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Abstract 
 
Accurate digital documentation of heritage structures is vital for conservation, restoration, and structural analysis. Traditional methods 
for analyzing masonry are time-consuming and subjective. This study proposes a deep learning-based approach using a U-Net 
convolutional neural network to automatically segment stone and mortar in heritage masonry, trained on high-resolution imagery of 
Prague’s Old Town Bridge Tower. Unlike prior studies focused on distinct brick structures, our dataset presents a greater challenge 
due to the similar textures of stone and mortar. Data was collected using a DJI M300 drone with a P1 camera and an RTC360 laser 
scanner, capturing the entire tower and its interior. The resulting 3D reconstructions and orthophotos, with a 1 mm ground sampling 
distance, enabled precise manual segmentation of all stones, excluding non-masonry features. After splitting the available manually 
annotated data, U-Net models with differing parameters were trained on the train set and evaluated on a test set, achieving a class-
averaged F1 score of up to 85.58%. The created segmentation maps can be easily converted to finished vector drawings. Results show 
that deep learning significantly improves segmentation speed and consistency over manual methods. These maps support conservation 
tasks such as structural monitoring and damage detection. The trained model will aid future documentation of the Charles Bridge, 
illustrating the potential of AI in advancing scalable, objective digital heritage conservation. 
 
 

1. Introduction 

Accurate digital documentation of heritage structures is critical 
for their conservation, restoration, and structural assessment. 
Advances in photogrammetry and terrestrial laser scanning have 
made it possible to capture highly detailed representations of 
historical buildings. However, interpreting this data—
particularly segmenting structural components like stones and 
mortar—remains a manual, time-consuming, and subjective 
process. 
 
Traditional approaches to masonry analysis often rely on manual 
annotation or rule-based image segmentation, which are not only 
labor-intensive but also prone to inconsistencies. Recently, deep 
learning-based methods have shown promise for automating such 
tasks (Ibrahim et al., 2019, Dais et al., 2021), offering improved 
consistency and scalability. Yet, most existing research in this 
area has focused on relatively regular masonry patterns, such as 
modern brick walls with uniform materials and clearly 
distinguishable joints. These approaches are less effective when 
applied to more complex and heterogeneous historical masonry, 
where the distinction between stone and mortar is subtle and 
highly variable. 
 
In this study, we address this gap by proposing a deep learning-
based approach for segmenting stone and mortar in historical 
masonry using high-resolution imagery. Our work focuses on the 
Old Town Bridge Tower in Prague, a Gothic-era structure 
characterized by complex stone patterns and only subtle visual 
contrast between structural elements. Unlike previous datasets 
that primarily consist of regular, high-contrast bricks, our dataset 
presents greater visual ambiguity, necessitating a tailored 
segmentation strategy and robust training data. To this end, we 
have created a comprehensive, high-resolution dataset of the 
Bridge Tower, annotated manually to distinguish between stone 

and mortar while excluding architectural elements irrelevant to 
structural analysis. 
 
We employed a U-Net (Ronneberger et al., 2015) model, a 
convolutional neural network (CNN) designed for pixel-wise 
image segmentation. The U-Net architecture consists of an 
encoder-decoder structure, where the encoder captures spatial 
features through progressively deeper convolutional layers, while 
the decoder reconstructs fine-grained segmentation maps using 
upsampling and skip connections. This design allows the network 
to learn both local texture details and broader structural patterns, 
making it particularly well-suited for segmenting architectural 
elements with complex spatial arrangements. The U-Net network 
has consistently outperformed other CNNs in various case 
studies and is considered versatile and robust (Pešek et al., 2024a, 
2024b). We perform some experiments with variable loss 
function and thresholding value to find the most suitable 
combination of parameters achieving the best metrics on the test 
split. 
 
This paper demonstrates the feasibility and effectiveness of using 
deep learning for detailed masonry segmentation in heritage 
contexts. Our results suggest that such methods can significantly 
enhance both the speed and objectivity of documentation 
workflows, and we discuss their implications for future 
conservation efforts, including the planned documentation of the 
Charles Bridge—constructed with materials and methods similar 
to those of the Bridge Tower. 
 
Our key contributions include: (1) creation of a detailed 
annotated dataset of historic masonry, (2) application of U-Net 
for stone–mortar segmentation, and (3) evaluation of 
performance based on variable training losses and thresholding 
parameters with practical conservation use cases in mind. 
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2. Materials and Methods 

2.1 Location and data collection 

The Old Town Bridge Tower is located in Prague and serves as 
an entry point to Charles Bridge, the most well-known historical 
bridge in Central Europe. Dating back to 14th century, the bridge 
is currently undergoing a twenty-year process of structural 
inspections, restoration, and repairs. A reconstruction undertaken 
in 2008-2010, necessary after the disastrous 2002 floods, was 
widely seen as unprofessional and without adequate conservation 
advice on materials and techniques. Many original stones were 
lost, damaged or inappropriately positioned and replaced with 
excessive amount of new masonry. This prompts for better and 
more detailed documentation of the current masonry in order to 
avoid such mistakes in the current restoration efforts. 
 
To document the Bridge Tower, extensive photogrammetric 
documentation was carried out. Data acquisition was conducted 
using a DJI M300 drone equipped with a P1 camera and an 
RTC360 terrestrial laser scanner, enabling comprehensive 
documentation of the structure. Both the interior and exterior 
were scanned. To capture texture of the interior, a SLR camera 
was also used. The dataset includes high-resolution imagery and 
point clouds capturing all four exterior sides of the tower (two of 
which are depicted in Figure 1), four sides of the interior staircase, 
and four sides of an interior room. The collected data was 
processed in RealityCapture to generate detailed 3D 
reconstructions and high-accuracy orthomosaics, resulting in a 
ground sampling distance (GSD) of 1 mm, allowing for fine-
grained segmentation suitable for structural assessments and 
conservation planning. 
 

 
Figure 1. Eastern and northern sides of the Old Town Bridge 

Tower 

 
 
2.2 CNNs and U-Net 

Convolutional neural networks (CNNs) are a class of deep 
learning models particularly well-suited for processing grid-
structured data such as images. By applying convolutional filters 
across the spatial dimensions of an image, CNNs are able to learn 
hierarchical feature representations—from low-level patterns 
like edges and textures to high-level semantic structures (LeCun 
et al., 1998; Krizhevsky et al., 2012). While early CNN 
architectures were designed primarily for image classification, 
numerous extensions have adapted them for pixel-wise 
prediction tasks such as semantic segmentation. 
 
Semantic segmentation requires assigning a categorical label to 
each individual pixel in an image. This is more challenging than 
image classification, as it necessitates both fine-grained spatial 
localization and global contextual understanding. Fully 
convolutional networks (FCNs) pioneered the adaptation of 
CNNs for segmentation by replacing fully connected layers with 
convolutional ones, thus preserving spatial dimensions 
throughout the network (Long et al., 2015). However, FCNs 
tended to produce coarse outputs due to the loss of spatial 
resolution in deep network layers. 
 
The U-Net architecture (Ronneberger et al., 2015) shown 
schematically in Figure 2, originally developed for biomedical 
image segmentation, addressed these limitations by introducing 
a symmetric encoder-decoder structure with skip connections. 
The encoder (contracting path) progressively reduces spatial 
resolution while capturing increasingly abstract feature 
representations through repeated applications of convolution and 
max-pooling operations. The decoder (expanding path) restores 
the original resolution using up-convolutions (transposed 
convolutions), guided by skip connections that transfer high-
resolution feature maps from corresponding layers of the encoder. 
These skip connections allow the model to retain spatial precision 
and recover fine image details lost in the down-sampling process.  
 

 
Figure 2. U-Net architecture (Ronneberger et al., 2015) 

 
U-Net has proven effective in domains with limited training data, 
owing to its efficient use of data augmentation and the ability to 
learn from relatively small annotated datasets (Ronneberger et al., 
2015). At the same time, the network is still relatively cheap in 
terms of required computational power and can be trained on 
consumer-grade hardware. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1587-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1588



 

2.3 Data preprocessing 

In order to train the network, we need to create an annotated 
dataset. Several annotators were employed to precisely vectorize 
the boundaries of the building stones. The orthomosaics were 
vectorized in a CAD software. While the vectorization of distinct 
boundaries was very precise, many areas suffered from hardly 
distinguishable spectral properties, and the boundary wasn’t clear 
even to a human annotator (Figure 3). Thus, even the ground truth 
data can’t be regarded as a hundred percent accurate. 
 
To make the task even harder, the stones often contained holes 
filled with mortar, isolated from the bonding filler network 
(Figure 3). Instances of these holes are prone to be detected as 
false positives, whereas in our task we regard them as part of the 
stone. The tower mosaics contain clutter objects, such as 
windows, statues or sculptures obscuring the stones. As the 
trained network will be used on mosaics of the Bridge, which 
don’t contain such clutter, we decided to mask most of unwanted 
objects out. Overall, 1,436.2 square meters were marked with 
polygons as ‘stone’ class, with 1,031.9 square meters remaining 
after masking. 149.3 square meters were marked as ‘mortar’. 
 

 
Figure 3. Difficult areas with hardly distinguishable 

stone/mortar boundaries (top row) and with unconnected pieces 
of mortar spectrally identical with bonding filler (bottom row) 

 
To train a convolutional neural network, it is necessary to export 
the raster as square image chips of given size. The number needs 
to reflect available VRAM and desired context (receptive field) 
of the network. We opted for a size of 512 pixels. Due to limited 
training data, padding was set to half the size, exporting roughly 
four times more chips. Overall, 11,293 image chips were 
exported, of which 8,236 were used for training, 1,359 for 
validating and 1,698 for testing. The upper and lower halves of 
the southern tower side were set as validation and testing sets, 
respectively. The rest of the available data constitutes the training 
set. A training chip consists of the cropped RGB image and its 
equivalent ground truth binary raster. Examples of some training 
chips are in Figure 4. 

 
Figure 4. Examples of training chips (before spectral/geometric 

augmentation) 
 
To improve generalizability, we employed data augmentation of 
the training set. First spectral, randomly modifying contrast with 
a coefficient between 0.8 and 1.25, and geometric, with random 
affine transformations with constraints. This should improve 
robustness of the network across diverse areas. 
 
2.4 Training 

We conducted several experiments, training three U-Net models. 
One supervised by binary cross-entropy (BCE) loss, one with 
dice loss, and one with the combination of both losses. BCE loss 
is defined as: 
 

        𝐿!"# =	−
$
%
∑ [𝑦& log(𝑦,&) + (1 − 𝑦&) log(1 − 𝑦,&)],%
&'$     (1) 

 
where 𝑦& is the ground truth label and 𝑦,& the predicted probability. 
This metric is summed and averaged for all N pixels. This metric 
punishes pixels with high false probabilities, and this gets 
optimized with gradient descent. The other loss function, Dice 
loss, is defined as: 
 

         𝐿(&)* =	
+	×	./

+	×	./	0	1/	0	1%
,            (2) 

 
where TP, FP and FN stand for true positives, false positives and 
false negatives, respectively. 
 
Dice loss directly optimizes for segmentation quality and 
generates sharper edges, while BCE predictions are blurrier. The 
BCE and Dice loss can be combined to leverage their combined 
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strengths (Wang et al., 2022); this can be done with addition 
weighted with a coefficient. For the third model, we train with 
both losses simply added together without any coefficient. 
 
Given the significant class imbalance, it was necessary to account 
for it in the training, weighing the input data accordingly based 
on their representation ratio in the batch. For training, we used a 
batch size of 4, as this should ensure robust gradient descent, 
while being able to fit the samples into an available VRAM of 12 
GB. We set the initial training rate to 1e-4 with decay to 1e-5. 
The model is trained for one hundred epochs, while being 
continuously evaluated on the validation split to avoid overfitting. 
 
Model is then used on the test split. This results in a probability 
raster, which assigns each pixel a 𝑦,& probability. After inference, 
we reclassify the predicted raster at a chosen threshold to obtain 
binary representation. Then we compute the metrics: accuracy, 
recall and F1 score, for both the classes of ‘stone’ and ‘mortar’. 
F1 score, being harmonic mean of precision and recall is 
frequently used as the benchmark metric and in binary 
segmentation task is identical to Dice loss. 
 
To further widen the comparison and find the best performing 
network, we test various threshold values. This will modify the 
results, potentially skewing the metrics in favor of one of the two 
classes, but ultimately helping to find the equilibrium with the 
best training parameters. 
 

3. Results 

We trained three networks and evaluated nine various thresholds, 
resulting in twenty-seven combinations. While variable 
thresholding is mostly redundant for the model trained only with 
Dice loss, we include the results anyway for direct comparison. 
We report the F1 score for both the ‘stone’ and ‘mortar’ classes 
in Table 1, as they are both important for later evaluation. The 
precision and recall values are reported in Appendix. 
 

F1 score Loss function 
Threshold BCE Dice Both 
0.1 96.59 / 65.98 96.56 / 74.15 96.73 / 73.47 
0.2 96.34 / 68.21 96.54 / 74.19 96.67 / 74.16 
0.3 96.08 / 69.63 96.52 / 74.20 96.63 / 74.44 
0.4 95.81 / 70.74 96.51 / 74.20 96.58 / 74.57 
0.5 95.53 / 71.69 96.50 / 74.21 96.52 / 74.63 
0.6 95.22 / 72.53 96.49 / 74.21 96.46 / 74.66 
0.7 94.87 / 73.28 96.47 / 74.21 96.38 / 74.62 
0.8 94.40 / 73.82 96.46 / 74.21 96.26 / 74.48 
0.9 93.64 / 73.56 96.43 / 74.19 96.01 / 74.08 

Table 1. F1 scores reported on the test split for each 
combination of training loss and thresholding parameter. The 

left value represents the ‘stone’ class result, the right one 
belongs to the ‘mortar’ class 

 
The test raster contained some non-class clutter which was 
masked before calculating the metrics. Throughout the trainings, 
the validation loss generally decreased and remained plateaued. 
A segment of qualitative results is shown in Figure 5. 
 
The network trained with the combined loss generally 
outperformed networks trained with individual losses across 
most threshold values. The best result was obtained with the 
network using combined loss and thresholding parameter of 
exactly 0.5. The average F1 score of both classes in this case is 
85.58. The best results for individual classes are also recorded by 
the network trained with combined loss. 

 
Maybe a bit surprisingly, the networks supervised solely with 
BCE loss always demonstrate inferior performance. This can be 
attributed to the better handled class imbalance in Dice loss. Even 
though with BCE we weigh the inputs according to their 
quantities in the training dataset, the imbalance is inherently 
better handled with Dice loss, which directly optimizes region 
overlaps. Some losses attempting to improve upon the existing 
losses were already developed, such as unified focal loss (Yeung 
et al., 2022). 
 
Generally, it is not advisable to set the thresholding parameter too 
high, as F1 scores for both classes decrease in these cases. The 
higher the threshold, the more it favors the ‘mortar’ class, which 
can be useful for later polygon extraction of stones. 
 

 
Figure 5. Results on the test split with BCE loss. Upper pair 

shows very good segmentation with distinguishable area, 
bottom picture shows slightly worse results on a more 

problematic area, which even human operators struggle with 
 
 

4. Conclusion 

This study measures pixel-level segmentation of the neural 
network and quantifies the results in this way. In this view, results 
are encouraging and will form the basis for further segmentation 
of the whole of Charles Bridge. Some fine-tuning may be 
required should the new dataset differ qualitatively. 
 
An additional desired outcome would be to extract closed shapes 
of the stone outlines. While the results obtained with the best 
approach are often already sufficient for closed shape 
vectorization (Figure 6), in order to extract closed shapes of 
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stones to precisely count them and consider topology constraints, 
additional work would have to be done. Weak mortar connections 
create gaps, which result in wrongly merged stones. To 
strengthen the mortar topology, fitting loss functions could be 
utilized, such as BALoss (Ngoc et al., 2021). To extract closed 
shapes, leveraging even weak edge connections which would 
vanish in thresholding, a watershed extraction can be of use 
(Meyer, 1994). This would require the use of BCE loss, whether 
combined or sole, as the results obtained solely with Dice loss are 
already almost binary, without any weak connections to recover. 
 

 
Figure 6. An image of an area of the test split produced with the 

best parameters (combined loss and 0.5 threshold). From the 
‘mortar’ class perspective, the true positives are shown in green, 

false positives are blue and false negatives red. 
 
Chen attempted to find the best performing combination of 
parameters for deep edge filtering and watershed extraction in the 
realm of scanned topographic maps (Chen et al., 2024). We 
believe the same approach would greatly benefit our use-case. 
The same can be said about the final metric COCO-PQ (Kirillov 
et al., 2019), which measures panoptic segmentation quality, 
accounting for both classification and intersection over union of 
individual polygons. This would directly translate to the 
necessity of extracting closed shapes. 
 
To strengthen the topology of mortar connections, it could also 
be useful to dilate the cracks in the training data to widen the 
connections and make them more resilient to topological breaks. 
Given the relative sparsity of the cracks compared to the stones, 
the dilation parameter could be relatively high, even in order of 
centimeters. This would however need to be adjusted to avoid 
merging of neighboring cracks. 
 
The results could be improved by paying more attention to detail 
when annotating this high-resolution dataset. As already 
mentioned, many borders between classes were barely 
recognizable, which requires skilled annotators and careful work. 

Given that the dataset wasn’t initially annotated for the purpose 
of training a neural network and the annotations are slightly 
inconsistent depending on the annotator, there’s definitely room 
to improve. The model could be then fine-tuned to a specific area 
of highly detailed ground truth data. 
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Appendix 

Here we provide precision and recall tables in a similar fashion 
as Table 1 reports F1 score. The experiments with the best F1 
score are kept marked bold, and the best individual metrics for 
individual classes are written in italics. These are unsurprisingly 
located in extreme thresholding values. 

Model trained with BCE loss generally achieves low precision on 
‘mortar’ class, while recall is comparably better. The BCE loss 
generally detects more false positives. 

We also provide the complete image of the test set along with the 
best result in Figure 6. 

Precision Loss function 
Threshold BCE Dice Both 
0.1 96.24 / 52.58 96.59 / 71.79 96.14 / 66.76 
0.2 96.91 / 56.10 96.64 / 72.21 96.44 / 69.25 
0.3 97.26 / 58.61 96.68 / 72.49 96.61 / 70.69 
0.4 94.49 / 60.82 96.74 / 72.71 96.75 / 71.78 
0.5 97.67 / 62.94 96.74 / 72.92 96.87 / 72.75 
0.6 97.83 / 65.16 96.76 / 73.12 96.99 / 72.75 
0.7 97.98 / 67.70 96.78 / 73.34 97.11 / 74.70 
0.8 98.13 / 70.86 96.82 / 73.61 97.26 / 75.90 
0.9 98.32 / 75.65 96.87 / 74.00 97.49 / 77.84 

Table 2. Precision scores reported on the test split for each 
combination of training loss and thresholding parameter. The 

left value represents the ‘stone’ class result, the right one 
belongs to the ‘mortar’ class 

Recall Loss function 
Threshold BCE Dice Both 
0.1 96.94 / 88.55 96.52 / 76.69 97.32 / 81.67 
0.2 95.79 / 86.99 96.43 / 76.27 96.91 / 79.83 
0.3 94.93 / 85.75 96.37 / 75.99 96.64 / 78.61 
0.4 94.18 / 84.54 96.32 / 75.76 96.58 / 77.59 
0.5 93.48 / 83.26 96.27 / 75.54 96.52 / 76.63 
0.6 92.75 / 81.78 96.22 / 75.33 96.46 / 75.65 
0.7 91.95 / 79.87 96.16 / 75.10 95.66 / 74.54 
0.8 90.94 / 77.03 96.10 / 74.82 95.28 / 73.11 
0.9 89.38 / 71.56 95.99 / 74.37 94.59 / 70.67 

Table 3. Recall scores reported on the test split for each 
combination of training loss and thresholding parameter. 
The  left value represents the ‘stone’ class result, the right 

one belongs to the ‘mortar’ class.

Figure 6. Complete area of the test split and the resulting map 
with the best parameters (combined loss and 0.5 threshold). 

True positives are shown in green, false positives are blue and 
false negatives red. The rest are stones and some masked areas. 
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