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Abstract 
 

High-resolution architectural documentation goes beyond geometry—it requires a deep understanding of the building’s structure, 

materials, and historical layers. This often means interpreting hidden construction logic and identifying even the smallest components, 

such as individual stones or bricks, to produce meaningful data for conservation, analysis, and interpretation. Identifying and describing 

all the individual components that constitute the building, such as the type, arrangement, and state of preservation of stones, bricks, 
mortars, or decorative materials embedded in the walls, is a real challenge due to the large quantity and the complex spatial distribution 

of each element. Recent advances in AI, particularly foundational models and zero-shot models, offer potential solutions to speed up 

the documentation process. Taking the gothic complex of Milan Cathedral as the monument object of study, the research hereby 

presented implements a SAM2 (Segment Anything Model) based stone-by-stone segmentation, leveraging object detector for semantic 

interpretation. The proposed framework integrates 2D stone block segmentation with photogrammetric 3D reconstruction, enabling 
accurate projection of semantic labels and geometric data from images to 3D point cloud, allowing a detailed 3D segmentation in all 

the components of the structure. 

 

 

1. Introduction 

Stone block segmentation has been a keen focus in recent years 

in the cultural heritage (CH) documentation field. The 

documentation of architectural assets is among the most enduring 

and complex activities in field of CH conservation. The manual 
recognition, mapping, and monitoring of the architecture and its 

individual components over time, regularly at certain intervals, is 

an invaluable activity and continues to be widely practiced. 

However, particularly when it comes to large-scale complex CH 

assets, the documentation activities and recurrent updates  
become costly, time-consuming, and burdensome processes.  

 

Milan Cathedral stands as a landmark of Milan city and one of 

the most important monumental heritages in Italy as well as 

Europe. As one of the most significant Gothic cathedrals, it 
features marble cladding. The Candoglia marble, vulnerable to 

both natural and anthropogenic deterioration agents, requires  

continuous preservation. The focus of this research starts from 

this premise, conveying efforts to apply and validate Artificial 

Intelligence-assisted segmentation of stone blocks on this large 
case study. In CH assets, mainly in Europe, stone is commonly 

chosen for its durability and strength. However, constant 

exposure to weather and unpredictable external factors cause 

erosion, cracks, biological colonization, black crust, and other 

decay pathologies (Verges-Belmin, 2008). Consequently, the 
periodic maintenance and conservation activities become crucial.  

Knowledge of the restoration history, physical characteristics , 

and the up-to-date conditions of the building elements benefits  

context-specific conservation practices (Coletti et al., 2025). 

Stone block mapping and documentation have become necessary 
in preservation practices. The recurrent conservation activity of 

the Milan Cathedral has been lasting over the years, the stone 

block maintenance is crucial to preserve the Cathedral’s aesthetic 

and structural value, and its replacement or modification is the 

key feature in the monument conservation activity. However, 

documentation at the block level - considering the quantity and 

characteristics of the instances - is time-consuming and a serious 

logistical and archival challenge.  

 

The recent Artificial Intelligence (AI) boom has provided 
promising tools and solutions to streamline the documentation 

process. The research in the field of computer vision has been 

productive in processing images, accomplishing tasks like image 

classification (categorizing an image based on its content), object 

detection (identifying and localizing objects in the scene), and 
instance segmentation (recognizing every individual object and 

its borders). AI has already been applied to structural integrity 

analysis, precise damage assessment, and restoration of CH 

assets (Llamas et al., 2017). Not only have the visual models been 

improved over the years, but the emerging AI models also allow 
open-set detection and are ready-to-use, reducing dependency on 

labelled data and model training processes. Among all, Segment 

Anything Model (SAM) (Kirillov et al., 2023), a pre-trained 

foundational model, has stimulated the development of  

segmentation-involving pipelines. These AI models enable 
precise, cost-effective architectural documentation making 2D 

and 3D data and related documentation available and readable.  

 

As a continuous study of the survey and digitalization activities  

of Milan Cathedral have been ongoing for many years (Achille et 
al., 2020, 2012; Spettu et al., 2021), this paper seeks to explore 

the potential of AI tools, by applying the SAM2 to Milan 

Cathedral stone block segmentation, integrated with object 

detection models (comparing the applicability of open-set 

detector Grounding DINO (Liu et al., 2024) with the close-set 
detector YOLOv11 (Jocher and Qiu, 2024)) and 

photogrammetry. The goal is to enable automatic stone 

segmentation in 2D imagery and implement 3D mapping, 

contributing to the documentation practices. The concluding 

phase will involve the visualization of the segmentation 
outcomes on the 3D point cloud model, showing the ultimate 
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stone-by-stone segmentation in three dimensions. The research 

team’s aim is towards having the possibility to exploit 3D 

technologies for various applications, making these advanced 

tool outputs usable also to the end-user (e.g., Achille et al. 2020, 

Spettu et al. 2021). 
 

1.1 Related Works 

The initial research on the segmentation task employed rule-

based approaches, like thresholding, edge detection (Canny, 

1983; Sithole, 2008), and region-growing methods (Beucher and 
Meyer, 1992): no learning from a proper training and dataset, but 

mainly image manipulations. Later, machine learning enabled 

segmentation based on feature extraction and pattern recognition  

(Mohammed and Mihoub, 2024). 

 
In recent decades, deep learning methods have used 

convolutional networks for end-to-end segmentation. Deep 

learning models such as FCN (Fully Convolutional Networks) 

(Long et al., 2015) and U-Net (Ronneberger et al., 2015) initiated 

the Convolutional Neural Network (CNN)-based segmentation 
approach. Later Mask-R-CNN (He et al., 2018) added a 

segmentation head to an object-detection model, allowing 

instance segmentation. Recently, the transformer-based models  

entered into computer vision field, e.g., DETR (Carion et al.,  

2020). A breakthrough solution in segmentation tasks is the 
Segment Anything Model (SAM) (Kirillov et al., 2023). It has 

addressed the general image segmentation problem by 

simplifying the task and becoming a popular off-the-shelf utility.  

It is, in fact, able to cross various domains without the need for 
suited training. Developed by Meta AI towards a general-purpose 

foundational model, SAM was trained on SA-1B (Segment 

Anything 1-Billion mask dataset), an extremely large 

segmentation dataset which includes 1 billion masks on over 11 

million images. It’s a “promptable”  (capable of being controlled 
or customized via prompts, i.e., inputs) model that supports 

inputs like points, boxes, and masks to guide accurate mask 

generation for any object in a sequence of images, without 

extensive training, i.e., zero-shot segmentation. Its capacity to be 

applied to new and unseen data without prior training is its 
primary advantage. To be noticed is that SAM does not deal with 

semantics. Thus, it doesn’t give back any label with the segments,  

requiring additional extensive approaches (classifier or vision-

language model) to link each segment to the corresponding 

semantic meaning.  
 

Many architectural surfaces feature repeating patterns makes  

them ideal for AI segmentation and single component 

identification. In fact, they can exploit this feature of built assets 

to learn consistently, improving performance over different 

computer vision tasks. An early study of block segmentation 

compared the performances of multiple segmentation methods  

upon orthophoto of stone façades (Idjaton et al., 2021), showing 

the limitations of rule-based techniques. Other research proposed 

the use of SAM, coupled with a traditional classifier such as 

Support Vector Machine (SVM) and control of morphological 

opening to achieve better segmentation results (Lucho et al.,  

2024). Their results suggest that marrying the segmentation 

capabilities of SAM with some post-processing and label 

assigning can improve alignment with architectural features.  

Later applications integrate a cross-modality model Grounding 

DINO (Liu et al., 2024) for primal object detection, guiding the 

segmentation tasks of SAM, and uses CLIP, a Contrastive 

Language-Image Pre-training model (Radford et al., 2021) to 

associate labels to segments (Réby et al., 2023). Their work 

highlights the potential of combining the large Vision 

Transformer (ViT) models with semantics. Inspired by previous 

research, this paper employs SAM2 on the scale of architectural 

facade, not mapping major architectural elements, but individual 

small-scale architectural elements (i.e., marble blocks) on 2D 

imagery. As an additional step, it explores the feasibility of 2D to 

3D projection. 

 

Building on this recent line of research, the aim is to conduct 

segmentation of individual marble blocks for the practical use of 

Milan Cathedral documentation. As a direct consequence of their 

use, the masks generated by SAM should be correctly identified, 

interpreted, and categorized. So, this research applies object 

detection models - YOLOv11 (Jocher and Qiu, 2024; Redmon et 

al., 2016) and Grounding DINO - for acquiring semantics  

information from the 2D images and classifying segments. The 

object detection models localize the object regions of interest on 

images, and indicate categories for the instances detected, 

enabling filtering segmentation results by semantics. Grounding 

DINO is a cross-modality object detector model that combines  

language and visual information.  It can be promptable with text 

inputs (natural language), enabling it to locate and label the 

expected object. Grounding DINO combines a Transformer-

based detector (DINO) for modality fusion with grounded pre-

training for concept generalization. The tight fusion includes a 

feature enhancer, a language-guided query selection, and a cross-

modality decoder for language-vision modality fusion. The 

Grounding DINO performs well in open-set object detection on 

benchmarks like COCO. YOLOv11, on the other hand, is a close-

set deep-learning application for object detection, known for its 

state-of-the-art velocity and efficiency. 

 

The intention is to achieve segmentation at a level of complete 

architecture of every element composing it, regardless of the 

complexity of the single case. However, this goal can present 

several challenges that need to be provided a solution to. While 

foundational models like SAM offer generalization capabilities , 

domain-specific fine-tuning may be used in the future to handle 

the unique shapes and characteristics of Milan Cathedral (spires, 

very ornated areas, big gothic windows with coloured glass, 

statues). These elements are very difficult to recognize in other 

architectural contexts and are therefore challenging to label 

correctly by a zero-shot model. 

 

2. Stone block detection in the Milan Cathedral 

2.1 Methodology 

This research presents a practical application exploiting novel AI 

processing, including object detection and segmentation, aimed 

at streamlining the segmentation of marble elements within the 

comprehensive management framework of the cathedral. The 

investigation is based upon 3D data gathered within the Milan 

Cathedral survey project that, in the span of over 15 years, 

achieved a full high-resolution point cloud representation of the 

full building. Photogrammetry can generate 3D models and 

orthophotos at a very high resolution (up to the detailed 

visualization of the mortar gaps), from which semantic and 

geometric information can be extracted quickly and consistently 

by AI methods. The high quality required for the photographic 

acquisition, typical of the architectonic photogrammetric survey, 

perfectly suits the AI automatic recognition. 
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Figure 1. The proposed pipeline of this research: iteration of the segment and classification process until the practical details achieved.

The survey data available offers some key advantages for the 

implementation of the aforementioned AI framework: (1) the 

availability of large volumes of data, with the repetitive feature 

of contents and the images used in the photogrammetric process 

that are ideal for stone-by-stone segmentation and the detection 

of marble architectural elements; (2) the known exterior 

orientation of the images (position and rotation) of each frame in 

the 3D space, apart from the intrinsic calibration of the cameras  

derived from the photogrammetric processing. All these factors  

make it easier to trace back the position of recognized elements  

from the 2D images to the 3D point cloud geometry.  

 

Aware of this, the objective of this research is to carry out both 
the segmentation and labelling tasks based on the ready-available 

and already-oriented image dataset acquired during the 

photogrammetric survey. The concluding phase will involve the 

visualization of the segmentation outcomes on the 3D model, 

showing the ultimate stone-by-stone segmentation in three 
dimensions.  

 

The presented pipeline involves mainly the following procedures  

(Figure 1): initial segmentation using SAM2, semantic 

interpretation through object detection, and 3D projection. In 
detail, the initial step involves using SAM2 to create 

segmentation masks for all the images used in the 3D 

reconstruction. This results in a binary mask, which comprises all 

the segments without semantic labelling. In the second stage, 

object detection models (Grounding DINO, YOLOv11) are 
applied for semantic interpretation, comparing their applicability 

to the specific need of object recognition. The results of the object 

detection were used as box prompts to guide SAM2 for 

generating precise masks of certain interference objects that were 

not marble blocks. These masks can be used to crop off specific 
chosen element categories from the initial SAM2 segmentation 

result. Finally, the individualized masks segments of marble 

block units are projected from 2D images to a 3D model within 

the tested area of the case study, maintaining the spatial 

correspondence of the blocks from 2D to 3D space utilizing 
photogrammetric parameters. The output will be saved to each 

point of the point cloud as a scalar field, which indicates different 

block instances, facilitating the later data fruition. 

 

2.2 The Milan Cathedral  

Milan Cathedral stands out as a late Gothic masterpiece. Its 

construction began in 1386 and finished in 1805. It is the largest 

church in Italy: the external dimension of the Cathedral is 158*93 

meters, with a total height of 108.50 meters, covers an area of 

approximately 12,000 m2, and has a gross volume of 440,000 m3. 

The church features highly rich decorations, counting thousands 
of marble sculpted statues and decorations. 

 

The Cathedral is characterized by the Candoglia marble 

coverings.  Over time, marble blocks naturally deteriorate as a 

result of their mineralogical properties and continuous exposure 
to outdoor environmental factors. These blocks, especially the 

external ones, are replaced periodically under the recurrent 

investigation and continuous maintenance. The institution 

Veneranda Fabbrica del Duomo di Milano has been in charge of 

this maintenance work for more than 630 years. It’s believed that 
the block-by-block digitalization job is beneficiary to the 

continuous and accumulating preservation practices and 

documentation (Fassi et al., 2015). 

 

The study hereby presented was conducted in continuity with the 
photogrammetric survey, aimed at extracting 1:50 2D drawings, 

as requested by the Veneranda Fabbrica for the documentation of 

preservation works. The external facades were surveyed using 

photogrammetry, because of their extreme flexibility. The survey 

used the aid of a lifting platform and scaffolding facilities to 
achieve acquisition positions at altitude, ensuring uniform 

Ground Sample Distance (GSD) and complete geometry.  

 

The image dataset involved in this research was extracted from 
the south façade survey, choosing an area equal to the full 

transept façade on the Southern side of the Cathedral (see Error! 

Reference source not found.). This area is characterized by 

varied volumes, featuring large, elaborately decorated windows 

and slit windows that illuminate the staircase volume. In addition 
to ornamental patterns, the façade includes statues of saints, 

canopies, “falconature” (the crowning decorative elements), and 

spires crowning the structure. This specific area, approximately 

49 m wide and 64 m high (height calculated from ground level to 

the tallest spire), was identified to test and illustrate the proposed 
pipeline. The testing data involves 842 photos, taken with the 

intention of achieving a GSD of 2mm/pixel. The images were 

aligned and processed through a photogrammetric workflow in 

Agisoft Metashape. The generated dense point cloud is composed 

of 160,282,474 points, representing the surface geometry of the 
south façade in detail. The data was used to prepare the 

orthophoto of the whole façade (Perfetti et al., 2019). 
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Figure 2. Orthophoto of the South elevation of the transept . 

2.3 “Segment Everything” using SAM2 

The experiment began with the implementation of SAM2, 

developed by META, selected for its competitive performance in 

zero-shot segmentation tasks across diverse domains. Unlike 
traditional Convolutional Neural Networks (CNNs), SAM2 does 

not require prior training for specific datasets, making it suitable 

for applications demanding generalization. Milan Cathedral’s  

surface, predominantly composed of marble blocks arranged in 

repetitive yet subtly varied patterns, was considered an 
appropriate case for automated segmentation and element 

identification. 

 

However, challenges emerged when applying this pre-trained 

foundational model to such a complex architectural surface. The 
visual uniformity of the marble reduces contrast and affects mask 

precision, considering the marble elements characterized by 

minimal colour variation, limited depth differences, and mortar 

gaps closely matching the stone's hue. These characteristics  

hinder the model’s ability to clearly delineate individual 
elements. The Cathedral’s stone skin is intentionally designed to 

appear as a smooth, continuous surface, which offers few visual 

cues to support the segmentation process. As an expectation, 

SAM2’s performance will be constrained when dealing with 

context-specific visual nuances that require more than 
generalized pattern recognition. 

 

To address the issue of recognising stone blocks when they’re 

uniform in colour and with shallow gaps between them, some 
brightness and contrast adjustments in the original photos were 

necessary. These changes must be applied to keep the image well 

readable and are particularly useful when images have different 

exposures or poor distinction between similar materials, such as 

marble and mortar. So, instead of applying fixed values (that 
could be applicable in some pictures and not in others, as it’s 

well-known the long-term survey of such monuments goes on in 

time and so with varying exposures)– Contrast Limited Adaptive 

Histogram Equalization (CLAHE) (Zuiderveld, 1994) was used 

to enhance contrast and aid the segmentation model in reading 

the borders of singular objects while preserving details. 

 

Prior to being processed with SAM2, the dataset undergoes a pre-

processing phase aimed at improving the performance of the 
subsequent analysis. Firstly, the images were compressed with 

maximum side dimension to 2048 pixels, while maintaining the 

block gaps recognizable. In addition, the images were converted 

to grayscale, reducing the possible confusion caused by the hue, 

and then went through CLAHE. 
 

The function SAM2AutomaticMaskGenerator (AMG) is 

embedded with the capability to sample a single-point input 

prompt in a grid over the image, which guides the SAM2 model 

to generate multiple masks on the whole image. In this function, 
no other prompt input was used to infer the masks (no point 

coordinates or bounding boxes). Multiple parameters were set to 

balance computational efficiency and segmentation capabilities  

of SAM2. Most importantly, “points_per_side” parameter is set 

to 128. It indicates the sampling of “prompt points” on the image 
at a grid of 128x128, determining 16384 points across the image 

used to prompt the model. This parameter largely affects  

segmentation granularity, i.e., the scale of the detecting elements . 

At each time of the inference, 128 prompt points were fed to the 

model (points_per_batch). Additionally, a minimum mask area 
(25 pixels) was set to filter out mispredictions, ensuring that 

detected elements align with the typical size of stone blocks. 

Further filtering methods were applied: an Intersection-over-

Union (IoU) threshold of 0.7 to retain only masks with high 
spatial overlap; a Non-Maximum Suppression (NMS) threshold 

of 0.5 to eliminate redundant overlapping masks; and Mask-to-

Mask (M2M) refinement to enhance mask boundary precision.  

Eventually, after the pre-processing, SAM2 assigns values to 

pixels, grouping them based on visual features and prompt input. 
The model output (Figure 3) consists of multiple binary masks, 

covering all the instances detected. For visualization purposes, 

the masks inferred from the images were colorized using a set 

(200) of randomly generated colours. This step supports 

downstream processing by enabling the clear identification and 
separation of individual elements within the images. 

 

 
Figure 3. Examples of raw photographs (left) and the initial 

SAM2 outcomes (right) on the Transept area on the 

South façade of the Milan Cathedral. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1683-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1686



 

2.4 Detection and Segmentation 

After mask creation, the segments generated by SAM2 must be 

differentiated based on categories, classifying all the instances  

captured in the imagery for practical reasons. For this purpose, 

detection model is used to detect objects which cannot be 
categorized as marble block, such as sculptures, decoration, 

windows, slit windows, spires, scaffolding and other 

interferences. In this premise, an object detector can be applied 

to interpret the semantics. This study tested Grounding DINO and 

YOLOv11 models, comparing their capability on detecting CH 
related elements. 

 

2.4.1 Grounding DINO: The pre-trained model Grounding 

DINO offers satisfying open-set object detection capabilities. It 

produces bounding boxes of the targeted objects based on textual 
prompts without the need for extra training.  

 

In this study, Grounding DINO was first applied to interpret the 

semantics, for its off-the-shelf convenience. Specifically, a 

checkpoint GroundingDINO_SwinT_OGC was used, with Swin-
Tiny as backbone, pretrained on compressed dataset OGC 

comprises of Objects365, GoldG, and Cap4M datasets. It was 

applied to detect architectural elements, facilities, and humans,  

other than marble blocks. Resulting bounding boxes were used to 

guide the creation of masks in SAM2 (Figure 4). This process is 
parallel to the masks creation discussed above; the output is being 

used to subtract unwanted regions from the primal segmentation.  

For the settings of parameters, the box threshold is set to 0.15, 

and the text threshold to 0.12, to filter the bounding boxes based 
on the predicted grounding score (confidence that the box 

matches the text) and the text relevance score (confidence that 

the text query matches the region). NMS threshold is set to 0.4. 

The detections are later filtered by the size of bounding boxes 

(neither too big nor small), removing overlapping boxes. The 
main filtering criterion was related to the dimension of the box in 

respect to the full size of the image. Given that targeted elements  

cover an area of less than 20% of the whole image, any bounding 

box exceeding that value was filtered out right before the 

inference on the image. 
 

Text prompts are tested for detecting sculptures, spires, windows, 

slit windows, falconature, decoration, scaffolding and humans. 

However, ‘falconature’ and ‘decoration’ cannot lead to satisfying 

detection, even though tested multiple other prompts like: ‘gothic 
hood moulding’, ‘arch moulding’, ‘carved detail’, and ‘ornament’ 

etc. 

 

 
Figure 4. Examples of the detection from Grounding DINO (left) 

and the SAM masks generated with corresponding 

box prompts (right). 

As the examples in Figure 4 show, Grounding DINO has 

achieved promising detection results. However, the results are 

not prominent when dealing with various ornaments and 

decorations, which happen to be the most dominant feature of 

architectural cultural heritage. The ready-to-use open-world 
detection models are not trained particularly for the heritage 

context; hence each category will require articulated and concise 

text-prompts to guide the prediction. The difficulties in the 

process and low precision output can be expected.  

 
2.4.2 YOLOv11: The outcome from Grounding DINO is 

promising but has left heavy manual work to improve the results 

for practical downstream applications. To reduce the dependency 

on time-consuming manual operation, a YOLOv11 (You Only 

Look Once) model was tested to identify pre-defined categories , 
which require manual annotation and model training. 

YOLOv11 is a late iteration in the YOLO series, a big march 

towards real-time detection performance. The model is equipped 

with sophisticated feature extraction techniques, apart from 

refined training methodologies. Noticeably, the Cross Stage 
Partial with Spatial Attention (C2PSA) module was introduced, 

enhancing the spatial attention in the feature map. 

 

In this application, a set of 143 samples was subsampled from the 

whole dataset to form a representative training set. The samples  
were annotated, with the purpose to define 8 categories : 

sculptures, spires, windows, slit windows, falconature, 

decoration, scaffolding and humans. In the end, 1895 instances  

were annotated, with the annotated area taking up to 44.59% of 
the whole image. The category distribution was 752, 418, 355, 

15, 191, 81, 59, 24 instances respectively for used categories  

mentioned before. The model was trained based on YOLOv11 m 

variant, upon nine-tenths of the annotated samples, and reached 

convergence at around 80 epochs. Upon the unseen one-tenth of 
the data, the model achieved 81.01% precision, 0.69 for the mean 

Average Precision (mAP) at the Intersection over Union of 0.5 

(mAP_0.5), and 0.40 mAP at different IoU thresholds from 0.5 

to 0.95 in steps of 0.05 (mAP_0.5:0.95). 

 
Ultimately, this approach resulted in much better performance as 

expected, since the training samples are collected from the 

overall dataset. The confusion mainly addresses falconature and 

scaffolding. In the end, the YOLOv11 detection results were used 

to guide the creation of SAM2 segments that were used to 
subtract unwanted areas from the primal segmentation mask 

previously created. This step contributes to mapping out the 

unwanted objects for precise marble block segmentation. 

 

 
Figure 5. Examples of the detection from YOLOv11 (left) and 

the SAM masks generated with corresponding box 

prompts (right). 
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2.5 Projection to 3D 

After mapping out non-targeted (ornated architectural elements ) 

segments, the remaining 2D segments of marble blocks are 

intersected into three-dimensional space utilizing the known 

camera poses and intrinsic parameters derived by the 
photogrammetric project.  

 

The used method is adapted from a previous work (Alami and 

Remondino, 2024; El-Ayaili et al., 2025), which combines voxel-

based ray casting and camera model projections. The method 
takes segmentation output, dense point cloud, oriented camera 

parameters as input. During the process, the point cloud is 

voxelized at a user-defined resolution (in this application, the side 

length of each voxel cube is set to 0.2 meter, balancing spatial 

granularity and computational efficiency), and a ray casting 
scene is generated using Open3D (Zhou et al., 2018).  

 

For each oriented camera, rays are cast into the scene based on 

the camera’s intrinsic and extrinsic parameters, identifying 

visible surface points and transferring the corresponding 
semantic labels from the 2D masks onto the 3D voxels 

encapsulating the 3D points intercepting casted rays.  

 

 

 
 

Figure 6. The reconstructed 3D model of the South façade of the 
transept, with each marble block rendered in different 

colours based on its corresponding segment label. 

As can be seen in Figure 6, the segments of the block are 

interpolated back to 3D space. However, in some area the ray 

casting strategy has caused minor drifting of the segment 

projection. For such cases, manual improvement is required to 

repeat the process only on the problematic area, with eliminating 
input images that lead to projection from far away and with a 

wide angle. 

 

3. Discussion 

The test intended to involve AI model to accelerate and 
automatize the semantic segmentation upon 2D data. The 2D 

outcome has been re-integrated into a 3D reconstructed model of 

the Milan Cathedral Transept, south facade. The practical test has 

shown the feasibility but also reveals pros and cons. 

 
In the case study of the Milan Cathedral, SAM2 demonstrates  

satisfactory performance of AMG function on individualize each 

marble component presented in the images. The images  

acquisition is aimed for photogrammetric workflows, that means  

that the images used are not subject to strong distortion and are 
captured almost nadiral to the object surface. In addition, the 

lighting condition is stabilized, harsh shadows and over exposure 

are avoided. As a result, SAM2 masked accurately the well-

defined borders of marble stone elements. The model presents its 

satisfying performances on detecting small objects, including 
decayed areas like cracks, material loss. A critical aspect of 

SAM2 is the over-segmentation, resulted by the grid-sampling 

prompts and the lack of semantic awareness. It requires extra 

constraining of model behaviour and result filtering for practical 
use. Further fine-tuning with elaborate data and post-processing 

might address this defect. Another critical aspect is that the AMG 

function is extremely time-consuming. In the presented case 

study, an image of size 2048*1367 pixels takes 29 minutes to 

generate over 200+ instances masks, using processer Inter® 
Core™ i9-9980XE CPU @ 3.00GHz. The occupation of 

computational resources is noticeable. It this research, multiple 

devices are used to accelerate the process, about 4 days are used 

to acquire the initial segments. 

 
One of the primary limitations of the “segment anything” 

function on SAM2 model is the requirement for mask post-

processing, refining and semantics interpretation. To interpret the 

semantics of the segments, object detection models were implied. 

In this application, Grounding DINO effectively distinguishes  
facade elements, even at distances. It encountered similar 

difficulty related to the object scale in the image as SAM2 did: in 

non-ortho photos the smaller objects that are far away from the 

camera may result into a lower confidence score. The utility of 

Grounding DINO is under criticism for the prompt mechanism 
that encodes text into dense embeddings that are aligned with 

visual features. While Grounding DINO exhibits high accuracy 

if provided simple and direct prompts, like colour description (e.g. 

“grey”), shape (e.g. “square”), common object categories (e.g. 

“window”, “person”), when it comes to cultural heritage 
scenarios the specialized terminology will cause crucial problems. 

In this research, for example, it fails with more domain-specific 

terms like "falconature", which are rare or absent in the training 

data. In addition, inaccuracies could rise while using long 

descriptions for the interested object, which can produce conflicts  
between levels of text feature (sentence and word) that might be 

misleading to the detection. In the heritage domain, for instance, 

the prompt "white stone element" could refer equally to cornice, 

archivolt, or statue fragment. A single dataset may contain 

multiple distinct classes, where shape and colour do not always 
correlate to a single semantic category, and objects within the 

same class may exhibit entirely diverse shapes and intricate 
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geometries. Defining precise categories is significantly more 

complex than general-purpose recognition works. There requires  

a time-consuming effort of testing to reach accurate grounding 

prompt, considering the vision-language contextual information. 

In this case study, Grounding DINO were evaluated on the 
manual annotated data that were fed to train YOLOv11 model  

(see Table 1). The model achieved higher evaluation score on 

more general concepts like sculpture, scaffolding, human. 

However, related to more specific categories like falconature and 

decoration, the behaviour is neither stable nor acceptable. 
Grounding DINO can generate multiple detection boxes 

indicating the same instance (for example . Therefore, using the 

detections to guide the SAM2 segmentation, the resulted 

segments will overlap on the same instances though on different 

scales, slightly supplementing the detection results. By 
comparing to the SAM2 results guided by manual annotation, the 

mean IoU reaches 0.309. In the end, consider the Grounding 

DINO detections require manual inspections before later process, 

the research moved on applying close-set detector YOLOv11.  

Yolov11, as one of the latest object detection models, exhibits its 
advantages in speed and accuracy. In this test, it has shown better 

performance, even with a limited dataset. Compared to 

Grounding DINO, close-set detection model has limitations on 

preparing tailored training dataset, taking into consideration of 

the time and effort on annotation and model training. These 
models have satisfying performances but only on fixed pre-

defined class vocabulary with limited generalization ability. 

 

 Precision Recall F1-score Support 

Sculpture 0.64 0.29 0.40 752 

Spire 0.37 0.03 0.06 418 

Falconature 0 0 0 355 

Decoration 0 0 0 15 

Window 0.26 0.41 0.32 191 
Slit window 0.21 0.05 0.08 81 

Scaffolding 0.44 0.31 0.36 59 

Human 0.30 0.33 0.31 24 

Macro Avg. 0.28 0.18 0.19 1895 

Weighted Avg. 0.39 0.18 0.22 1895 

Table 1. classification report of Grounding DINO on annotated 

ground truth at IoU threshold 0.5. 

The accuracy of the projection from 2D-based detection to 3D 

model is affected by multiple factors: voxel dimension, mask 
quality, and precision of camera parameters. As steps in the long 

processing pipeline, photograph quantity, camera calibration,  

AMG outcome, semantic interpretation and voxel size can 

introduce mislabeling or outliers into the final 3D output. The last 

procedure yielded a satisfactory result. Fifty percent of stone 
surfaces exhibit effective segmentation, with marble blocks 

properly aligned and the gaps between the blocks clearly 

delineated. The mis projected component predominantly occurs 

in regions exhibiting significant geometric alterations, such as 

angles or decorative elements, which provide challenges for both 
AI and the photogrammetric method. The reprojection of 

intricate 3D regions necessitates supplementary geometric 

constraints to accurately identify the appropriate 3D points for 

labeling and to resolve ambiguities arising from many 

intersections of the projection ray with the object. 
 

The large number of instances in such a complex and extensive 

dataset can pose a challenge for data utilization. Scaling the 

project to encompass the entire Milan Cathedral requires a robust 

and scalable strategy. A well-design database with well-defined 
categories embedded with spatial hierarchy will be essential to 

arrive to the complete segmentation of the 3D data asset.  

 

4. Conclusion 

This paper presented applications of SAM2 in cultural heritage 

practices of the Milan Cathedral, focusing on segmenting the 

marble block on the south façade of the transept. The pipeline 

involves SAM2AutomaticMaskGenerator function to generate 
masks from the 2D image data, and project them to 3D utilizing 

photogrammetry techniques. The application further tested the 

applicability of the open-set detection model Grounding DINO 

comparing with trained YOLOv11 on finding architectural 

elements. The application eventually achieved categorization of 
the marble blocks for the façade of the south transept. 

 

The application has addressed typical time-consuming problems 

with SAM2 on un-prompted segmentation. It reacts much faster 

when provided with spatial guidance (points or bounding boxes). 
The zero-shot model Grounding DINO has a promising 

performance, but when is applied to specific architectural cultural 

heritage categories it exhibits limitations. Preparing dataset and 

training the object detection model (YOLOv11) with pre-defined 

categories in this test is the most effective solutions. In the large 
preservation practices with continuous inspection and monitoring 

needs, a tailored dataset is worth the effort and could support the 

feasibility of the AI-aided pipeline. Until now, further manual 

operation and down-stream data fusion research remain. In a 

broader view of cultural heritage preservation activities, the 
foundation models like SAM2 can be expected to be integrated 

for practical utility. Consider a common standard will be 

established for cultural heritage dataset, open-set detection model 

can be used for more than general and basic data processing. 
 

Future work could focus on improving the computational 

efficiency and stabilize the performance of the segment and 

detection model, verifying the applicability upon the whole 

Milan Cathedral. The recognition can be targeted to other 
articulated and complex architectural categories, such as 

windows and statues, to create a more comprehensive segmented 

model, storing detailed information about each of its elements on 

different scales. This pipeline shall be transferable to other case 

studies, having inherently no overfitting to a specific domain or 
case study. It can also be accelerated integrating with automatic 

classification methods of 3D data.  
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