that rendering with or without the GPU produces
visually similar results. The same conclusion holds when
no denoising is applied. In contrast, denoising with OptiX
produces noticeably different results. For low sample counts
(less than 20 samples per pixel), MSSIM scores fall well
below the 0.95 threshold required for visual convergence. No
specific bibliographic reference was found regarding a more
detailed study of OptiX denoising. However, previous research
highlights the challenges of denoising highly noisy images
resulting from a low number of samples per pixel (Firmino et
al., 2022; Sakai et al., 2024). Nonetheless, the 0.95 MSSIM
threshold is still reached fairly quickly (after 22 samples per
pixel), so this observation regarding low sample counts will not
impact the rest of the study.

Figure 5. MSSIM comparison between GPU and CPU rendering

In any case, apart from this specific situation, images rendered
with the CPU and GPU are very similar. The following analyses
will therefore be conducted on images rendered with the GPU,

although the results may also be extended to images rendered
with the CPU.

4.2 Influence of Image Compression on Visual Quality

When a scene is rendered using path tracing in Blender, the
final image can be saved in various formats, with or without
compression. Compression allows for significant savings in
storage space, particularly when a large number of images
is needed, as is often the case when producing a video that
requires several hundred or even thousands of frames. For
example, for a folder containing 1,315 images, table 1 shows
that saving in PNG format with a 16-bits colour depth requires
26 times more storage space than saving in JPG format with
75% quality.

Format JPG-75 JPG-90 JPG-100 PNG-8 PNG-16
Size (Go) 0.6 1.0 2.7 7.6 15.2

Table 1. Folder Sizes According to Format and Compression

This compression, while highly beneficial in terms of storage,
introduces issues regarding image quality. Saving an image
in the .JPG format involves lossy compression, which means
that some of the image data is discarded. Specifically, .JPG
compression applies a transformation to the image, allowing
many coefficients—those close to zero—to be removed after
transformation. This transformation, known as the Discrete
Cosine Transform (DCT), reduces file size while only slightly
degrading the perceived visual quality. High-frequency
components of the image can be isolated and removed, as the
human eye is less sensitive to them. However, the higher the
compression rate, the more the image degrades. As a result,
although an image may take up less disk space, it might not be
suitable for use if its quality is insufficient.

To analyse the effects of compression, the PNG-16 format
is used as a reference. This is a compressed but lossless
format, ensuring that the original image quality is preserved.
Furthermore, PNG-16 offers higher quality than PNG-8,
JPEG-100, JPEG-90, and JPEG-75, as it uses a high colour
depth (16 bits per channel), allowing for very fine reproduction
of gradients and details, without any data loss. Unlike
PNG-8 (limited to 256 colours) and JPEG formats (which are
lossy), PNG-16 preserves the full richness of colours, subtle
variations, and perfect transparency. By directly analysing
images rendered with a very high number of samples per pixel
(in this case, 100,000), it is possible to determine whether
compressed formats can approximate PNG-16.

Table 2 shows that after 100,000 samples per pixel, saving an
image in JPG-75 format does not allow the MSSIM score to
exceed 0.95—indicating visual convergence—regardless of the
denoising method. Therefore, it can be concluded that beyond a
certain level of compression, the image becomes too degraded
to maintain sufficient visual quality.

JPG-75 JPG-90 JPG-100 PNG-8
OID 0,93 0,97 1,00 1,00

OptiX 0,93 0,97 1,00 1,00

No denoising 0,93 0,97 1,00 1,00

Table 2. MSSIM for different denoising methods and image
formats with a PNG-16 as reference
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Using the same reference image, it is then possible to
analyse whether compression during saving affects the speed of
convergence and the point at which the MSSIM score exceeds
the 0.95 threshold. By iterating over each image with increasing
values of samples per pixel, an MSSIM score is calculated
for each type of compression, relative to the PNG-16 image
rendered with 100,000 samples per pixel. This is done for each
format, with the exception of JPG-75, which, as shown in table
2, does not reach the required threshold.

Figure 6. MSSIM score by saving format compared with
PNG-16 as reference

It is observed with figure 6 that the JPG-100, PNG-8 and
PNG-16 formats converge in a similar manner, while the
JPG-90 format requires a greater number of samples per
pixel to reach acceptable visual quality. This aligns with the
MSSIM scores of images rendered with a similar number of
iterations presentend by figure 7: JPG-100 and PNG-8 images
achieve similar scores, whereas JPG-90 images have lower
scores, indicating that compression slows down and limits
convergence towards the ground truth. These results were
obtained using OpenImageDenoise for denoising, but similar
trends were observed with OptiX and without denoising. It
is also interesting that for images saved in JPG-90 format, the
MSSIM score shows a decreasing trend. This suggests that at
lower values of samples per pixel, the compression ratio has a
smaller impact on the MSSIM score.

Figure 7. MSSIM score by saving format compared with
PNG-16 with the same SPP

It can therefore be concluded that image compression and the
number of samples per pixel are interdependent in achieving

a result that converges towards the ground truth. If storage
space is a critical factor in the project, compression using the
JPG format is feasible, provided that a high quality setting is
maintained (for instance, 75% quality is insufficient to meet
the MSSIM threshold, while 90% quality is adequate). When
such compression is used, it becomes necessary to significantly
increase the number of samples per pixel, which results in
longer rendering times.

Moreover, MSSIM scores between JPG-100, PNG-8, and
PNG-16 are very similar. JPG format with 100% quality
is a viable option, ensuring optimal visual quality while
significantly reducing storage requirements.

4.3 Identifying the Most Effective Denoising Method

The analyses carried out in the previous subsections have
helped determine the most suitable methods for image
rendering and saving. It was established that GPU-based
rendering significantly accelerates processing time while
ensuring visual quality comparable to CPU rendering.
Furthermore, the JPG-100 format was found to be optimal,
as it delivers high visual quality while considerably reducing
storage space. Consequently, for the remainder of the analyses,
all images are rendered using the GPU and saved in JPG-100
format.

The next objective is to identify the most effective
denoising method. The renders were thus performed with
OpenImageDenoise, with OptiX and without denoising. As
shown in table 2, all three methods converge towards the
PNG-16 reference, meaning each method finally achieves a
similar final result.

The MSSIM scores, illustrated in figure 8, demonstrate that
OpenImageDenoise reaches the MSSIM threshold of 0.95 the
fastest, requiring 312 samples per pixel. OptiX closely follows,
reaching the threshold at 364 samples per pixel. As expected, in
the absence of denoising, significantly lower MSSIM scores are
obtained, with at least 532 samples per pixel needed to achieve
an MSSIM of 0.95.

The slight fluctuations observed in the MSSIM score curves,
such as a drop around 1000 samples per pixel followed by a
recovery around 2000 samples per pixel, can be attributed to
the irregular behaviour of the path tracing rendering engine.
As described by Celarek et al. (2019), certain complex areas
of the image, such as soft shadows or reflections, do not
always converge in a continuous manner. At 1000 samples
per pixel, some lighting effects may appear only partially or in
an unstable way, locally altering the image structure compared
to the reference, which leads to a decrease in the MSSIM
score. At 2000 samples per pixel, these areas begin to converge
more accurately, thereby improving the perceived structure and
increasing the score. The MSSIM index, being sensitive to
local structural organisation, reflects these variations, even if
they are not always perceptible to the human eye. In any
case, these fluctuations are minor and do not affect the overall
interpretation of the results.

5. Repeatability of the Results

The studies and results presented in section 4 are based on a
specific scene, observed from a single fixed point of view. As
a consequence, the set of elements evaluated is limited to what
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Figure 8. MSSIM score depending on the denoising methods

is directly visible from that particular camera position. While
this controlled configuration is necessary to establish initial
observations, it also introduces potential biases, as conclusions
may only reflect the specific spatial and visual conditions of that
viewpoint. It is therefore essential to validate these findings by
testing their repeatability across different configurations of the
same scene. To evaluate this repeatability, the exact same scene
was used, with strictly identical rendering parameters, lighting
conditions, 3D models, and material definitions.

Figure 9. Second point of view of the same scene used to study
repeatability

Figure 9 shows that the only variation from figure 2 is
the position of the camera, offering a different perspective
on the same environment. This choice is justified by the
scope of the project, which deals with multiple historical
castles. These sites often share comparable architectural
characteristics and environmental conditions, meaning that
findings observed in one setting should be transferable to others.
From this new camera position, the rendering pipeline remains

strictly consistent with that described previously. The image
sequences were generated using the GPU through Blender’s
Python API, with iterative rendering at increasing sample
counts. Each series was produced three times: once with
OpenImageDenoise, once with OptiX, and once without any
denoising applied.

Before proceeding with the comparison of MSSIM scores,
it is important to first consider the potential impact of the
new viewpoint on rendering performance. To this end,
rendering times were compared between the two viewpoints
for equivalent sample counts. For each number of samples per
pixel, the rendering time of the second scene was subtracted
from that of the first. These time differences are presented in
figure 10, and reveal that, apart from a few minor variations,
generally under one minute, the rendering times remain very
similar across both viewpoints and regardless of the denoising
method used.

Figure 10. Difference in rendering time between 2 scenes
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This consistency confirms that the computational time of the
two viewpoints is comparable. For clarity, the figure limits the
range of samples per pixel to 1500, but equivalent trends were
observed across higher values as well.

The MSSIM results shown in figure 11 were obtained using
images saved in .JPG format at 100% quality. A slight variation
can be observed in the number of samples per pixel required to
exceed the 0.95 MSSIM threshold. These results are presented
in table 3.

Figure 11. MSSIM score depending on the denoising methods
for the second viewpoint

OID OptiX No denoising
Viewpoint 1 312 364 532

Viewpoint 2 358 418 599

Table 3. Samples per pixel required to achieve the MSSIM score
of 0.95 for 2 viewpoints

In the first viewpoint, the MSSIM score of 0.95 is reached
at 312 samples per pixel with OpenImageDenoise (the results
of which are shown in figure 8), while in the second, it is
reached at 358 samples per pixel. This difference can be
explained by the change in spatial composition resulting from
the new camera angle. Certain elements such as areas with
indirect lighting or detailed textures can be more prominent or
more numerous in the second view, thus requiring a greater
number of samples to reduce noise sufficiently. On the
other hand, the convergence trend remains very similar from
this new point of view: denoising with OpenImageDenoise
is much more effective than with OptiX, or even without
denoising. It is also interesting to note that similar peaks appear
around 1000 and 2000 samples per pixel. In addition to the
hypothesis suggested in subheading 4.3, Cycles could include
some specific variations when these samples per pixel values
are reached regardless of the scene configuration. This is not
central to this study and does not change the interpretation of
the results, but a more in-depth study of this phenomenon would
certainly be useful to enrich the results presented.

However, these results highlight the fact that a single scene
cannot characterise all possible configurations, but they do
allow us to give general results for this type of scene, with small
variations depending on the exact configuration of the scene.

6. Conclusion

The visual quality of a rendering produced by path tracing
using the Cycles rendering engine in Blender improves as the
number of samples per pixel increases. This improvement
has been quantified using the MSSIM score, by comparing
a large number of images to a reference image. The results
presented show that several factors contribute to the final image
quality, which is considered satisfactory when the MSSIM
score exceeds 0.95.

The image output format plays an important role: regardless of
the number of samples per pixel used for rendering, excessive
compression during saving prevents convergence toward the
reference image and fails to reach an acceptable visual quality
threshold. However, saving in JPG format at 100% quality
allows one to achieve MSSIM scores close to those of lossless
formats such as PNG, while significantly reducing storage
requirements. Moreover, denoising techniques make it possible
to reduce the number of samples per pixel needed to achieve
satisfactory results, thereby saving rendering time. Denoising
can almost divide by 2 the number of samples per pixel
required to reach an MSSIM score of 0.95. Comparisons
between the two denoising algorithms, OpenImageDenoise and
OptiX, have shown that the first one achieves the 0.95 MSSIM
threshold with slightly fewer samples per pixel, and performs
significantly better when rendering with a very low number of
samples per pixel.

Finally, rendering the same scene from a different viewpoint
has demonstrated the repeatability of the results. For identical
models and materials, we can see that the results are similar
between the 2 different points of view. The rendering time is
similar for both, and despite some differences in the number
of samples per pixel required to reach the MSSIM threshold of
0.95, the best results obtained with OpenImageDenoise have
been confirmed on this second point of view. These results
give an order of magnitude for path tracing rendering of scenes
of this type. It appears that rendering with approximately
350 samples per pixel, denoised with OpenImageDenoise,
and saved in JPG-100 format, is optimal for ensuring high
visual quality while minimizing rendering time and storage
requirements.

It is nevertheless worth noting that these results may
not be directly applicable to all situations. A study
involving a completely different scene featuring, for instance
more reflections, shadowed areas, point lights, or complex
geometries, could lead to different conclusions. Furthermore,
this analysis could be extended by examining more specific
path tracing parameters, such as the influence of path guiding
or the number of light bounces, which may further accelerate
rendering performance.
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