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Abstract 
 
Dimensional data are critical for the assessment, conservation, and restoration of architectural heritage. Traditional manual 
measurement methods are time-consuming and labor-intensive, particularly for large, complex, and difficult-to-access structures 
such as the hollow watchtowers of the Ming Great Wall. This study proposes a new method that combines low-altitude UAV 
photogrammetry with point cloud semantic segmentation algorithms, using watchtowers along the Ming Great Wall as case studies. 
First, images were collected using low-altitude UAV, and point cloud data are generated via photogrammetry to capture information 
of the difficult-to-reach watchtowers located on mountain ridges. Second, a semantic segmentation algorithm was applied to classify 
different components of the watchtower, and dimensional data were automatically calculated by fitting geometric models. Finally, 
experimental results showed that this automated method significantly outperforms traditional techniques in both efficiency and 
accuracy. The overall accuracy of the point cloud semantic segmentation algorithm reaches 90.80, and the error in automatically 
calculating the length and width of the watchtowers is less than 10%. Through the dimensional analysis of 601 watchtowers, the 
study identifies dimensional differences among watchtowers under three military jurisdictions during the Ming Dynasty. In summary, 
this study develops an automatic dimensional analysis method for watchtowers of the Ming Great Wall, improving the efficiency of 
heritage surveys. The method also shows potential for extension to other large-scale architectural heritage, offering a valuable tool 
for rapid analysis and digital archiving. 
 
 

1. Introduction 

1.1 Background 

1.1.1 The Importance of Architectural Heritage 
Conservation: Architectural heritage serves as a material 
embodiment of human civilization, bearing witness to history 
while also forming the foundation of cultural diversity and 
ancient technological development. It encapsulates the 
construction techniques, social structures, and aesthetic values 
of specific historical periods, acting as a medium for dialogue 
across time and space. Therefore, the protection and 
documentation of architectural heritage are essential for 
preserving its historical and cultural significance and 
safeguarding the collective memory of human culture. This, in 
turn, holds profound importance for the continued development 
of human society. However, amid rapid development and 
environmental changes, architectural heritage is increasingly 
subjected to severe damage from both human activities and 
natural forces, facing unprecedented threats and an urgent need 
for protection and restoration. 
 
1.1.2 Dimensional Data for Heritage Assessment and 
Restoration: In the conservation and restoration of architectural 
heritage, the acquisition and analysis of dimensional data play a 
fundamental role. Accurate dimensional data form the basis for 
assessing the current condition of heritage structures, 
formulating conservation strategies, carrying out restoration 
work, and uncovering historical information.  
 

For example, structural stability assessments rely on precise 
measurements to calculate load-bearing capacity and overall 
stability (Giaccone et al., 2020); in historical research, 
dimensions influence the appearance, internal spatial form, 
functional use, and user experience of buildings (Calvano et al., 
2022; Sewasew and Tesfamariam, 2023; Zhuo et al., 2024). 
Therefore, accurate dimensional information is a critical 
foundation for effective architectural heritage conservation. 
 
However, traditional methods of acquiring architectural heritage 
data primarily rely on manual measurements. This approach has 
several limitations. First, manual measurement is time-
consuming and labor-intensive. For large-scale heritage sites 
such as the Ming Great Wall, which contain numerous 
architectural elements and complex spatial features, the 
measurement process requires significant manpower and time. 
Manual methods involve detailed measurements of individual 
structural components and recording their dimensions one by 
one, resulting in low efficiency and potential human error. 
Second, manual measurement is particularly challenging for 
heritage sites that are difficult to access. For example, defensive 
military heritage is often located in steep, rugged terrain that is 
hard to climb (Lauro et al., 2023). These conditions make it 
difficult to comprehensively and accurately collect all necessary 
dimensional data through manual means. Finally, manual 
measurement can cause physical disturbance or even damage to 
the heritage structures themselves. The presence of personnel 
and the use of measurement equipment during the survey may 
affect the surfaces and structural integrity of the buildings, 
potentially exacerbating the deterioration of fragile areas. 
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Therefore, there is a need to establish a non-contact, rapid 
method for acquiring dimensional information from heritage 
sites. 
 
1.1.3 Historical Significance and Structural 
Characteristics of the Hollow Watchtowers of the Ming 
Great Wall: As a UNESCO World Cultural Heritage site, the 
Great Wall is the largest military defense structure in China—
and indeed the world—preserving the construction wisdom of 
the Chinese people and embodying thousands of years of 
historical and cultural tradition. It stands as a symbol of the 
Chinese nation's spirit (Li et al., 2023). The hollow watchtower 
is a distinctive architectural feature of the Ming Great Wall. Its 
origin, evolution, and structural form have been key areas of 
research, and even today, in the planning and design of Great 
Wall tourism zones, hollow watchtowers remain essential 
subjects of analysis (Li et al., 2023). The watchtower was 
invented by Qi Jiguang1, who provided a detailed account of its 
construction, methods, and functions in his military treatise 
Lian Bing Shi Ji (The Record of Military Training). Qi 
described its features as follows: "The middle level is hollow, 
with arrow windows on all four sides. The upper level is a tower 
with parapets surrounding it" (Jiguang, 2001). According to 
current surviving examples, their structural form generally 
aligns with Qi Jiguang’s original construction concept (see 
Figure 1A and 1B). 

  
A. Watchtower Structures in 
Ancient Book By Qi Jiguang. 

B. Existing Watchtower on 
the Ming Great Wall. 

Figure 1. Watchtower structures in ancient books and existing 
watchtower on the Ming Great Wall. 

 
However, due to prolonged natural erosion and human-induced 
damage, the overall preservation state of the Great Wall is 
generally poor. As of now, only 12.3% of its wall structures 
remain in relatively good condition (Ministry of Culture and 
Tourism" and "National Cultural Heritage Administration, 
2019). Many watchtowers have suffered varying degrees of 
damage, making their documentation, conservation, and 
restoration particularly urgent. Conducting a systematic 
statistical study on the dimensional database of these 
watchtowers can not only provide scientific support for their 
preservation and restoration but also offer important data for 
understanding the historical evolution of the Great Wall, the 
architectural logic behind their design, and the structure of its 
military defense system. At present, statistical studies on hollow 
watchtowers along the Ming Great Wall are mostly limited to 

 
1  Qi Jiguang was a renowned military general of the Ming 

Dynasty and is regarded by later generations as one of the 
most successful military reformers in ancient China. In his 
early career, he was responsible for coastal defense in the 
southeastern region, and later was reassigned to the north to 
guard key strategic areas such as Jizhen against invasions by 
Mongol tribes. He oversaw the construction of the Great 
Wall, reorganized defensive lines, and authored military 
treatises including Ji Xiao Xin Shu and Lian Bing Shi Ji, 
which summarized his experiences in fortification and 
combat. These works had a profound influence on later 
military thought. 

measurements of their spatial distribution along the wall. 
Research on their dimensional characteristics remains focused 
on individual sites or specific segments, with a lack of 
comprehensive statistical data covering large-scale or full-
length analyses of hollow watchtower dimensions. 
 
Watchtowers were often constructed in remote mountainous 
regions with steep terrain, making them difficult to access and 
unsuitable for large-scale conventional field surveys. Moreover, 
the number of watchtowers is vast. According to historical 
records (Zuoguo, 2003), during Qi Jiguang’s tenure, he oversaw 
the construction of 1,340 watchtowers. It is evidently 
impractical to complete dimensional measurements of all these 
towers in a short time through manual surveying alone. The 
design and construction of watchtowers integrated multiple 
functions, including military defense, residential living, and 
material storage. Their external components are diverse, and 
internal spaces are complex, featuring elements such as barrack 
rooms, parapets, arrow windows, and a variety of materials 
including bricks, dressed stone, and rough stone. This wide 
variety of materials and architectural elements imposes high 
demands on the accuracy of measurement and documentation 
efforts. 
 
In summary, dimensional data serve as the foundation for the 
conservation and restoration of architectural heritage. However, 
how to efficiently and accurately acquire data on large, complex, 
and inaccessible heritage structures—such as watchtowers—has 
become one of the key bottlenecks restricting further progress in 
their preservation, documentation, research, and restoration. 
Therefore, this study takes the hollow watchtowers of the Ming 
Great Wall as a case to explore a new non-contact method 
capable of automatically estimating the dimensions of historical 
buildings. Using statistical data from 601 hollow watchtowers, 
the feasibility of this method is demonstrated. This research not 
only analyzes the underlying causes of the dimensional 
characteristics of hollow watchtowers but also provides a 
practical case of methodological innovation for dimensional 
statistics in the field of cultural heritage conservation. 
 
1.2 Research Questions and Challenges 

1.2.1 Limitations of Traditional Manual Measurement 
Methods: In the field of architectural heritage conservation, 
traditional methods of dimensional data collection primarily 
rely on surveyors conducting close-range measurements using 
tools such as measuring tapes, rangefinders, and leveling 
instruments to manually record the dimensions of architectural 
components. Although this approach offers certain advantages 
in terms of precision, it presents notable limitations when 
applied to large-scale, complex, or difficult-to-access heritage 
structures: 

1. Low Efficiency: Manual measurement requires 
surveyors to operate on-site, recording the dimensions of 
architectural elements one by one. For large-scale heritage 
sites—such as the Ming Great Wall or the Tea Horse 
Road—with complex structures and extensive geographic 
spread, this approach is extremely time-consuming and 
labor-intensive. For instance, the Ming Great Wall spans a 
total length of 8,851.8 kilometers (Zhao et al., 2012), 
making it impractical to complete the measurements within 
a short timeframe. This inefficiency hampers the timely 
documentation of deteriorating heritage sites and delays 
the progress of conservation efforts. 
2. Human Error: Although manual measurements use 
surveying instruments, they depend heavily on the 
operator’s skill, experience, and environmental conditions. 
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Errors may arise from instrument limitations or visual 
misreading during data collection, leading to measurement 
inaccuracies (Liu and Bin Mamat, 2024). 
3. Difficult Access to Certain Areas: Many heritage 
sites, including the Great Wall, are located in remote or 
physically constrained environments, where surveyors 
cannot easily reach interior or elevated sections for 
measurement. For example, underwater archaeological 
sites or sunken ships cannot be measured manually and 
require technologies such as 3D laser scanning or sonar 
(Bräuer-Burchardt et al., 2023). 
4. Potential Damage to the Structure: During manual 
measurements, the presence of personnel and use of 
equipment can cause disturbances or even damage to the 
heritage structure itself (Shimoi et al., 2018). 

 
1.2.2 Current Research on Surveying Technologies and 
Point Cloud Processing Algorithms in the Field of Cultural 
Heritage: With continuous technological advancements, new 
digital surveying methods have opened up possibilities for 
acquiring dimensional data of architectural heritage. In recent 
years, emerging technologies such as 3D laser scanning, low-
altitude UAV photogrammetry, and point cloud processing have 
been increasingly applied in the field of architectural heritage 
conservation, yielding promising results，UAVs can efficiently 
collect large-scale data in a short time, making them well-suited 
for surveying extensive heritage structures. However, the point 
cloud data obtained from UAV photogrammetry still require 
specialized software and algorithms to extract accurate heritage 
information. 
 
Point cloud processing refers to a series of methods for 
analyzing and interpreting 3D point cloud data, which can assist 
in obtaining architectural heritage information (Du et al., 2015). 
Traditional point cloud segmentation algorithms are based on 
the geometric properties of the data or features derived from 
statistical histograms. Examples include edge detection-based 
algorithms (Xi et al., 2016), region-growing algorithms (Vo et 
al., 2015), and feature clustering-based algorithms. However, 
these methods typically require manual feature extraction, are 
computationally expensive, and are not well-suited for large-
scale point cloud datasets. 
 
1.2.3 Current Research on Point Cloud Semantic 
Segmentation Algorithms: With the emergence of large-scale 
3D point cloud semantic segmentation datasets and the 
continual advancement of GPU computing power, deep learning 
has increasingly taken a dominant role in point cloud 
segmentation algorithms. However, due to the unordered and 
non-uniform distribution of point cloud data in space, traditional 
convolutional neural networks (CNNs) designed for 2D images 
cannot be directly applied. To address this, a variety of 
approaches have been developed, including voxelization-based 
methods, multi-view methods, and graph convolution-based 
algorithms. 
 
Deep learning algorithms rely heavily on standardized datasets. 
At present, research in point cloud semantic segmentation is 
primarily based on datasets designed for autonomous driving in 
urban street scenes or for indoor environments used in smart 
home systems and SLAM technologies(Hua et al., 2016; Munoz 
et al., 2009). In the field of modern construction engineering, 
some scholars have utilized the uniformity in shape and 
dimensions of prefabricated components to extract their 
dimensional information automatically using point cloud 
geometric features (Li et al., 2020). However, in the domain of 
architectural heritage, there are currently no datasets specifically 

designed for segmenting structures like the Great Wall 
watchtowers. Therefore, this study proposes to manually 
annotate a custom dataset for the segmentation of watchtower 
point clouds. Based on the characteristics of this dataset, 
appropriate algorithms are selected and trained to develop a 
model capable of segmenting different components of hollow 
watchtowers. 
 

2. Method 

2.1 Framework of the method 

The method established in this study is illustrated in the Figure 
2. First, UAVs are used to capture images of the hollow 
watchtowers from multiple angles, and point cloud data are 
generated through photogrammetry. Next, a subset of the point 
cloud data is randomly selected for annotation to create a 
semantic segmentation dataset. A segmentation model capable 
of identifying different parts of the hollow watchtower is then 
trained using a semantic segmentation algorithm. Subsequently, 
a shape-fitting algorithm is applied to extract dimensional data 
based on the geometric features of each component in the point 
cloud. Finally, the trained model is used to segment all hollow 
watchtower point clouds and extract their dimensions, followed 
by a geospatial analysis to explore the distribution patterns and 
underlying causes of dimensional variation. 

 
Figure 2. Method framework. 

 
Based on the review of point cloud semantic segmentation 
algorithms in Section 1.2.3, it is evident that 3D semantic 
segmentation algorithms can be used to segment point clouds of 
specific architectural elements. By leveraging the geometric 
shape information contained in point cloud clusters, it is 
possible to extract the length, width, and height of specific 
features, thereby enabling automated dimensional statistics of 
architectural components based on 3D point cloud data. 
However, because semantic segmentation algorithms depend on 
the quality of the dataset and require algorithmic adjustments 
tailored to the structural characteristics of the point cloud data 
to improve accuracy, and because appropriate dimensional 
calculation methods must be selected based on the geometric 
forms of different components, this study must complete the 
following three tasks: 

1. Train a segmentation model capable of identifying 
specific architectural elements based on a manually 
annotated dataset. 
2. Implement automated dimensional extraction based 
on the segmented point cloud data. 
3. Apply the proposed method to automatically segment 
all collected hollow watchtower point clouds, extract their 
dimensions, and use the GPS coordinates embedded in the 
point cloud data to analyze the spatial distribution patterns 
of various dimensional attributes. 
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2.2 Research Object and Study Area 

This study takes the hollow watchtowers of the Ming Great 
Wall as the application target for the automated dimensional 
extraction method. To ensure the representativeness and 
generalizability of the findings, a total of 601 relatively well-
preserved hollow watchtowers located in Beijing, Tianjin, 
Hebei, and Shanxi were selected from existing Ming Great Wall 
sites across China. 

 
Figure 3. Study area. 

 
The study spans four northern provinces (municipalities) of 
China and includes 601 hollow watchtowers, whose spatial 
distribution is shown in the accompanying Figure 3. These areas 
constitute key defensive lines of the Ming Great Wall, featuring 
a high density of watchtowers, relatively good preservation, and 
a wide range of dimensional characteristics—making them 
valuable for research. Additionally, most of these regions are 
mountainous, with many watchtowers built along steep 
ridgelines, where traditional measurement methods are difficult 
to implement, making them ideal for testing the efficiency of 
the automated dimensional extraction method proposed in this 
study. 
 
2.3 Data Acquisition and Preprocessing 

2.3.1 Implementation Process of Low-Altitude UAV 
Photogrammetry: As previously described, hollow 
watchtowers of the Ming Great Wall are primarily located along 
mountainous ridgelines, where the terrain is complex and 
difficult to access. Therefore, UAV technology is required to 
acquire point cloud data. In this study, low-altitude UAV 
photogrammetry is employed, with the UAV capturing images 
by circling around the watchtowers to ensure sufficient overlap 
between adjacent images. In addition, GPS information 
automatically embedded in the photographs during UAV flight 
enables the mapping of the geographic distribution of the 
hollow watchtower point clouds. 
 
2.3.2 Point Cloud Denoising and Redundant Information 
Removal: To improve the accuracy of point cloud segmentation 
and the quality of architectural dimension extraction, it is 
necessary to remove scattered outlier points and irrelevant noise 
points outside the main structure.  
 
Various algorithms are available for point cloud denoising, 
including: Statistical Outlier Removal (SOR), Radius Outlier 
Removal, Voxel Grid Downsampling, Moving Least Squares 
(MLS), Gaussian Filtering, Edge-Preserving Filtering, Bilateral 
Filtering, and machine learning-based methods.Considering the 
efficiency of the experiment and the density characteristics of 

the point cloud models in this study, statistical filtering and 
clustering-based machine learning filtering were jointly adopted 
for denoising. 
 
2.4 Point Cloud Semantic Segmentation Method 

2.4.1 Annotation of the Segmentation Dataset: A total of 
164 point cloud datasets containing watchtowers were selected 
as the training set. Using CloudCompare software, annotation 
was performed to classify the point clouds into four categories: 
brick-masonry upper structure, stone-masonry foundation, walls 
connected to the watchtower, and surrounding vegetation 
(Figure 4.). 
 

 
A. Point cloud in RGB format 

 
B. Point cloud in Labelled format 

Figure 4. Example of annotated point cloud dataset. 
 
2.4.2 Selection of Segmentation Algorithm and Parameter 
Settings: Analysis of mainstream point cloud datasets reveals 
that four datasets—S3DIS (Armeni et al., 2016), 
SemanticKITTI (Behley et al., 2019), SensatUrban (Hu et al., 
2021), and STPLS3 (Chen et al., 2022)—are most similar to the 
Ming Great Wall watchtower point cloud dataset used in this 
study. A transfer learning approach was adopted, using these 
datasets as pre-training sources and for algorithm performance 
comparison. 
 
Among these datasets, the algorithms with relatively high 
accuracy include Swin3D (Yang et al., 2025), Point 
Transformer (Zhao et al., 2021), PointNet++ SSG, and RepSurf. 
Swin3D has high GPU memory requirements; thus, considering 
computational efficiency and hardware cost, this study selects 
the latter three as the base algorithms for point cloud 
segmentation. Their performance on the S3DIS dataset is shown 
in Table 1. 

Model Name mIoU mAcc OA 
Point Transformer 70.37 77.02 90.80 
PointNet++ SSG 64.05 71.52 87.92 

RepSurf 68.86 76.54 90.22 
Table 1. Computational performance of the S3DIS dataset on 

three network models: Point Transformer, PointNet++ SSG, and 
RepSurf. 
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Point Transformer (Zhao et al., 2021) constructs its network 
model based on a self-attention mechanism. By designing self-
attention layers specifically for point cloud data and 
incorporating positional encoding into Transformer blocks, it 
enables the execution of semantic segmentation, part 
segmentation, and classification tasks. The main contribution of 
this work is the introduction of a self-attention layer tailored for 
point clouds. As the self-attention layer is inherently sequence-
independent, it is well-suited for processing unordered point 
cloud data. 
 
2.4.3 Model Training: The dataset comprising 164 point 
cloud models was split at a ratio of 7:3, resulting in a training 
set of 115 models and a validation set of 49 models for 
evaluating model performance. The training was conducted on a 
platform based on the PyTorch framework, with system 
specifications of CPU: 14 vCPUs Intel(R) Xeon(R) Gold 6330 
and GPU: RTX 3090 (24GB). Training was halted upon model 
convergence. The trained model is subsequently used to 
perform semantic segmentation on the complete set of hollow 
watchtower point clouds. 
 
2.5 Automatic Dimensional Statistics of Structural 
Components 

This section calculates the shape dimensions of each segmented 
component of the hollow watchtower based on its geometric 
features. 
 
Based on the spatial structural relationships of architectural 
point clouds and incorporating computer vision analysis 
techniques, this study proposes an algorithm for directly 
computing point cloud dimensions. The workflow consists of 
the following steps: 

1. Base Surface Segmentation: Utilizing the 
characteristic that architectural walls are vertically oriented 
(parallel to the z-axis), the semantically segmented point 
cloud is projected along the z-axis onto the x–y plane, 
resulting in a 2D projected point cloud (Figure5). 
2. Base Length and Width Estimation: For the projected 
2D point cloud, the minimum bounding rotated rectangle is 
calculated. The length and width of this rectangle are 
considered approximate estimations of the base dimensions. 
3. Facade Point Cloud Segmentation: Using the rotated 
rectangle from the previous step, the four edges of the 
rectangle are treated as projection planes. The point cloud 
is then projected perpendicularly to the z-axis onto these 
planes, generating four facade projections. As only height 
is needed from the facade, one of the four projection planes 
is selected for analysis. 
4. Facade Height Estimation: For the selected facade 
projection, the minimum bounding rotated rectangle is 
computed (Figure 6), and its length and width are 
determined. Since these values do not contain directional 
information, the previously computed base dimensions are 
used as references. The value that does not match the base 
length or width is taken as the facade height, as it 
corresponds to the z-axis dimension. 

 

 
Figure 5. Minimum bounding rectangle computed from 

projected base edge after z-axis projection 
 

 
Figure 6. Minimum bounding rectangle of the façade extracted 

from segmented façade point cloud based on base bounding 
rectangle. 

 
3. Results and Discussion 

3.1 Accuracy Evaluation of Dimensional Statistics 

To assess the accuracy of the proposed method in dimensional 
extraction, evaluations were conducted from two perspectives: 
the performance of the point cloud semantic segmentation 
algorithm and the accuracy of the dimensional statistics. 
 
3.1.1 Evaluation of Semantic Segmentation Algorithm 
Performance: To comprehensively and objectively validate the 
performance of the trained hollow watchtower semantic 
segmentation model, this study evaluates the model using point 
cloud semantic segmentation metrics. 
 
3D Semantic Segmentation Evaluation Metrics 
Point cloud semantic segmentation models are commonly 
evaluated using the following metrics (definitions provided in 
Table 2): Accuracy, Mean Accuracy, Intersection over Union 
(IoU), Mean IoU, Overall Accuracy (OA), Precision, Mean 
Average Precision (mAP), and Floating Point Operations 
(FLOPs) to measure computational efficiency. Here, N denotes 
the total number of samples, C denotes the number of 
segmentation classes in the dataset, and TP, TN, FP, and FN 
correspond to True Positives, True Negatives, False Positives, 
and False Negatives, respectively—similar to standard metrics 
used in 2D image object detection. 

Evaluation metrics Equations 

accuracy 
 

mAcc 
 

IoU 
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mIoU 
 

OA 
 

Table 2. Common evaluation metrics for point cloud 
segmentation. 

 
To evaluate the accuracy of the point cloud semantic 
segmentation model, this study adopts three commonly used 
metrics: mIoU, mAcc, and OA. 
 
A comparison of the three semantic segmentation algorithms 
trained in Section 2.4.3 shows that PointTransformer achieves 
the best performance across all three metrics (Table 3), 
indicating the highest segmentation accuracy. Therefore, this 
study selects PointTransformer for the segmentation of hollow 
watchtower point clouds. 

Model Name mIoU mAcc OA 
PointNet++ SSG 53.64 68.81 75.88 
PointTransformer 75.01 84.65 91.43 

RepSurf 55.26 69.72 78.27 
Table 3. Performance comparison of semantic segmentation 

algorithms. 
 
However, in the PointTransformer segmentation model, 
although the mIoU is higher than that of the other two models, 
its value is relatively lower compared to mAcc and OA, with 
mIoU reaching only 75.01. This discrepancy is likely due to the 
class imbalance in the point cloud segmentation model 
established in this study, as previously mentioned. The 
segmentation performance for categories with fewer point 
samples is relatively poor. In future work, incorporating point 
cloud class balancing algorithms may help improve the 
accuracy of the semantic segmentation model. 
 
3.1.2 Accuracy of Dimensional Analysis: To evaluate the 
performance of the proposed point cloud dimensional analysis 
algorithm, seven segmented point clouds were selected, and the 
dimensional results obtained using the proposed method were 
compared with those from manual measurements. The average 
errors in the sampled point clouds were 0.09 meters (length), 
0.07 meters (width), and 0.16 meters (height). The length and 
width errors were within 10%, approximately around 0.1 meters. 
These discrepancies may be attributed to misclassifications 
during point cloud segmentation or scattered outliers within the 
model. 
 
The error in height measurements was relatively larger. Given 
that the Great Wall is often surrounded by dense vegetation, the 
number of points at the base of the watchtowers is limited and 
the edges are unclear. This hampers the effectiveness of both 
the semantic segmentation and boundary extraction algorithms 
in accurately identifying the base, leading to greater error in 
vertical dimension estimation. Based on the above analysis, the 
proposed method will primarily be used for statistical analysis 
of the length and width of watchtowers in the subsequent 
sections, while the height results will be referenced for 
supplementary analysis only. 
 
3.2 Dimensional Distribution Characteristics of Hollow 
Watchtowers 

Using the automated dimensional extraction method described 
earlier, the dimensions of hollow watchtowers and their arrow 
windows have been successfully obtained. Based on these 

results, this section applies a component-based approach to 
compare architectural dimensions of the Ming Great Wall 
across different regions, aiming to identify patterns in the 
dimensional distribution. 
 
The hollow watchtowers analyzed in this study are distributed 
across four military jurisdictions of the Ming Dynasty: Jizhen, 
Xuanfuzhen, Zhenbaozhen, and Datongzhen. Given the 
relatively small number of watchtowers in Datongzhen, this 
analysis focuses on the three regions with larger sample sizes: 
Jizhen, Xuanfuzhen, and Zhenbaozhen. During the Ming 
Dynasty, the construction of hollow watchtowers was organized 
within military jurisdictions and overseen by commanders of 
each regional section. As a result, differences in administrative 
jurisdiction may have led to variations in the dimensions of the 
watchtowers. Therefore, this study conducts a dimensional 
variation analysis of hollow watchtowers based on the territorial 
divisions of these three military regions. 
 
Box plots were used to visualize the length and width 
distributions of watchtowers within the three military regions—
Jizhen, Xuanfuzhen, and Zhenbaozhen. As shown in the results 
(Figure 7), both length and width generally follow a normal 
distribution. 
 
In terms of length (Figure 7A): 
Jizhen exhibits a wide data range, with a median of 
approximately 11 meters. The distribution is relatively 
dispersed, with numerous outliers. Xuanfuzhen also has a broad 
range, with a median around 10 meters. Its data are more 
concentrated and contain fewer outliers. Zhenbaozhen shows 
the narrowest range, with a median close to 9 meters. Its 
distribution is the most concentrated and includes few outliers. 
 
In terms of width (Figure 7B): 
Jizhen again shows a wide data range, with a median of about 9 
meters, and a dispersed distribution with many outliers. 
Xuanfuzhen's range is also broad, with a median around 8 
meters. The distribution is relatively concentrated with few 
outliers. Zhenbaozhen has the narrowest range, a median of 
approximately 7 meters, and the most concentrated distribution, 
with few outliers. 

  
A. Length box plot B. Width box plot 

Figure 7. Box plots of length and width of watchtowers in 
Jizhen, Xuanfuzhen, and Zhenbaozhen. 

 
In summary, both length and width are generally larger in 
Jizhen, but exhibit greater variability. Xuanfuzhen follows with 
relatively consistent dimensions. Zhenbaozhen displays the 
smallest and most stable dimensions. The box plot results reveal 
clear distinctions among the three regions. 
 

4. Conclusion 

4.1 Research Findings 

The method proposed in this study—“low-altitude UAV 
photogrammetry & semantic segmentation & automated 
dimensional extraction”—demonstrates significant advantages 
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in efficiency, accuracy, and applicability. It enables the 
automated acquisition of dimensional data for various 
components of a large number of hollow watchtowers, with 
accuracy maintained within an acceptable margin of error. This 
method effectively supports large-scale dimensional analysis of 
cultural heritage and allows for rapid surveying of hollow 
watchtowers located on ridgelines that are difficult to access 
manually. The study not only provides a foundation for 
analyzing the structural origins and historical evolution of 
architectural heritage but also supplies essential baseline data 
for the development of digital archives and restoration strategies. 
 
By applying the automated point cloud–based dimensional 
analysis method developed in this study, the dimensions of 601 
relatively well-preserved hollow watchtowers along the Ming 
Great Wall were successfully estimated. Through in-depth 
analysis, significant differences in the dimensional distribution 
of these watchtowers were identified across three military 
jurisdictions of the Ming Dynasty—Jizhen, Xuanfuzhen, and 
Zhenbaozhen. Combined with geographic and spatial 
autocorrelation analysis, the study suggests that the generally 
shorter lengths (enemy-facing sides) of watchtowers along the 
northern outer edge may be a defensive adaptation to closer 
enemy proximity, aiming to reduce exposure and enhance 
protection. This conclusion fills a gap in previous research 
regarding the lack of large-scale statistical analysis of hollow 
watchtowers and offers a comprehensive perspective on the 
structural variations of the Ming Great Wall, supporting further 
studies on the architectural development of this historical 
defense system. 
 
4.2 Future Research Directions 

Although the automated dimensional analysis method 
established in this study has introduced a Transformer-based 
architecture at the point cloud segmentation stage to enhance 
the model's global structural understanding, the issue of class 
imbalance remains to be addressed to further improve 
segmentation accuracy. Future research may consider updating 
the training dataset or refining the segmentation algorithm 
architecture to enhance both the accuracy and generalization 
ability of heritage point cloud segmentation. This study 
successfully implemented large-scale automated dimensional 
analysis of hollow watchtowers and conducted an initial 
investigation into the factors influencing dimensional variation. 
In future work, multivariate linear regression models could be 
introduced to explore in greater depth the relationships between 
watchtower dimensions and factors such as geographic 
environment and historical context. 
 
While this research primarily focuses on a specific type of 
architectural heritage—the hollow watchtowers of the Ming 
Great Wall—the proposed method demonstrates strong 
generalizability and transferability. It can be extended to other 
types of heritage conservation, such as modern industrial 
heritage with a high degree of standardization, infrastructure 
like bridges and railway facilities, or ancient urban defense 
systems including gates and walls with continuous spatial 
features. These applications could benefit from large-scale 
automated surveying and statistical analysis. Moving forward, 
we will continue to optimize and expand this method to advance 
heritage conservation toward a more intelligent and efficient 
future. 
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