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Abstract

Laser scanning is a key tool for capturing detailed 3D representations of cultural heritage sites, enabling applications in visualization, 
conservation, and analysis. However, the resulting point clouds comprise of visually monotonous surfaces with little intuitive value 
for direct interpretation. Conventional representations—such as collections of surfaces, 3D lines, or boundary-based topological 
models—often lack the expressiveness or adaptability needed to capture semantically rich, human-intuitive features like salient 
architectural regions. These salient regions serve as interpretable medium to understand the scan content but remain difficult to 
extract. Therefore, this paper proposes a framework that learns salient region-aware representations from raw point clouds. Central 
to the proposed approach is a heat-propagation-driven graph network trained with a new spectral supervision signal. To ensure 
scalability, our network operates on local patches and introduces a prediction aggregation scheme that efficiently scales to heritage-
scale scenes with millions of points. Results show superior performance over existing salient region depiction approaches, producing 
high-quality results in under two seconds. It is orders of magnitude faster than state-of-the-art methods, even for large-scale noisy 
terrestrial scans of millions of points.

1. Introduction

Laser scanning has become a ubiquitous and powerful tool for 
the 3D documentation and analysis of cultural heritage sites. 
These scans, typically captured using terrestrial laser scan-
ners, provide highly detailed geometric information. How-
ever, most campaigns apply a uniform point density across 
all regions—resulting in dense, semantically unstructured point 
clouds. While the raw data is valuable, its sheer volume and 
lack of semantic content make interpretation and visualization 
a significant challenge. Thus, a suitable representation from the 
native point form is of great interest for e.g., visual interpreta-
tion, analysis, and planning (Hackel et al., 2016; Wang et al., 
2020; Arav et al., 2022; Zang et al., 2023). A key challenge 
in devising this representation lies in selectively emphasizing 
salient regions, namely important entities of structural com-
plexity that attract attention. In the cultural heritage-related 
realm, these regions are often tightly linked to architectural sig-
nificance and historical c ontext. Current representations often 
fall short of capturing this saliency, where existing methods 
range from detecting valley- and ridge-lines, delineating ob-
ject boundaries by 3D lines, and fitting p lanar s urfaces (Judd 
et al., 2007; Xia and Wang, 2017; Lu et al., 2019; Yu and La-
farge, 2022). While useful, these approaches tend to lack the 
expressiveness or adaptability required to capture semantically 
rich architectural features in a form intuitive to humans.

Early works focusing on salient regions, have largely relied on 
handcrafted geometric traits, e.g., curvature, normal variation, 
or surface intersections (Judd et al., 2007; Hackel et al., 2016). 
These methods typically segmented regions of interest and then 
connected them using such heuristics as shortest paths (Xia and 
Wang, 2017; Lu et al., 2019). As such, they became dependent 
on the normal estimation quality and handcrafted thresholds, 
which are unreliable in the presence of noise and non-uniform 
densities. In more recent years, neural-based architectures 
have emerged to overcome the limitations of heuristic-driven
pipelines. Wang et al. (2020) proposed a mesh-based neural

model that classifies salient points and forms contours, though 
it is constrained to small, watertight meshes. Himeur et al.
(2021) trained a convolutional network using distance-based 
labels to classify both salient and near-salient regions, boost-
ing recall but still relying on handcrafted geometric features. 
Zang et al. (2023) utilized dynamic-graph convolutions to de-
tect salient regions and built dense graphs to infer connectiv-
ity. In a domain-specific setting, Huang et al. (2024) em-
ployed a transformer architecture to jointly detect and con-
nect salient regions in building roof structures. Alternatively, 
Arav et al. (2025) shifted focus toward learning surface an-
omalies—areas difficult to fit during surface reconstruction—as 
indicators of saliency. Despite promising advances, by formu-
lating salient region detection purely as a classification prob-
lem—often without accounting for data noise, existing methods 
tend to produce sub-optimal outputs that require extensive post-
processing. The common disregard for noise leads to numerous 
false responses, introducing irrelevant points that hinder accur-
ate depiction. Furthermore, most architectures have primarily 
been tested on watertight, low-volume datasets, indicating lim-
ited applicability to real-world, large-scale heritage scans.

To address these limitations, we propose in this paper a neural 
framework that aims to improve the data quality and highlight 
regions of interest robustly under noise and varying densities. 
We introduce a new objective in contrast to classification-based 
approaches, which better reflects the underlying geometry when 
detecting salient regions. To achieve faithful representation, we 
focus on generating high confidence-region proposals. To ef-
ficiently handle large-scale data, our approach adopts a divide-
and-conquer strategy: it processes small, overlapping patches 
independently, and then aggregates the results into a coher-
ent global representation. This enables our model to process 
point clouds with millions of points in under two seconds. The 
proposed model shows significant improvement over existing 
learning-based solutions on noisy, challenging heritage scans. 
To the best of our knowledge, this is the first approach that en-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1699-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1699



Figure 1. Overview of our deep contour detection network.

ables direct salient region detection from large, noisy data of
millions of points.

2. Methodology

Our learning formulation is built upon a dynamic graph con-
volutional (DGCNN) encoder-decoder architecture designed to
robustly capture both local geometric cues and global structural
context. Specifically, we employ five layers of densely con-
nected dynamic graph convolutions with skip connections to
effectively model hierarchical point relationships. This is fol-
lowed by a transformer refinement layer that enhances semantic
discrimination across surface regions.

Our encoder learns point representations that are both feature-
aware and robust to varying noise levels. To supervise this rep-
resentation, we employ two parallel MLP heads: i) a denoising
head, which predicts per-point offsets to refine raw input points
toward the underlying clean surface, and ii) a salient region pro-
posal head, which predicts a differentiable distance to feature
(DDF) value per-point (Fig. 1). To make this representation
geometry-aware, we additionally supervise the network to re-
gress a scalar field encoding the normalized distance-to-feature
for each point, forming a smooth approximation to a surface-
aware importance field. This predicted field forms the basis
of a distance-to-feature representation. We stitch overlapping
patch-level predictions into a global proposal for large-scale
scans, enabling coherent extraction of salient structures across
complex surfaces. This modular design—graph-based encod-
ing, saliency-aware surface depiction, and patch-based global
modeling—allows our method to generalize well across both
synthetic and large real-world datasets.

2.1 Network Architecture

Graph Encoder. Our graph encoder is designed to learn rep-
resentations well-suited for DDF regression. To this end, we
adopt a multi-stage architecture with dense blocks and skip con-
nections to ensure rich local aggregation and efficient gradient

flow. Each block convolves a point’s feature fi with its neigh-
bors fj ∈ N i as:

eijm = ReLU
(
θm(fj − fi) + φmfi

)
, (1)

where θm and φm are learnable MLPs at layerm. The resulting
grouped features are processed through dense MLP stacks, and
aggregated as:

xim = max
j∈N i

MLP
(

MLP(eijm)|eijm
)
, (2)

where | denotes concatenation. Dense intra-block connec-
tions and inter-block skip-connections allow deep representa-
tion learning with minimal redundancy, while maintaining a
compact model size (Fig. 1). We add a transformer layer in the
end to refine the features per point and obtain a shape context,
Fi, per point.

Decoder. We learn a scalar DDF D̂ ∈ RN×1 from the learned
shape context Fi through a score-function as detailed in Zhang
and Filin (2024). To further improve robustness under noisy
input, we use the learned features Fi to concurrently predict
per-point offsets O ∈ RN×3 through a lightweight three-layer
MLP.

Salient candidate prediction objective. A naı̈ve approach to
salient structure modeling may rely on direct edge prediction.
However, this strategy often suffers from severe class imbalance
and high sensitivity to prediction noise. Instead, we propose to
learn a DDF field (Fig. 2), where each point predicts its scalar
proximity to the nearest salient feature. This formulation is not
only more stable but also aligns naturally with the continuous
nature of geometric structures. Rather than relying on simple
Euclidean distances (Matveev et al., 2022), we ground our ap-
proach in intrinsic geometry and formulate the DDF prediction
as a distance field regression problem. Inspired by the heat
method and its modeling on non-rigid complex forms (Crane et
al., 2017; Zhang et al., 2023), we leverage the observation that
the gradient of a diffused heat field aligns with the geodesic
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Figure 2. (a) Heat propagation (b) distance to feature D as a smoothing varying scalar field.

paths. Let ∆ be the negative semi-definite Laplace-Beltrami
operator, heat impulse µ0 diffused over a brief time t results in
a smooth field µt given by:

(I− t∆)µt = µ0, (3)

where I is the identity matrix and µ0 is a Dirac delta. The result-
ing vector field X = −∇µt/|∇µt| approximates the direction
of geodesics. We then solve the Poisson equation:

∆D = ∇ · X, (4)

to recover the scalar geodesic distance field D ∈ RN×1, which
serves as our training target for salient proximity. Importantly,
this formulation requires only sparse linear solve, which are ef-
ficient and reusable across instances.

Compatibility of architecture and prediction objective
The convolutional design of architecture is particularly suited
for this objective: graph-based neighborhood aggregation
closely mimics the behavior of Laplacian operators ∆. In this
sense, our network not only captures the local shape context
at each point Fi, but also implicitly aligns with the differential
operators used in the heat method. This synergy between archi-
tecture and objective enables the network to produce distance
fields that are both geometrically coherent and structurally con-
sistent.

2.2 Training Objectives

For the salient candidate prediction, the network is trained to re-
gress a scalar DDF, D̂ ∈ RN×1, which estimates the proximity
of each point to the nearest salient regions. We supervise this
regression with a standard `1 loss with ground truth computed
by the heat method D ∈ RN×1.

LDDF =
1

N

N∑
i=1

∣∣∣D̂i −Di

∣∣∣ , (5)

To further account for the global distribution of predicted dis-
tances, we incorporate a histogram loss (Imani and White,
2018; Matveev et al., 2022), which encourages the model’s out-
put distribution to match a target histogram over a predefined
interval. In our experiments, we found that using 244 bins
yields the best validation performance. Incorporating this loss
significantly improves the quality of the regression by enfor-
cing a better global structure in the predicted field. A dis-

tinctive aspect of our formulation is the use of a bilateral loss
to capture the local surface shape context at each point. This
loss differentiates neighboring points on the same surface and
those on separate ones, thereby preventing undesired interac-
tions during offset prediction. As a result, our network learns an
edge-aware shape context in a straightforward and lightweight
manner through a standard back-propagation (Zhang and Filin,
2024).

2.3 Large-volume data inference

Processing large-scale point clouds poses significant compu-
tational and memory challenges due to their size and dens-
ity. To enable inference on these scans, we employ a hier-
archical spatial partitioning strategy based on a ball-tree struc-
ture (Shtain and Filin, 2020). This allows us to divide the full
scan into a collection of non-overlapping patches of fixed scale.
To prevent salient regions from being split along patch bound-
aries—potentially hindering their detection—we vary the leaf
size of the ball tree. This generates multi-scale overlapping
patches, ensuring that each point appears in multiple contex-
tual neighborhoods. For each patch, our network predicts a per-
point scalar field corresponding to the normalized distance to
salient features. Since a single point may receive multiple pre-
dictions across patches, we aggregate these values to form a
consistent global estimate. Among the aggregation strategies
we evaluated—we found that computing the minimum pre-
dicted value across all appearances of a point yielded the most
accurate value. Hence, the distance-to-feature prediction for a
point p is defined as:

d(p) = min
ds∈Dp

ds, (6)

where Dp denotes the set of all predictions for p from overlap-
ping patches. In this way, we obtain a coherent DDF estimation
that preserves sharp transitions and avoids artifacts introduced
by patch boundaries.

3. Results

3.1 Dataset and Implementation

Training Pipeline. Our training is decomposed into two
stages to handle imperfect noisy input. First, we train the net-
work solely for the purpose of denoising, to learn the robust rep-
resentation of the underlying surface from noisy input. Second,
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Figure 3. Comparison of salient entity detection (left three columns) on noisy scans (Empire dataset) with 1 million points, PCEDNet
results obtained from the supplementary materials at Himeur et al. (2021).

Dataset Metric Bilateral Jet-denoising MRPCA GLR Score-denoise PCDNF Ours

PU CD (×104) 6.304 5.788 5.775 3.839 3.089 4.257 2.481
P2M (×104) 4.73 4.267 4.081 2.707 2.026 3.108 1.525

PC CD (×104) 6.077 5.787 5.57 4.488 3.556 5.126 3.002
P2M (×104) 2.189 2.144 1.976 1.439 1.546 1.879 1.352

Table 1. Comparison with state-of-the-art methods (see text for references); CD and P2M are scaled by 104.

the network weights are transferred to fine-tune the model to
predict salient candidates on CAD data.

Denoising. For quantitative evaluation, we use two bench-
mark test datasets: the PU-Net (PU, twenty models, Yu et al.,
2018) and PointCleanNet (PC, ten models, Rakotosaona et al.,
2020). We use the PU training set of twenty shapes, and follow-
ing Yu et al. (2018), apply Poisson disk sampling to generate
point clouds with resolutions ranging from 10K to 50K points.
As is customary (e.g., Luo and Hu, 2021; Liu et al., 2023), the
point clouds are partitioned into patches of 1K points before be-
ing fed to the model. During training, we add Gaussian noise
with standard deviations (std.) between 0.5% and 2% of the
shape’s bounding box dimension. At test time, unseen noise
levels in the range of 1% − 3% are used to evaluate denoising
performance and generalization ability.

Salient Candidate Prediction For the second stage, we train
on the ABC dataset (Koch et al., 2019), which consists of one
million CAD models. Similarly to Matveev et al. (2022), we use
the first data chunk for all our experiments, as it provides suffi-
cient diversity and complexity. We compare our method against

two baselines on the ABC dataset to quantitatively assess salient
region detection quality, namely, PIE-Net (Wang et al., 2020)
and DEF (Matveev et al., 2022). However, they are inapplicable
to large-scale scans, as their optimization processes fail to con-
verge on such inputs due to memory and runtime constraints.
Instead, for large scans, we compare our approach with feature
detection models, PCPNet (Guerrero et al., 2018) and PCEDNet
(Himeur et al., 2021), as they managed to converge. Specific-
ally, we test on Lans and Empire datasets offered by Himeur et
al. (2021), each containing millions of points and are character-
ized by complex transitions and rich architectural features, of-
fering diverse geometric variations and structural details (Fig. 3
and 4).

Metrics. We assess denoising using Chamfer Distance (CD)
and point-to-mesh distance (P2M), with all point clouds nor-
malized to the unit sphere for consistency. For salient region
detection, we additionally compute CD and Hausdorff Dis-
tance (HD) against ground-truth features sampled from human-
annotated curves. These metrics capture both average and
worst-case geometric deviations, providing a comprehensive
evaluation of feature detection accuracy.
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Figure 4. Comparison of salient entities detection on Lans dataset of 1.5 million points.

3.2 Model Analysis

Noise level. The performance of our denoising model con-
sistently outperforms both DL and algorithmic state-of-the-art
baselines, at different noise range from 1− 3% (whereas train-
ing was conducted on 0.5−2%) demonstrating robustness even
at the unseen noise levels of 3% (Table 1). On the PU dataset,
our method achieves CD/P2M scores of 2.481/1.525, repres-
enting improvements of 19.7%/24.7% over the Score-denoise
(3.089/2.026) and 41.7%/50.9% improvement over PCDNF
(4.257/3.108), respectively. Comparable performance gains
were also observed on the PC dataset, further validating the ef-
fectiveness of our approach.

Quality of salient region detection We evaluate our detec-
ted salient regions against baseline methods on a set of 68 rep-
resentative shapes from the ABC dataset. As the official DEF
implementation is not publicly available, we rely on the DEF in-
put data and use the salient point samples shared by the authors.
For quantitative comparisons, we report the results of PIE-Net
and DEF as presented in the original DEF paper (Table 2). As
shown in Table (2), our method consistently outperforms both
DEF and PIE-Net. Notably, the Chamfer and Hausdorff dis-
tance errors of PIE-Net are largely due to missed or misclassi-
fied keypoints—highlighting its limited ability to capture crit-
ical geometric features.

PIE-NET Wang et al. (2020) DEF Matveev et al. (2022) Ours(643)
CD↓ 0.97 0.04 0.01
HD↓ 2.19 0.55 0.192

Table 2. Quantitative comparisons on parametric curve
extraction.

3.3 Salient Region Detection on Large TLS Scans

To evaluate the proposed model on large-scale real-world ter-
restrial laser scans, we performed analysis on the dataset intro-
duced in Himeur et al. (2021). Fig. (3) shows the results on the
”Empire” scene, which consists of over one million points and
exhibits substantial noise across large surface areas. PCPNet
(Guerrero et al., 2018) demonstrates moderate noise rejection
but fails to localize salient geometric features, instead produ-
cing scattered predictions. PCEDNet (Himeur et al., 2021), on
the other hand, struggles to separate noise from structure and

Table 3. Inference time comparison on large-scale TLS scans.
Our method significantly outperforms prior work in runtime

while achieving higher saliency quality.

Method Empire (1M pts) Lans (1.5M pts)
PCEDNet (Himeur et al., 2021) 14.3 min 21.6 min
Ours 2.0 sec 3.1 sec

generates visually noisy and inconsistent saliency outputs. In
contrast, our method produces sharp and spatially coherent sa-
lient region predictions, with significantly fewer false positives.
This improvement is attributed to our noise-aware feature learn-
ing strategy and the robustness of our distance-to-feature field
representation.

In Fig. (4), we apply our method to ”Lans” dataset of a clas-
sical architectural church complex with over 1.5 million points.
While PCEDNet captures coarse saliency, often producing
near-salient predictions near windows and edges, it lacks pre-
cise localization. In contrast, our method offers more detailed
and structurally aligned saliency maps and transitions around
windows, columns, and façade structures. This demonstrates
the efficacy of our DDF-based representation in encoding geo-
metric importance with high fidelity in the presence of real-
world noise and structural complexity. In visualizations, red
indicates salient regions, yellow indicates near-salient regions,
and gray represents background points.

Our approach is orders of magnitude faster than prior work, ow-
ing to its architectural design that is inherently optimized for
large-scale inference. As listed in Table 3, PCEDNet (Himeur
et al., 2021) requires over 14.3 minutes for the Empire scan
and 21.6 minutes for the Lans scan, both of which are dense
terrestrial point clouds. In contrast, our method completes in-
ference in just 2 and 3.1 seconds, respectively. This dramatic
speedup stems from our patch-based prediction framework and
minimal post-processing, making our approach highly scalable.

4. Conclusions

Neural approaches to heritage interpretation offer promising
solutions for enhancing visualization, analysis, and conserva-
tion efforts. In this paper, we presented a novel learning-based
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salient region representation robust to noise, effectively high-
lighting content that attracts human attention and reflects ar-
chitectural complexity. By introducing a Laplacian-aware ar-
chitecture and our distance-to-feature field formulation, our
network learned to assign geometry-aware importance values
per point, enabling the retrieval of high-confidence salient re-
gion candidates. To handle large-scale scans, we adopted a
divide-and-conquer strategy, partitioning the data using a novel
hierarchical structure and aggregating predicted salient points.
This approach produced highly descriptive predictions even for
noisy scans with millions of points. Our results demonstrated
significant improvements over state-of-the-art methods.
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