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Abstract

Murals constitute an invaluable component of cultural heritage, encapsulating profound artistic and historical significance.
Hyperspectral remote sensing, as a non-destructive testing technique, offers an effective means for analysing and identifying mural
pigments. We proposed a spectral unmixing method based on the negative logarithm of spectral reflectance, aimed at improving the
accuracy of quantitative analysis for composite pigments in murals. We obtained three sets of mixed spectra: cinnabar-orpiment,
azurite-orpiment, and azurite-malachite. The original reflectance was converted into negative logarithmic values, and linear models
were applied for unmixing. Supervised unmixing was conducted in the experiment to evaluate the model’s precision, with the
unmixing process carried out using known endmembers. The unmixing accuracy was quantified using the Root Mean Square Error,
which compares the estimated abundances of all endmembers with actual values. Additionally, a comparison was made between the
negative logarithmic transformation and the commonly used transformations of original reflectance, first derivative, and second
derivative. The result show that the logarithmic hyperspace linear model simplifies spectral unmixing complexity, enhancing the
accuracy of linear unmixing models in addressing mixed pigment unmixing problems. To validate the effectiveness of the proposed
method for real murals, the improved model was applied to the hyperspectral data unmixing analysis of murals collected by the
Yungang Academy, located in Shanxi Province, China. Experimental findings demonstrate that, compared to traditional methods, the
improved unmixing approach more precisely represents the pigment distribution in the murals. This study offers new ideas and
methods for the digital preservation and restoration of mural composite pigments.

1. Introduction

Ancient murals are invaluable cultural relics that reflect the
social life and culture of their time, possessing significant
artistic value. The pigment layers of these murals not only
contain rich historical and cultural information but also serve
as key evidence for studying ancient artistic techniques and
social development. However, due to environmental erosion
and natural aging, mural pigments commonly suffer from
degradation phenomena such as fading and peeling. This
makes the need for precise analysis and scientific
preservation using modern technological methods
particularly urgent. In recent years, pigment identification
and unmixing techniques for murals have become a research
hotspot in the field of cultural heritage conservation.
Extensive research employed micro-Raman spectroscopy and
SEM-EDS analysis to identify an unusual yellow pigment in
the Tang Dynasty tomb murals (Liu, 2023). Extensive study
employed multi-analytical characterization to identify
synthetic ultramarine and emerald green pigments in Ming
Dynasty North Mosque murals (Dong, 2023). The 1795
Athonite murals in Bulgaria's Rila Monastery using OM,
ATR-FTIR, SEM-EDS, and ELISA, identifying traditional
pigments with egg tempera binders, except for carbohydrate-
bound smalt in blue backgrounds, establishing this work as a
technical reference for later Balkan iconography
(Stamboliyska, 2024). characterized Rafael Coronel's 20th
century mural Paisaje Abstracto using OM, SEM-EDS, NMR,
ATR-FTIR and GC/MS, identifying an unconventional poly
methyl methacrylate painting medium containing cadmium
sulfide and titanium dioxide pigments, along with
polymerization additives, revealing the technical origins of its
severe aging-induced fractures (Aguilar-Rodríguez, 2023).
The study of mural pigments is currently a major research

hotspot. To enrich the colors of murals, ancient painters often
mixed multiple pigments to create new colors. Determining
the proportion of pure pigments in the mixed pigments is
crucial for better mural restoration, making pigment
unmixing essential. Hyperspectral technology, with its non-
invasive, rapid, and efficient advantages, enables
comprehensive analysis of large mural areas, making it an
ideal choice for cultural heritage conservation.

A single pixel in the hyperspectral image may be described as
a mixture of the spectruma of the pure pigments present in
this pixel. The pure pigment spectra are regarded as
endmember spectra and the proportion of the pure pigment is
regarded as its abundance. The unmixing process is based
upon mixing models that describe the physical processes that
occur when different pigments are mixed. They can be
classified as linear or non-linear. In linear models, the mixed
spectrum is obtained from a linear combination of
endmember weighted by the concentrations. It is commonly
used in remote sensing and is assumed as an acceptable
approximation in many real scenarios (Stagakis, 2016). Its
assets are physical interpretability, computational tractability,
and ease of implementation (Zhang, 2022). It has been used
in the field of cultural heritage with promising results. For
instance, Some rearch employed fully constrained least
squares (FCLS) for the pigment mapping of The Scream
(1893) painting, under the assumption that the endmembers
were known(Deborah, 2014). This approach can recognize
the mixture of some percentage of different pigments. The
experiment used azurite and malachite as examples to
perform spectral unmixing of mixed spectra using the FCLS
method, exploring the spectral mixing model of these two
mineral pigments (Zhao, 2018). We found that by applying
mathematical transformations to the original reflectance, the
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spectral linear characteristics can be enhanced. performed
high-precision non-destructive detection of mural salts by
applying the reciprocal logarithmic transformation to the
original reflectance data combined with the random forest
model (Guo, 2023). The research established a hyperspectral
conductivity feature inversion model for murals by
integrating fractional-order derivative transformation of the
original reflectance with the least squares model, providing
an effective technical method for monitoring murals and
other precious cultural heritage (Ren, 2024). Therefore, this
paper will focus on the practical application of composite
pigment unmixing by applying a negative logarithmic
transformation to the original spectral reflectance combined
with a linear unmixing model.

This paper employs laboratory experiments to investigate
methods for determining mixed pigment proportions on
mural surfaces, with the aim of providing a non-destructive
and more efficient analytical approach for mixed pigments,
thereby establishing a more scientific basis for mural pigment
restoration. Mixed pigment samples were prepared in the
laboratory and corresponding spectral data were collected.
The original reflectance was processed using first-order
derivative (FOD), second-order derivative (SOD), and
negative logarithmic (NL) transformation, combined with the
FCLS model for unmixing. Model accuracy was evaluated
using Root Mean Square Error (RMSE), and the highest-
accuracy model was applied to a mural, created in Qing
Dynasty (1636-1912 AD) to evaluate its unmixing
performance.

2. Materials and Acquisitions

2.1 Materials Preparation

Through repeated practice over extended periods, pigment
usage had gradually developed established conventions and
painting techniques. After meticulous investigation and
comparison, we selected azurite, malachite, cinnabar, and
orpiment as study objects, which are the most commonly
used mineral pigments in traditional Chinese paintings, as
shown in Figure 1. They represent the quintessential
pigments for blue, green, red, and yellow hues, respectively
(Lyu, 2021). Three groups of mixed pigment samples were
prepared by combining cinnabar and orpiment, azurite and
orpiment, as well as azurite and malachite in seven distinct
mass ratios in Figure 2. In order to guarantee the quality of
the pigments, samples for the blending study were prepared
using powdered minerals sourced from JiangSixutang, a
prestigious traditional pigment manufacturer with a history
spanning three centuries. As mineral pigment powder cannot
be directly applied to substrates, traditional painting employs
various binder materials including animal proteins,
polysaccharides, or lipids (Zhang, 2019). In this experiment,
gelatin produced by JiangSixutang was used as the binder,
which closely resembles traditional animal protein-based
binders used historically.

Azurite Malachite

Cinnabar Orpiment
Figure 1. Four pure pigment samples.
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Figure 2. Mixed pigments samples.

2.2 Data Acquisition

In this study,the reflectance spectra of the samples were
collected using an ASD-FieldSpec4HI-RES spectrometer.
The specific parameters of this instrument are shown in Table
1. The data collection was carried out in a darkroom, with a
halogen lamp as the only light source.

Name Parameters
Spectral range 350-2500nm
Spectral width 2.5nm

Spectral
resolution

3nm @ 700nm
8nm @ 1400/2100 nm

Number of bands 2151
Size 12.7x35.6x29.2 cm

Weight 5.44 kg
Table 1. Specifications of ASD-Field Spec 4 portable

spectroradiometer.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1705-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1706



The instrument used to capture the hyperspectral image of the
mural sample was a Themis Vision Systems VNIR400H .The
data collection also was carried out in a darkroom, with a
halogen lamp as the only light source. The main
specifications of this instrument are shown in Table 2.

Name Parameters
Spectral 400-1000nm

Number of bands 1040
Spectral width 0.6nm

Spectral resolution 2.6nm
Weight 1.85kg
Table 2. Specifications of hyperspectral imaging

spectroradiometer parameters.

The original hyperspectral data are always influenced by the
change in environmental parameters and dark current noises.
Therefore, it is necessary to using Equation (1):

99%raw dark

white dark

R RR
R R


 

 (1)

Where R is the calibrated data, Rraw is the collected original
hyperspectral data, Rwhite is the standard white board data, and
Rdark is the dark current noise data.

3. Methods

The overall process of the research on the hyperspectral-
based unmixing model of composite pigments on mural
surfaces is shown in the Figure 3.The entire process includes
sample preparation, data acquisition, data preprocessing,
spectral transformation, the unmixing process using the
proposed method, accuracy evaluation, and finally,
experimental validation using Qing Dynasty murals.

Figure 3. The overall process of the study.

3.1 Fully Constrained Least Squares Unmixing

The linear mixture model (LMM) is a relatively simple and
representative model that does not account for the effects of
multiple radiation scattering between different surface
materials. While this simplicity makes the model easier to
understand and apply, it also restricts its applicability in
complex surface conditions.

In the linear mixture model, the reflectance of a mixed pixel
at a specific wavelength is a linear combination of the
reflectance of its endmember components. The LMM
formula is expressed in Equation (2):

1
ˆn

i i ii
y a a y    


      (2)

The linear mixture model combined with the FCLS method
can estimate the abundance of each endmember. The
endmember abundances can be solved using the following
optimization equations, as shown in Equations (3) and (4).
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2
ˆargmin y y   (3)

1
. . 0, 1n

i ii
s t a a


  (4)

In the equations, 1my R  denotes the measured spectral
vector of the mixed pigment, 1ˆ my R  represents the
estimated mixed spectral vector based on the mixing model.
m represents the number of bands, n represents the number of
endmembers, ρ is the reflectance of the endmembers, a is the
abundance vector of the endmembers, ε is the error term. To
reflect real conditions, the abundance vector a typically
adheres to two constraints in unmixing algorithms: the non-
negativity constraint 0ia  and the sum-to-one constraint

1
1n

ii
a


 .

3.2 Log-Reflectance Hyperspace Linear Unmixing
Algorithm

The logarithmic hyperspace linear model simplifies spectral
unmixing complexity, enhancing linear unmixing models
accuracy in addressing mixed pigment unmixing problems.
(Grillini, 2021) explored various mixing models, testing
additive and subtractive models of linear image processing,
and found that the subtractive model outperformed other
models. (Valero, 2023) proposed the simplest method to
transform the subtractive model into an additive model by
taking the negative logarithm of spectral reflectance data,
improving the FCLS method based on this approach.

In the mixing model, the mixed reflectance ρ is a
combination of the reflectance ρi of the individual
endmembers. For the subtractive mixing model, the mixed
reflectance is calculated as the product of the reflectance of
the individual endmembers, as shown in Equation (5):

1
i

N a
ii

 


 (5)

ρi represents the reflectance of the i endmember, ai is the
abundance weight of the endmember and

1
1n

ii
a


 .

Transforming it into logarithmic space involves taking the
negative logarithm of the mixed reflectance ρ, as shown in
Equation (6):

1
log( ) log( )iN a

ii
 


    (6)

According to the properties of logarithms, the logarithm of a
product equals the sum of the logarithms. Through this
transformation, the original multiplicative form becomes a
linear additive form, as shown in Equation (7), allowing the
mixing model in logarithmic space to be treated as a linear
model:

1

N
i ii
a 


 (7)

-log(ρ) is the mixed reflectance in logarithmic space, -log(ρi)
is the reflectance of i endmember in logarithmic space.
Applying the negative logarithm to the spectral reflectance
data transforms the subtractive mixing model into an additive
model, thereby enhancing the linear characteristics of the
spectral curve. The linear mixing model employed in
logarithmic space simplifies spectral unmixing, reduces

computational complexity, and improves the unmixing
accuracy of the linear model.

3.3 Accuracy Evaluation

The endmembers utilized in this study include azurite,
malachite, cinnabar, and orpiment. These pigments were
selected due to their frequent use in ancient murals and
distinct spectral characteristics. These endmembers were
selected based on their representativeness in spectral
unmixing, ensuring a comprehensive analysis of different
spectral line shapes. The unmixing accuracy is quantified
using the Root Mean Square Error (RMSE), which compares
the estimated abundances of all endmembers with their actual
values. The RMSE is expressed in Equation (8):

2
1

1 ˆ( )N
i ii

RMSE a a
N 

  (8)

N is the number of combinations in pigment mixtures made
from the same pigments, ai is the actual abundance of the
endmembers in the i mixture, ˆia is the endmember
abundance of the i mixture obtained through the unmixing
algorithm, The smaller the RMSE, the smaller the error in the
abundance inversion and the higher the unmixing accuracy.

4. Result and Analysis

4.1 Unmixing Results

We applied FOD, SOD, and NL transformations to the three
sets of mixed pigment spectral data collected, as shown in
Figure 4-6. Subsequently, FCLS unmixing was performed,
and the results are shown in Table 3-5.

Figure 4. Cinnabar and Orpiment Spectral Transformation：
(a) original mixed pigment spectral curves; (b) FOD
transformation；(c) SOD transformation；(d) NL

transformation.

(a) (b)

(c) (d)
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(a) (b)

(c) (d)
Figure 5. Azurite and Orpiment Spectral Transformation：(a)

original mixed pigment spectral curves; (b) FOD
transformation；(c) SOD transformation；(d) NL

transformation.

(a) (b)

(c) (d)
Figure 6. Azurite and Malachite Spectral Transformation：(a)

original mixed pigment spectral curves; (b) FOD
transformation；(c) SOD transformation；(d) NL

transformation

Abundance
Measured

Cinnabar 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RMSEOrpiment 0.8 0.7 0.6 0.5 0.4 0.3 0.2

FCLS Cinnabar 0.1306 0.1841 0.0171 0.0000 0.0535 0.0923 0.4827 0.4112Orpiment 0.8694 0.8159 0.9829 1.0000 0.9465 0.9077 0.5173

FOD-FCLS Cinnabar 0.4220 0.2949 0.4819 0.5797 0.6261 0.7000 0.8608 0.0976Orpiment 0.5780 0.7051 0.5181 0.4203 0.3739 0.3000 0.1392

SOD-FCLS Cinnabar 0.2610 0.4905 0.6728 1.0000 0.9999 1.0000 0.7192 0.2978Orpiment 0.7390 0.5095 0.3272 0.0000 0.0001 0.0000 0.2808

NL-FCLS Cinnabar 0.1269 0.1151 0.0625 0.0972 0.8692 0.7886 0.5711 0.2531
Orpiment 0.8730 0.8849 0.9373 0.9026 0.1306 0.2112 0.4287

Table 3. Unmixing Accuracy for the Cinnabar and Orpiment.

Abundance
Measured

Azurite 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RMSEOrpiment 0.8 0.7 0.6 0.5 0.4 0.3 0.2

FCLS Azurite 0.0708 0.1556 0.2550 0.3838 0.4262 0.5459 0.6491 0.1458Orpiment 0.9292 0.8444 0.7450 0.6162 0.5738 0.4541 0.3509

FOD-FCLS Azurite 0.2295 0.5901 0.4840 0.3723 0.3600 0.3226 0.6314 0.2194Orpiment 0.7705 0.4099 0.5160 0.6277 0.6400 0.6774 0.3686

SOD-FCLS Azurite 0.4596 0.2202 0.3062 0.4319 0.3766 0.4320 0.8044 0.1832Orpiment 0.5403 0.7798 0.6938 0.5681 0.6234 0.5680 0. 1956

NL-FCLS Azurite 0.5391 0.1724 0.2569 0.3561 0.6165 0.5809 0.8651 0.1369Orpiment 0.4608 0.8274 0.7429 0.6438 0.3835 0.4149 0.1347
Table 4. Unmixing Accuracy for the Azurite and Orpiment.

Abundance
Measured

Azurite 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RMSEMalachite 0.8 0.7 0.6 0.5 0.4 0.3 0.2

FCLS Azurite 0.3777 0.3199 0.5191 0.5455 0.6294 0.7554 0.9815 0.1103Malachite 0.6223 0.6801 0.4809 0.4545 0.3706 0.2446 0.0185

FOD-FCLS Azurite 0.3881 0.4025 0.5296 0.6160 0.6691 0.7589 0.8733 0.1132Malachite 0.6119 0.5975 0.4704 0.3840 0.3309 0.2411 0.1267

SOD-FCLS Azurite 0.2600 0.2815 0.3022 0.3560 0.4697 0.4505 0.4422 0.1857Malachite 0.7400 0.7185 0.6977 0.6439 0.5303 0.5495 0.5578

NL-FCLS Azurite 0.3505 0.3621 0.4587 0.5005 0.6218 0.7126 0.8023 0.0650Malachite 0.6495 0.6377 0.5413 0.4995 0.3778 0.2870 0.1996
Table 5. Unmixing Accuracy for the Azurite and Malachite.

From the abundance inversion results in Table 3-5, we can
observe that the four algorithms performed differently on the
different mixed pigments. The first-order derivative, second-

order derivative, and negative logarithmic transformations of
the original reflectance have different effects on the unmixing
results. For the mixtures of Azurite and Orpiment, as well as
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Azurite and Malachite, we found that the RMSE value was
smallest and the unmixing accuracy was highest after the
negative logarithmic transformation. Moreover, at certain
specific mixing ratios, excellent unmixing results were
obtained. Additionally, we observed that the unmixing
accuracy for these two pigment mixtures was worse after
applying derivative transformations compared to using the
original reflectance. Interestingly, for the mixture of
Cinnabar and Orpiment, the RMSE value was lowest and the
unmixing accuracy was highest after applying the first-order
derivative transformation, with excellent unmixing results for
most ratios, and even complete unmixing accuracy at the
0.7:0.3 ratio. Furthermore, the RMSE for the NL-FCLS
model was nearly half of that for the FCLS model,
demonstrating good unmixing performance. Based on the
three experiments, we conclude that the NL-FCLS model can
be considered the preferred model for pigment unmixing, and
the first-order derivative transformation is an effective
method to improve unmixing accuracy, depending on the
specific case.

4.2 Qing Dynasty Murals Application Result

We chose the hyperspectral image collected in Yungang
Academy, Datong City, Shanxi Province, China as the
verification data for real artefacts, as shown in Figure 7. We
used the NL-FCLS model, which has been validated for its
effectiveness in practical applications, to unmix the pigments
of the mural paintings. The abundance map of pigment
unmixing is shown in Figure 8. The experimental results
demonstrate that the NL-FCLS model models accurately
reflect the abundance distribution of pigments in cultural
heritage relics.

Figure 7. Qing dynasty murals.

(a) Endmember 1 (b) Endmember 2

(c) Endmember 3 (d) Endmember 4

(e) Endmember 5 (f) Endmember 6

(g) Endmember 7 (h) Endmember 8
Figure 8. Abundance maps of NL-FCLS.

5. Conclusions

In this study, we performed various mathematical
transformations on the original reflectance data and
combined them with the FCLS method for unmixing analysis.
It was found that the negative logarithmic transformation
effectively enhanced the linear characteristics of the original
spectra. We believe that the mixing effects of different
components in the original spectral curves may introduce
non-linear relationships, and the negative logarithmic
transformation significantly improves this non-linearity,
making the data better aligned with the linear model
assumption. Notably, for the mixed pigment systems of
Azurite and Malachite, as well as Azurite and Orpiment, the
accuracy of the FCLS linear unmixing model was
significantly improved after applying the negative
logarithmic transformation. Moreover, in the analysis of
Cinnabar and Orpiment mixed pigments, the first-order
derivative transformation led to a breakthrough improvement
in unmixing accuracy. Through in-depth analysis of the
spectral features, we found that the first-order derivative
transformation significantly enhanced the spectral sensitivity
to wavelength variations, particularly in regions with notable
spectral gradient changes. This enhancement allowed the
FCLS method to more accurately identify and separate the
characteristic signals of different components, greatly
improving unmixing performance. To validate the
practicality of the method, we successfully applied the
Nonlinear Transformation combined with FCLS (NL-FCLS)
model to pigment analysis of Qing Dynasty murals in the
Yungang Academy, Shanxi, and achieved satisfactory results.

In the future, we will further explore the non-linear mixing
mechanisms of mixed pigments and seek more suitable
algorithms for pigment unmixing by combining the spectral
profile characteristics of different mixed pigments.
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