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Abstract

Ancient stone bridges, as precious cultural heritage, carrying the deep historical memory and craft traditions of the Chinese nation,
are susceptible to spalling, cracks and other damages due to the long-term impact of traffic load, environmental erosion, natural
aging, and human damage. The traditional manual detection method is inefficient, subjective and lacks a standardized assessment
system. Therefore, this paper proposes an intelligent detection and digital management method of ancient stone bridge damage
by integrating image recognition and Building Information Modeling (BIM), and constructs an integrated technical process of
“recognition-conversion-mapping”. The method uses deep learning model to realize pixel-level segmentation and feature extraction
of bridge damage, develops multi-scale spatial coordinate conversion method to map the real damage location into BIM model, and
establishes relevant damage components to realize visual management.

1. Introduction

With the successful bidding of the Beijing Central Axis, the
importance of the Wanning Bridge, as the oldest bridge on the
central axis, has become more prominent. However, this an-
cient bridge has begun to develop various problems as it has
been used for more years. Some problems affect the appear-
ance, while others threaten the structural safety of the bridge.
Failure to detect these problems in a timely manner may res-
ult in the continued deterioration of the bridge’s condition or
even serious consequences. Therefore, it is very necessary to
inspect and manage bridge problems regularly so that effective
measures can be taken in time. This is not only related to the
conservation of old bridges, but also to the safety of tourists. At
present, the inspection of problems of ancient bridges mainly
relies on manual visual inspection and manual records. Inspect-
ors judge the type of problems by experience and register the
problems with a form. This method relies too much on personal
experience and is prone to errors, leading to inaccurate inspec-
tion results and inefficient maintenance. Moreover, manual in-
spection requires a lot of labor and time, which is very costly.
To realize accurate and efficient management of ancient bridge
problems, automated inspection methods must be developed.

Wanning Bridge is both a major transportation route and a pop-
ular attraction, receiving a large number of tourists every day.
These multiple attributes of the traditional manual inspection
have brought great challenges. However, compared with other
large-scale ancient buildings, Wanning Bridge has an obvious
advantage: the bridge is small, and daily inspection can cover
every corner of the bridge. This feature provides a possibility
for image-based digital inspection. Using image records instead
of manual inspection can not only avoid subjective judgment
errors but also reduce the professional threshold; ordinary staff
can complete the filming work after simple training. However,
the focus of the current research remains in the automatic in-
spection stage, and there is still a lack of effective programs for

the systematic management and in-depth application of inspec-
tion data.

BIM technology is a core tool for building information man-
agement(Zou et al., 2017). It can integrate building data and
information data together and realize data sharing in the whole
life cycle of the building(Pocobelli et al., 2018). BIM can
fully demonstrate the functional characteristics of the build-
ing. A large amount of data is generated during the use of a
building(Sharafat et al., 2021), and integrating this data into a
BIM model can optimize data management and support build-
ing maintenance. It has been proven that integrating monitor-
ing data, structural features, and other information into BIM
models can significantly improve management efficiency(Khan
et al., 2022). Mapping various data into BIM models can
provide a clearer understanding of the status of each compon-
ent and provide a scientific basis for monitoring and mainten-
ance. However, most of the problem information detected at
present is only used to generate paper reports and is not depos-
ited into the digital model for real-time monitoring and manage-
ment. Although BIM technology has been applied in building
management, there is still a lack of mechanisms to correlate the
actual building status with the BIM model in real time. Com-
bining the object management of BIM with the actual building
can not only promote the application of NDT technology but
also reflect the inspection results into the BIM model for man-
agement. This information mapping management can provide
accurate and efficient technical support for building monitoring
and maintenance.

Based on the above ideas, this paper proposes a new method:
combining bridge images and BIM models to identify, locate
and manage the problems of Wanning Bridge. The specific
steps are: firstly, automatically detect the bridge damage using
image recognition technology to determine the size and location
of the damage; then develop a coordinate conversion method to
correspond the damage location in the image to the BIM model;
finally, store all the detected damage information into the BIM
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model. Finally, all the detected problem information is stored in
the BIM model. By integrating the actual inspection data with
the BIM model, it provides support for bridge monitoring and
maintenance.

After the introduction, this paper is organized as follows: sec-
tion 2 reviews the related research; section 3 details the pro-
posed detection method and BIM mapping steps; section 4 veri-
fies the feasibility of the method through actual cases; and fi-
nally, it summarizes the research results, pointing out the short-
comings and future research directions.

2. Related Work

2.1 Image-Based Facility Inspections

Imagery (e.g., social media pictures, public camera data, street
view images, etc.) offers new possibilities for automated in-
spection of facilities. By integrating image data, researchers are
able to realize large-scale infrastructure monitoring and defect
identification in a cost-effective and high-coverage manner.

Using a combination of image processing and terrestrial laser
scanning (TLS) based techniques, (Huang et al., 2018) pro-
posed a new method, MCrack-TLS, for automated assessment
of cracks in concrete bridges and (Hawari et al., 2018) presen-
ted the development of an automated tool using image pro-
cessing techniques and several mathematical formulas for ana-
lyzing the output data from closed-circuit television (CCTV)
camera images for the detection of several defects in sewer
pipes. (Jeong et al., 2020) evaluates the application of un-
manned aerial vehicle (UAV) photogrammetry in reconstruct-
ing 3D models of traditional wood-frame building dimensional
measurements. (Cheng et al., 2024) developed a HyBrIdGAN
model to detect building components (i.e., columns and struc-
tural walls), categorize building damage types, and determine
the extent of building damage. (Garrido et al., 2019) introduced
the first method to automatically detect areas of moisture af-
fecting the surfaces of building materials, preventing moisture
from damaging the building. (Wang et al., 2018) proposes a
new method for automatic inspection of tool parts for industrial
equipment, which realizes automatic inspection of disposable
blades in precision cutting. In addition, images have been used
for trait detection in plants (Pound et al., 2017); defect inspec-
tion of products in the plastics industry (Liang et al., 2019) and
inspection work of underwater scenes (O’Byrne et al., 2020),
etc.

These existing studies have shown that the use of images is pos-
sible to produce good results in various kinds of damage detec-
tion. However, there is still limited research on how to manage
and utilize this detected damage information.

After obtaining the damage detection results, the results are
mapped to the BIM model. This process is necessary to view
and manage the detection results and to take appropriate action
on them. In the mapping process, coordinate transformation is
an important step to convert the location of the detected data in
the real world (e.g., bridge damage) to the corresponding loca-
tion in the BIM model.

2.2 BIM-Based Management

The combination of BIM and management significantly im-
proves project efficiency and quality by integrating building in-
formation with project management processes. It also aids risk

management, facility maintenance and sustainability analysis,
optimizes design and extends the building lifecycle. (Lu et al.,
2020)(Kaewunruen et al., 2018)(Zhao et al., 2022)(Kaewun-
ruen et al., 2018)investigated the feasibility of combining BIM
with digital twins in project management, which can improve
the efficiency as well as the automation of monitoring. (Del-
gado et al., 2020)provides practitioners with the necessary in-
formation to guide adoption decisions by investigating the use
of BIM for vr and ar. (Lyu et al., 2019) provides the neces-
sary information to guide the adoption decisions by using a
BIM model in conjunction with the GIS, RS combined with
scenario analysis to propose a prospective approach for assess-
ing flood risk in metro systems. (Franz et al., 2017) explored
a research analysis on the status of the impact of BIM com-
bined with other aspects of project delivery on team integra-
tion. (Zhou et al., 2020) combined BIM with a variety of rel-
evant data metrics to analyze to assess and manage risks dur-
ing the construction of undersea tunnels. (Zhang et al., 2022)
combined BIM with lod to improve the quality and efficiency
of construction including BIM-based digital representation, the
Internet of Things (IoT), data storage, integration, and analyt-
ics, as well as interaction with the physical environment, and to
improve construction safety. (Shahi et al., 2019)investigated the
use of BIM for several smart city management applications in-
cluding city-level plan review, integrated logistics planning and
smart city asset management.

It can be seen that the research management study on the in-
tegration of BIM with the damage information of bridge types,
especially ancient stone bridges, is smack full of limitations.
However, this information has an important value for the con-
servation and maintenance of buildings, and similarly, the re-
search is slightly insufficient in terms of BIM management.

3. Research on Bridge Damage Detection and BIM Model
Mapping Methods

Figure 1 shows the process framework for damage detection
and mapping of ancient stone bridges based on image acquisi-
tion and BIM integration, which has four parts. The first part is
the acquisition and preparation of image data, the second part is
the detection of the damage as well as the localization, the third
part is the conversion between the relevant coordinates, and the
fourth part is the mapping of the damage to the established BIM
model.

3.1 Pre-Preparation and Data Acquisition

3.1.1 Preliminary: Preparation work is divided into three
parts, The first part is the pre-shooting preparation. Including
1, the use of camera models, 2, shooting location time selection
(because it is a scenic spot and traffic, so there may be tour-
ists and vehicles interference), 3, field visits to assess the site
conditions to evaluate the potential factors that may exist.

The second part is to determine the segmentation area and the
center point based on the BIM model of the bridge. Specifically,
Dynamo is used to extract the corner coordinates of each part.

The third part is to develop the shooting plan for the bridge. In-
cluding 1, camera shooting route planning 2, according to the
BIM model segmentation to determine the size of the camera
FOV, and then deduce the vertical distance between the camera
and the object (because the bridge body belongs to the irregular
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Figure 1. Bridge damage detection and mapping process.

model, so you need to determine the camera’s shooting orienta-
tion as far as possible in the appropriate segmentation model to
reduce the workload of the later coordinate conversion)

This part of the need for the camera to meet certain require-
ments, the need for a stabilizer, positioning function, high res-
olution, and the need for the camera to meet certain needs. This
part of the camera needs to meet certain requirements, needs to
have a stabilizer, positioning function, high resolution, portab-
ility, and then needs to determine the size of the camera FOV
according to the partition of the BIM model, which is one of
the keys to the overall bridge damage detection. This is one of
the keys to the overall bridge damage detection. We determine
the FOV width based on the segmented model and then determ-
ine the height of the camera and the vertical distance from the
bridge. So for this part we need to get the dimensions of the
segmented model, the dimensions of the field, the sensor size,
and the focal length of the camera.

To extract the distance between the photo and the actual bridge,
we need the dimensions of the segmented part of the bridge
(i.e., the dimensions of the field of view) based on the trian-
gular similarity, combined with the dimensions of the camera’s
sensor.

The sensor size of the camera is set to S, the distance between
the camera and the bridge is set to D, and the focal length of
the camera is f . According to the formula for the actual range
of the field of view FOV:

FOV =
S ×D

f
(1)

The distance between the camera and the bridge can be obtained
as:

D =
FOV × f

S
(2)

3.1.2 Data Acquisition Process: After the completion of
the preliminary work, the bridge data were collected using a

mobile phone, and in the process of photographing the bridge,
the plane of the mobile phone should always be parallel to the
stone fence lookout columns of the bridge, to ensure that the
lens is directly facing the stone fence, and to prevent image ab-
errations due to the camera’s angle of view shift, as shown in
Figure 2.

Figure 2. Shooting position with the centre of the bridge chunks.

After acquiring the image data at the points planned in the pre-
paratory work, name all the image data in a specified order and
store them in a format that can be used, checking the images for
the presence of an ExIf (Exchangeable Image file) The func-
tion of an ExIf is to record the shooting information such as the
shutter speed, aperture value, and so on, and it can even include
global positioning information. Then we use Python to develop
an algorithm to automatically extract the ExIf information con-
tained in the image and filter out the required information (lat-
itude, longitude, elevation, size, image orientation, etc.) and
package the extracted information into a data table, as shown in
Figure 3.

Figure 3. Coordinate information extraction process.

We collect the images one by one according to the pre-set shoot-
ing points. After shooting, all images need to be renamed se-
quentially and saved in a common format. At the same time,
we need to check whether the images contain Exif information,
which is the shooting data stored in the images, including shut-
ter speed, aperture size, etc., and in some cases, GPS location
data will also be recorded. Next, you need to write a program
in Python. This program should be able to automatically read
the Exif information in the image and filter out the data we need
from it, including longitude, latitude, altitude, picture size, and
shooting direction. Finally, the program has to organize this
extracted information into a tabular form.

3.2 Coordinate Transformation

The coordinate transformation is divided into three parts, the
first part is to convert the coordinates of the camera to the ac-
tual coordinates of the wall, the second part is to convert the
latitude and longitude coordinates of the wall to the specified
plane coordinates, and the third part is to convert the plane co-
ordinates to the coordinates in the model.
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3.2.1 Camera Coordinates Are Converted to the Coordin-
ates of the Center of the Corresponding Bridge Section:
Objective: To calculate the latitude, longitude, and height of
the center point of the corresponding bridge area based on the
latitude and longitude of the camera’s shooting point. Known
data: 1. the latitude and longitude (ϕLi, ϕBi) of the camera’s
shooting point a, and the height of the camera ; 2. the latitude
and longitude (λLi, λBi) of the point B of the corresponding
bridge region, which is measured by rtk; 3. the perpendicular
distance L between the camera and the bridge body, which is
measured by a laser or by some other means; and 4. the average
radius of the earth R = 6,371,393M.

1. Firstly, perform the calculation of the spherical angle c
between the camera and the corresponding bridge region.

c = arccos (sinλBisinϕBi + cosλBicosϕBicos (λLi − ϕLi))
(3)

2. Calculate the azimuth of the camera a

α = atan2( sin(BL −AL) cosBB ,

cosAB sinBB − sinAB cosBB cos(BL −AL))
(4)

3. Calculate the latitude of the center point corresponding to the
bridge area λBi

δ =
L

R
(5)

λBi = arcsin (sinϕBicosδ + cosϕBisinδcosα) (6)

4. Calculate the longitude of the center point corresponding to
the bridge area λLi

λLi = ϕLi + atan2 (sinαsinδcosϕBi, cosδ − sinϕBisinλBi)
(7)

5. Height correction Because the height is actually measured by
the level measurement. Because the height is actually measured
by the level measurement, it is easy to be converted inaccurately
due to the camera shooting error, so according to the position
of each shooting point on the bridge body on the BIM model,
it is directly assigned to the center point of the corresponding
bridge body area in the segmentation. Finally, a Python code
was developed to automate the input and output of the coordin-
ate conversion.

3.2.2 Conversion of WGS-84 Coordinates to Planar Co-
ordinates: Objective: To convert latitude and longitude
(WGS-84 coordinates) into a local plane rectangular coordinate
system (X-Y plane) associated with the bridge body. Known
data: 1. Latitude and longitude (WGS-84) (ϕLi, ϕBi) of the
segmented area of the bridge body; 2. Parameters of the Earth’s
ellipsoid, with the long axis a=6,378,137M and the short axis
b=6,356,752M. Define the X-axis as a latitudinal (east-west)
direction, and define the Y-axis as a meridional (north-south)
direction. 1. Choose the latitude and longitude (ϕL0, ϕB0)
(WGS-84 coordinates) as the origin of the plane coordinates.
The reason for using the local coordinate system is that the
UTM projected coordinates have the effect of the band num-
ber and are applicable to a wide range of areas, and it is simpler
and more efficient to use the local plane coordinate system for
the actual bridge size. 2. Calculate the plane coordinates of
B0 (ϕx0, ϕy0) In the x-axis direction, considering the radius of
curvature of the earth Rx = a√

1−e2sin2(λB0)
, e2 = a2−b2

a2 the

calculation will be complicated, and the bridge body is relative
to the overall earth, the earth’s curvature length of 100 meters

of the earth. The height difference of the earth’s sphere brought
about by the 100 meters of the earth’s arc length is only 0.8
mm, which is much lower than the actual required accuracy, so
the distance between two points on the bridge can ignore the
influence brought about by the radius of the earth’s curvature,
and so the plane coordinates in the direction of the x-axis can
be simplified in an approximate way to be

λx0 ∝ a2√
a2 + b2 · tan2(λB0)

(8)

Similarly, the plane coordinates in the direction of the y-axis
can be approximately transformed into

λy0 ∝ b2√
b2 + a2 · cot2(λB0)

(9)

3. Calculation of plane coordinates of points in other divided
areas on the bridge If the coordinates of points in other areas
on the bridge are in the same longitude, the longitude is un-
changed, y is unchanged in plane coordinates, and only the lat-
itude changes.

λxi = λx0 (10)

λyi = λy0 +∆λB ·R · π

180◦
(11)

Similarly, for those at the same latitude, only the change in lon-
gitude

λxi = λ+∆λL ·R · cos (λB0) ·
π

180◦
(12)

λyi = λy0 (13)

For simultaneous changes in latitude and longitude, superim-
pose the two changes above.

λxi = λx0 +∆λL ·R · cos (λB0) ·
π

180◦
(14)

λyi = λy0 +∆λB ·R · π

180◦
(15)

Within a small variation of the bridge, the longitudinal compon-
ent of latitude and the latitudinal component of longitude can be
ignored, and only the component in the principal direction can
be superimposed.

3.2.3 Mapping of Planar Coordinates to BIM Model Co-
ordinate System: Objective: Transform the coordinates in
the local plane coordinate system to the local coordinate system
in the BIM model through affine transformation, and realize the
accurate mapping of the location of the bridge body’s damage
to the BIM model. Known data: 1) the coordinates of the mid-
points in the segmented area under the local plane coordinate
system (λxi, λyi); 2) the coordinates of the midpoints in the
segmented area of the corresponding BIM model (λ’

xi, λ
’
yi) Be-

cause the BIM model uses the coordinate system in the model
world, and there is an error between the model size and the
real size when the model is built, and there is also a difference
between the orientation of the model in the model world and the
real world. Therefore, we need to use a transformation method
to convert the coordinates in the local plane coordinate sys-
tem to the corresponding coordinates in the BIM model. When
transforming two planar coordinate systems to each other, there
are translations, rotations, scaling, and shearing from the bridge
planar coordinate system to the model world coordinate sys-
tem. After the transformation, it is necessary to make sure
that the points before the transformation are on a straight line,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1459-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1462



and after the transformation, they should also be on a straight
line. The two lines of the original coordinate system before
the transformation should be parallel, and the two lines of the
transformed coordinate system should also be parallel. The ra-
tio of the two segments of a line above the original coordinate
system before the transformation remains unchanged after the
transformation. So we need to use affine transformation for-
mulas to solve the problem of translation, rotation, scaling, and
shearing. The original coordinates (x, y) become a matrix form[

x
y

]
, where the three transformations, rotation, scaling, and

shear, are called linear transformations, and are represented by
the four parameters a, b, c, d. Any linear transformation can
be realized using a 2x2 matrix represented by these four para-

meters A =

[
a b
c d

]
. But in translational transformations,

v’ = v+t cannot be represented by a matrix. So the four trans-
formations of rotation, scaling, shearing, and translation have to
be upscaled, so the final complete transformation matrix is:

M =

[
A t
0T 1

]
=

 a b tx
c d ty
0 0 1

 (16)

A: the linear transformation part of the coordinates; t; the trans-
lation part of the coordinates. x’

y’

1

 =

 a b tx
c d ty
0 0 1

 x
y
1

 =

 ax+ by + tx
cx+ dy + ty

1


(17)

Simplify it to: {
x’ = ax+ by + tx
y’ = cx+ dy + ty

(18)

There are six transformation parameters, including four lin-
ear transformation parameters: a, b, c, d; two translation trans-
formation parameters: tx, ty . Therefore, we need three
sets of coordinates before and after the transformation to
solve for the unknown parameters, before the transform-
ation: (x1, y1), (x2, y2), (x3, y3); after the transformation:
(x’

1, y
’
1), (x

’
2, y

’
2), (x

’
3, y

’
3),obtained by substituting the points

into the simplified formula:

x’
1 = ax1 + by1 + tx

x’
2 = ax2 + by2 + tx

x’
3 = ax3 + by3 + tx

y’
1 = cx1 + dy1 + ty

y’
2 = cx2 + dy2 + ty

y’
3 = cx3 + dy3 + ty

(19)

3.3 Damage Detection

In this study, the mask R-CNN framework is applied to the field
of surface damage detection of stone cultural relics. In the ex-
perimental testing phase, the model successfully realizes the
accurate identification and pixel-level annotation of common
flake flaking damage on the surface of ancient bridges based
on its powerful instance segmentation capability. The experi-
mental results are shown in Figure 4. Through the end-to-end
deep learning architecture, the model can effectively extract the
multi-scale features of the damage region and maintain high de-
tection accuracy under the complex background interference,
which fully verifies the technical advantages and application

potential of deep learning-based target detection and instance
segmentation technology in the intelligent recognition of cul-
tural relics damage.

Figure 4. Examples of damage recognized by Mask R-CNN.

3.4 Damage Localization

Masks for instance segmentation are obtained from the dam-
age result images recognized using Mask R-CNN, and then the
masks of the target damage instances are extracted, and co-
ordinate recognition is performed after the masks are converted
into a format that allows coordinate recognition. The contour
coordinate information of the damaged area is extracted from
the mask data output from the Mask R-CNN. These coordin-
ate data are based on the computer vision coordinate system,
i.e., a two-dimensional coordinate system with the upper-left
corner of the image as the origin (0,0), horizontally to the right
as the positive direction of the x-axis, and vertically down as
the positive direction of the y-axis. So we need to carry out
the conversion of the computer vision coordinate system into
a coordinate system with the center of the image as the ori-
gin. The process of coordinate conversion: In the annotation
of the damage results of the image, the coordinate system used
on the image is the computer vision coordinate system, which
is based on the upper-left corner of the image as the origin, to
the right of the x-axis in the positive direction, and down for
the y-axis in the positive direction, which is different from the
local planar coordinate system used in the present study, which
is based on the geometrical center of the image as the origin, so
that the coordinates of the identified contours are mapped onto
the model in the present study. In this study, the mapping of the
identified contour coordinates to the model requires a coordin-
ate transformation with the center of the image as the origin. 1.
Calculation of the center point of the computer vision coordin-
ate system The resolution of the original image is 310 x 310 px,
then the center point of the image is:

xcenter =
310

2
= 155px, ycenter =

310

2
= 155px (20)

2. Extracting the coordinates (pixel points in the figure) in one
of the masks of the damage detected by the Mask R-CNN (the
coordinate system for this coordinate has the upper left corner
of the image as the origin of the computer vision coordinate
system), as shown in Table 1.

Number X Y
1 162.3152709359605 244.2118226600985
2 164.9014778325122 245.4433497536945
3 166.9950738916256 242.9802955665024
... ... ...

Table 1. Original coordinates extracted from the image.

3. Convert the image center point to the origin of the coordinate
system as shown in Table 2, Figure 5. Set the center point of the
image to the coordinate origin (0,0), with x-positive to the right
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and y-positive to the top. For each coordinate point in the mask
(xdefect, ydefect), the coordinates in the new coordinate system
are

xnew = xdefect − xcenter (21)

ynew = −(ydefect − ycenter) (22)

So the coordinates in the mask are in the new coordinate system
after the transformation:

xnew = 162.31527093596057− 155 = 7.31527093596057px
(23)

ynew = −(244.2118226600985−155) = −89.2118226600985px
(24)

Number X Y
1 7.3152709359605 -89.2118226600985
2 9.9014778325122 -90.4433497536945
3 11.9950738916256 -87.9802955665024
... ... ...

Table 2. Transformed coordinates.

Figure 5. Image coordinate conversion.

3.5 Mapping Bridge Damage to BIM Models

After identification and coordinate transformation, the coordin-
ate data of each mask coordinate of the damage on the model
were obtained, which were stored in the database, and using
Dynamo and Python scripts, the coordinates of the damage
were read from the database and the corresponding 3D dam-
age model blocks were automatically generated. Finally, these
damage model blocks are accurately added to the bridge body
model according to coordinate matching. The whole process
realizes the automatic 3D visualization of damage modeling.
The damage model blocks are accurately embedded into the
bridge model according to the actual coordinates and scale, so
that the spatial distribution and dimensional characteristics of
the damage are visualized, which is convenient for the sub-
sequent visual analysis and operation and maintenance man-
agement, as shown in Figure 6.

Figure 6. Damage family creation mapping process.

4. Case Studies

This study proposes a method to combine damage data of an-
cient stone bridges with BIM models. In order to verify the ef-
fectiveness of the method, the west side of the Wanning Bridge
of the Beijing Central Axis facing the roadway railing, as shown
in Figure 7, was selected for testing in this study.

Figure 7. Real bridge.

4.1 Image Data Extraction

First, the photographed object was placed in the center of the
camera’s viewfinder frame to minimize the effect of perspect-
ive distortion, and each baluster was photographed individually.
Then, the GPS information of the images was extracted using
Python, followed by segmenting and numbering the images ac-
cording to the model. Finally, this processed image information
was stored in a database. Some of the data is shown in Table 3.

Number Longitude Latitude
1 116.38997440 39.93508062
2 116.38997471 39.93507793
3 116.38997502 39.93507524
... ... ...

Table 3. GPS information extracted from images.

4.2 Coordinate Conversion

The coordinate data listed in the above table is the actual posi-
tion of the shooting equipment. Since there is a certain distance
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between the filming equipment and the bridge, and there is an
angular deviation between the direction of the bridge and the
filming direction, it is necessary to convert the camera coordin-
ates to the latitude and longitude coordinates corresponding to
the center point of the bridge section by the Python algorithm
written according to the conversion formula provided in section
3.2.1. The algorithm will automatically calculate the coordin-
ates of the center position of the bridge body corresponding to
each image, as shown in Table 4.

Number Longitude Latitude
1 116.38998024 39.93508101
2 116.38998055 39.93507832
3 116.38998086 39.93507563
... ... ...

Table 4. Coordinates of the center of the corresponding bridge.

WGS-84 to planar coordinates, As shown in Table 5.

Number Longitude Latitude
1 116.38998024 39.93508101
2 116.38998055 39.93507832
3 116.38998086 39.93507563
... ... ...
Number X Y
1 447879.4436008291 4420729.996770641
2 447879.4680470604 4420729.698026262
3 447879.4924932939 4420729.399281885
... ... ...

Table 5. WGS-84 to planar coordinates.

Planar coordinates to BIM coordinates : After the above co-
ordinate conversion, the latitude and longitude coordinates of
the midpoint of the coordinates of the segmented part of the
bridge have been converted to planar coordinates. Because the
actual planar coordinates of the bridge and the specific BIM
model of the bridge body exist in the translation, rotation, scal-
ing three transformations, so it is necessary to convert the planar
coordinates of the midpoint of the coordinates of the segmen-
ted part of the bridge body to the coordinates of the model in
accordance with 3.2.3.

4.3 Identification of Bridge Damages

Each bridge image of the corresponding area of the collected
and processed model is used to identify and detect the damage
using a deep learning model. Wanning Bridge has a long history
and has been carrying the heavy burden of daily transportation.
Under such circumstances, flake shedding has become one of
the most significant damage problems of Wanning Bridge. In
this study, 2568 stone flake shedding images were used to train
a deep learning model based on Mask-RCNN. The images are
divided into two parts: 80% data for training and 20% for val-
idation. Finally, the trained deep learning model is used to de-
tect and extract the flake shedding from the images of Wanning
Bridge collected in this case, as shown in Figure 8.

4.4 Damage Information for Integration into BIM Models

Figure 9 shows the locations of the identified flaking damage
areas in the image. First, the output mask is converted into a
coordinate-recognizable format using Python, and the coordin-
ates are extracted. These identified coordinates are then trans-
formed into a coordinate system with the image center as the

Figure 8. Identified bridge damage.

origin, and all transformed mask coordinates are stored in a
database. Next, based on the scale ratio between the image
dimensions and the model dimensions, the actual size and pos-
ition of the damage mask in the model coordinate system are
calculated. Each segmented mask coordinate of the flaking
damage instances is stored separately. Finally, in Revit’s fam-
ily mode, Dynamo is used to extract the spatial coordinate data
of the damage from the database, and a corresponding damage
family instance is generated for each mask coordinate. All dam-
age families are then integrated into the original bridge model.

Figure 9. Damage image recognition to model mapping.

5. Conclusions

In this study, a set of intelligent detection processes for the
damage of stone columns of ancient stone bridges was de-
veloped. The system uses handheld devices to take photos of
stone bridges, and after processing the photos through image
matching technology, deep learning algorithms are utilized to
automatically identify the stone damage of stone columns in
the photos. The study also designed a set of coordinate con-
version schemes, which transform the damage location inform-
ation recognized in the photos into the actual spatial coordin-
ates in the 3D model and deposit them in the database. Finally,
with the help of Dynamo software and Python programming,
the damage data was generated into a 3D visualization mod-
ule, which accurately locates the corresponding position in the
bridge model. This system can help the staff visualize the dam-
age of the bridge and provide efficient technical support for the
development of protection programs.
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