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Abstract

Cultural heritage documents contain rich historical, social, and spatial information, yet their unstructured nature presents significant

challenges for effective integration with Geographic Information Systems .

This paper proposes an innovative framework that

leverages the deep semantic understanding and contextual reasoning capabilities of Large Language Models to achieve intelligent
parsing of cultural heritage documents, context-aware information extraction, and precise fusion with GIS spatial data. By
constructing a spatiotemporal knowledge graph, designing context-aware information extraction strategies based on prompt
engineering, and developing a dynamic LLM-GIS interaction interface, this framework significantly enhances the depth and
precision of spatial representation for cultural heritage. Experimental results demonstrate the system's superior performance in
historical toponym disambiguation, spatial relationship reconstruction, and multi-dimensional cultural landscape visualization,
providing robust spatiotemporal intelligence capabilities to support cultural heritage research, preservation, and public dissemination.

1. Introduction

With the rapid growth of globalized information technology,
cultural heritage preservation faces unprecedented challenges
and opportunities. Cultural heritages, as vital parts of
humanity's collective memory and spiritual wealth, hold
profound cultural and societal values. Yet, traditional
conservation methods struggle to meet modern societal
demands, with heritage loss and deterioration persisting.
Recently, emerging technologies like DeepSeek and ChatGPT
— large language models (LLMs) — have transformed the
field with their advanced data processing, efficient information
extraction, and knowledge integration capabilities, providing
innovative solutions for heritage preservation. Researchers
globally are exploring interdisciplinary LLM applications,
focusing on advanced analysis and systematic management of
heritage data.

Key advancements include Zhang et al's multimodal
framework integrating 3DGS with MLLMs, automating digital
twin model construction for ancient architecture via text-image
fusion, enabling semantic labeling and interactive querying
(Zhang et al., 2024). ArchGPT generates restoration
recommendations through LLM-generated content, enhanced
by expert knowledge for smarter preservation planning (Zhang
et al.,, 2024). Liang Xu's hybrid architecture combines text
embedding, vector retrieval, and generative techniques to
overcome traditional knowledge graph limitations in dynamic
updates and multimodal semantic understanding (Xu et al.,
2023).This study addresses the heterogeneity and complexity of
heritage data using LLM and GNN technologies but faces two
main challenges: (1) the need for innovative strategies to
process vast unstructured historical documents. (2) the reliance
on expert experience for heritage risk prediction and planning,
lacking automated decision-making support from dynamic
knowledge systems.

This research focuses on addressing the semantic disconnection
between unstructured textual data and spatial information to
enhance the intelligence level of cultural heritage preservation.
Specifically, the challenges primarily manifest in two critical
aspects:

1.Data Heterogeneity and Complexity: Cultural heritage
documentation originates from diverse sources, with
unstructured texts exhibiting not only varied formats but also
highly complex and ambiguous content representations. The
interdisciplinary nature of heritage data further complicates
systematic analysis due to inherent inconsistencies in
terminologies, ontologies, and data schemas across different
domains.

2.Semantic Understanding and Integration Difficulties: While
advances in NLP have enabled partial extraction of spatial
semantics from unstructured texts, effectively linking these
extracted entities with GIS-based spatial datasets remains a
significant challenge. The integration requires overcoming
obstacles such as heterogeneous spatial reference systems,
scale variations between textual descriptions and spatial data,
and the lack of automated mechanisms for cross-modal
semantic alignment - all of which critically impact the accuracy
of heritage risk assessment and preservation planning.

2. Methods

2.1 LLM-Based Multimodal Semantic Parsing Framework

Figure 1. Cross-modal Semantic-Spatial Association Decision-
making Process.
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Upon receiving a hybrid query request from users, the system
utilizes an LLM-based multimodal semantic parsing framework
to decompose the input into structured semantic triples and
spatial retrieval requests. After validating the request as a novel
demand(including null-value checks), heterogeneous data are
routed to the fusion engine. This engine collaborates with GIS
modules to acquire spatial features and a graph library builder
to extract semantic relationships, thereby constructing a cross-
modal association graph. Subsequently, a graph alignment
request triggers spatial-semantic calibration, ultimately
generating a visualized decision solution comprising interactive
maps and analytical reports for the user.

2.2 Spatial-Semantic Integration Framework for Cultural
Heritage

This chapter first employs a pre-trained large model (Qwen2.5-
72B) to parse deep semantic features from cultural heritage
texts. Through domain adaptation techniques (e.g., CIDOC-
CRM ontology mapping), textual entities are aligned with GIS
spatial attributes. Dynamic association between textual features
and spatial elements is achieved via self-attention mechanisms,
thereby resolving semantic ambiguities. Subsequently, cross-
modal knowledge graph construction is performed, enabling
multi-source data fusion and conflict resolution.

2.2.1 Deep Semantic Parsing Module

The semantic framework of this study operates in three
stages:Semantic Parsing Layer: The Qwen2.5-72B model
extracts entities, events, and spatiotemporal descriptions from
text.Spatial Mapping Layer: Domain adaptation techniques
align semantic features with GIS attribute fields (e.g.,
gazetteers, coordinate systems).Dynamic Association Layer: A
self-attention mechanism computes correlation weights
between textual entities and spatial elements.

Subsequently, the Deep Semantic Text Parsing Module
employs incremental training on cultural heritage corpora
(historical texts, local chronicles) to optimize the pre-trained
model. This enhances recognition of historical toponyms and
architectural terminology. In-context learning resolves
polysemy issues (e.g., 'Bell Tower' as architectural structure vs.
place name). Semantic Role Labeling (SRL) adopts the BIO
tagging scheme to identify spatial relational predicates (e.g.,
'located at', 'adjacent to'), constructing {Subject-Predicate-
Location) triples.Tables 3 and 4 provide critical processing
stages and exemplary outputs within the semantic processing
pipeline.
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Figure 3. Applied Contextual Fusion Mechanism
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Figure 4. Output Demonstration of the Semantic Parsing
Module

2.2.1.1 Domain Adaptation Mechanism

The domain adaptation mechanism, as a core technology in
digital cultural heritage preservation, innovatively constructs
semantic bridges between unstructured texts and geospatial
information. This mechanism employs a dual-stage fusion
architecture: First, it constructs a cultural heritage ontology
knowledge repository based on the international CIDOC-CRM
standard, converting ambiguous historical descriptions into
precise spatiotemporal entity concepts through deep semantic
parsing. Taking Xi'an's Dayan Pagoda as an example, when the
system identifies ancient records such as "Cien Temple's seven-
story pagoda," it automatically maps to the standardized
ontological category E25 Man-Made Tower, simultaneously
associating attributes including the Tang Dynasty construction
era (652 AD), religious affiliation (Buddhist reliquary), and
spatial hierarchy (component of the Cien Temple architectural
complex).

Subsequently, an intelligent spatial projection engine is
designed to dynamically transform semantic features generated
by language models into geographic coordinates. For the Dayan
Pagoda's positioning requirements, this engine not only
generates baseline coordinates (34.244° N, 108.959° E) based
on modern surveying data but also innovatively integrates a
historical-geographic knowledge repository—by aligning Qing-
dynasty maps (e.g., Shaanxi General Chronicle) with
contemporary satellite imagery, it automatically corrects a 12-
meter northeast deviation caused by reference system
discrepancies across eras. This adaptive mapping mechanism
addresses three core challenges in cultural heritage preservation:
terminological ambiguity (e.g., "Yan Pagoda" exclusively
denoted Buddhist pagodas in the Tang Dynasty but now refers
to general landmarks), spatiotemporal evolution (e.g., boundary
changes of the Cien Temple complex altering positional
attribution), and contextual discontinuity (e.g., gaps between
historical documentation and physical site positioning).
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Figure 5. Technical Implementation Workflow of the Spatial-
Semantic Domain Adaptation Mechanism
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In this study, the self-attention mechanism resolves semantic
fragmentation by dynamically associating unstructured text
with GIS spatial elements. Its core workflow comprises two
components: (1) triple definition based on Transformer
architecture—consisting of Query (text entities: semantic
features from historical texts, e.g., 'seven-story Buddhist
pagoda at Ci'en Temple'); Key (GIS features: spatial attributes
like coordinates, elevation, and era of Giant Wild Goose
Pagoda); Value (association context: semantic-spatial fused
features such as spatiotemporal properties of 'Tang Buddhist
pagoda'); and (2) attention scoring formulation.The spatial-
textual association process is formulated as:
QK™

Attention(Q,K,V) = soft max (E) %4 0))

Q = Text entity embedding vector (dimensiond},)

K/ V = GIS feature embedding vector (dimensiondy,)

2.2.1.2 Domain-Specific Refinement Strategies

This part proposes a dual optimization mechanism combining
spatial constraint injection and feedback fine-tuning: The
spatial constraint injection corrects LLM output biases by
incorporating geographic rules (e.g., 'temples should be within
1km of urban areas'), constructing a geographic rule repository,
and dynamically adjusts LLM coordinate outputs through
probabilistic  correction functions to resolve spatial
hallucination issues (e.g., reducing the elevation error of Giant
Wild Goose Pagoda from 13m to 0.3m). Meanwhile, the
feedback fine-tuning mechanism utilizes GIS topological
relationship verification to generate adversarial samples (e.g.,
tampering with directional predicates), thereby refining LLM
parameters iteratively through an enhanced loss function.

Padj(k+1) = Padj(k) + WVC(P(k)) (2)

f — _Zy lm + ﬁ . (1 _ I::prednAtrue|) (3)
—_—— predUAtrue|

CELoss
Puq j(k) denotes the corrected coordinate vector at the k-th
iteration. 1 indicates the learning rate. VC(p) signifies the
gradient of the constraint function. C(p) represents the
constraint energy function. {¢p corresponds to the cross-
entropy loss. fdesignates the topology loss weight coefficient.
Apregrefers to the region predicted by the LLM. A cindicates
the ground-truth GIS region. IoUy,p,measures the topological
intersection-over-union ratio.

2.3 Cross-Modal
Construction
Addressing the semantic fragmentation between unstructured
texts (e.g., historical records, epigraphic descriptions) and GIS
Spatial data (coordinates, topology, elevation) in digital
heritage conservation, this section proposes a Heterogeneous
Graph Fusion Framework. The framework dynamically
correlates multimodal features through graph neural networks:
constructing semantic entities from texts (e.g., parsing 'seven-
story Buddhist pagoda at Ci'en Temple' into E25_Pagoda nodes)
and GIS spatial elements (e.g., point coordinates of Giant Wild
Goose Pagoda with its Tang-era monastic boundary polygons)
into a heterogeneous graph structure. Semantic edges are
generated via LLM attention weights, while spatial edges
establish  topological constraints based on Delaunay
triangulation. Through relational graph convolution (RGCN)
and meta-path reasoning, structured integration of cross-modal
knowledge is achieved.

Spatial-Semantic Knowledge Graph

2.3.1 Cross-Modal Spatial-Semantic Knowledge Graph
Constructio
2.3.1.1 Formulation of Heterogeneous Graph Structure and

Edge Weight Specification

This maps entities parsed from unstructured texts and GIS
elements as two distinct node types in a heterogeneous graph,
quantifying association strength through multi-type edge
weights. The edge weights are jointly determined by semantic
relevance and spatial proximity.

(A)ij =a-TF — IDFmention(eirlj) + ﬁ
Text mention frequency
T exp (—]/ : dgeo (ljr lref))

Geographical proximity

+6 - Attn(Qtime'Kera) )
Timing alignment weights

The edge weight computation model serves as a core tool in
Graph Neural Networks (GNNs) for quantifying association
strength between nodes, particularly in cross-modal data fusion
tasks (e.g., linking textual entities with GIS spatial elements in
cultural heritage). Its formula can be decomposed into the
following three components, each corresponding to a distinct
association dimension. Here, w;; denotes the edge weight
between text entity node i and GIS spatial node jwith a, B, 3 as
weighting coefficients.

First, Text Mention Frequency (TF-IDF variant): Its
computational logic involves counting the frequency of a text
entity (e.g., 'seven-story Buddhist pagoda at Ci'en Temple') in
historical documents describing the GIS node (e.g., coordinates
of Giant Wild Goose Pagoda), multiplied by the inverse
document frequency (IDF) of that entity to highlight its
uniqueness. It resolves terminological ambiguity. Example: If
'Yan Ta' (Wild Goose Pagoda) frequently appears in Tang
Dynasty literature exclusively referring to Buddhist pagodas,
its edge weight to the Tang Dynasty Giant Wild Goose Pagoda
GIS node is higher (0=0.7), while the weight to modern
landmark nodes is lower.

Second, Geographic Proximity (Negative Exponential Decay):
Its computational logic is based on the Euclidean distance
between the GIS node and a reference point (e.g., the centroid
of Ci'en Temple), mapping distance to decaying similarity via
an exponential function (y controls the decay rate). Its role is to
model spatial dynamic evolution. Example: If the Giant Wild
Goose Pagoda GIS node moves away from the reference point
due to boundary changes of Ci'en Temple, its edge weight
decreases with increasing distance ($=0.2), reflecting changes
in spatial belonging.

Third, Temporal Alignment Weight (Attention Mechanism): Its
computational logic involves feeding the temporal features of
the text entity (e.g., Tang Dynasty) and the GIS node (e.g.,
modern surveying) into an attention function to compute a
temporal consistency score. Its role is to correct cross-modal
reference frame offsets.
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Figure 6. Neo4j Knowledge Graph Example - Spatial
Association Knowledge Graph

2.3.1.2 GNN-Based Multimodal Fusion Mechanism

This part adopts a dual-path parallel architecture integrating
heterogeneous graph fusion and feature-level fusion. The
heterogeneous graph fusion layer constructs a textual subgraph
and a GIS subgraph, connecting them via cross-modal edges
while simultaneously utilizing GraphSAGE to generate
neighbor-aggregated features.

h = o <W - CONCAT (hg’jgl),AGG ({hg;;1> V) €

N(i)}))) (5

In the equation,hg%denotes the feature vector of the GIS spatial
node at layer representing the fused representation of the Giant
Wild Goose Pagoda coordinate node.o is a nonlinear activation
function that enhances model expressiveness and prevents
gradient vanishing. W denotes a learnable weight matrix
applied to the concatenated input vector, where CONCAT

concatenates two vectors along the feature dimension.hggl)is
the previous layer's feature of the current GIS node,
incorporating initial coordinate encoding. AGG aggregates
features from all textual neighbors of node implemented as
This dual strategy (max-pooling + summation) is optimal for
structure-sensitive  scenarios. Here, N(i) represents the
neighbor set of node, while superscriptsk and k — 1 denote
current and previous layers respectively, enabling high-order
feature fusion through iterative updates.

Next, the feature fusion layer projects text entity embeddings
(LLM-generated) and GIS vectors into a shared latent space,
employing dynamic weighted fusion.
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Figure 7. The Proposed Enhanced LLM Architecture

Given the superior semantic capabilities of LLMs, this paper
modifies an LLM to optimize semantic systems. The model
adopts a lightweight architecture supporting semantic
communications for image-text modalities, enabling efficient
operation on resource-constrained devices. As an extension of
existing LLMs, it requires minimal computational resources for
multimodal training, facilitating subsequent joint encoding in
semantic communications. The LLM structure is illustrated in
Figure 7.

2.3.1.3 Spatiotemporal Correlation Strength Optimization

and Knowledge Graph Generation

In this section, an adaptive spatiotemporal constraint module is
engineered to resolve spatial-temporal dynamics. When
boundary changes occur in Ci'en Temple, subgraph
restructuring is activated to dynamically refresh topological
edges of the Giant Wild Goose Pagoda node, thereby updating
spatial relationships. For contradictory data between textual
and GIS sources, a Bayesian-Voting hybrid mechanism
performs cross-modal conflict resolution.

3. Experiment and Result Analysis
3.1 Research Area and Data Sources

The experiment collected: an unstructured text corpus
comprising historical documents and modern descriptive texts,
layered contour point clouds of the pagoda structure,
topographic data including DEM elevation models and
topological relationships of surrounding structures, inclination
monitoring records capturing pinnacle displacement and
deflection variations from 2020-2023, manually annotated
semantic-GIS ~ mapping  tables, and domain-specific
terminology lexicons.
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Figure 8. Data Acquisition and Processing Workflow
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3.2 Cross-Modal Spatial-Semantic Knowledge Graph
Construction and LLM-Based Multimodal Parsing
Framework

3.2.1 Cross-Modal Spatial-Semantic Knowledge Graph

Once associations between objects are extracted and identified,
a knowledge graph can be constructed. In this experiment, 500
nodes and 1,396 relationships were selected and stored using
the Neo4j graph database. Nodes primarily contain IDs and
properties, while relationships include IDs, properties, and
directional information.
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Figure 9. Cross modal spatial correlation graph

3.2.2 LLM-Based Multimodal Parsing Framework

To quantify the demand correlation between users and entities
across diverse scenarios, this study selects the iconic
architectural entity of the Giant Wild Goose Pagoda in Xi'an,
integrating 127 historical documents (unstructured texts) with
high-resolution oblique photogrammetry data (spatial data) to
validate the proposed LLM-GNN dual-stage framework.
Experimental results demonstrate:Significant improvement in
text-spatial alignment accuracy.Localization error reduced to
382m (82% decrease vs. BERT-CRF baseline).Pagoda
elevation prediction error: 0.3m (predicted 342.4m vs. ground
truth 342.7m).Directional description accuracy: 95.6% (e.g., 22%
improvement in "west side" identification).Self-attention
mechanism successfully resolved temporal attributes (e.g.,
"built in the Yonghui era" — 652 AD).Breakthrough in
knowledge graph consistency.Cross-modal connectivity rate:
93.7% (110.9%), enabling complex queries like "Tang Dynasty
buildings  supported by Ci'en Temple" (response
<300ms).Conflict resolution rate: 96.4% (19.9%), solving two
core challenges.The first one is that the term disambiguation
which precise association of "Yan Ta" with pagoda nodes in
Tang historical context.The second one is that the Spatial
evolution which automatic topological relationship updates
upon 12.8% boundary contraction of Ci'en Temple.

4. Conclusion

4.1 Significance and Advantages of the Experimental
Results

This study proposes a cross-modal semantic parsing framework
integrating LLMs and GNNs, effectively resolving the
semantic fragmentation between unstructured texts and spatial
data in cultural heritage preservation. Leveraging the domain
adaptation capabilities of the pre-trained model Qwen2.5-72B,
it achieves precise mapping of deep semantic features from
texts to GIS attributes, while dynamically associating textual
descriptions with spatial coordinates via self-attention
mechanisms. Simultaneously, the heterogeneous graph model
constructed with GNNs enables deep integration and
quantitative association strength measurement of multi-source
heterogeneous data (e.g., historical texts, geographic
coordinates, and topological relationships) through edge-weight
computation rules that fuse text entity mention frequency with
geographic proximity. Experiments demonstrate that this
framework significantly enhances semantic consistency and
spatial alignment accuracy in cultural heritage data.

4.2 Limitations and Future Directions

The primary limitations include, but are not limited to Modal
Gaps and Semantic Ambiguities.Feature distribution disparities
across modalities (e.g., textual descriptions, spatial coordinates,
point clouds) make precise alignment of deep semantic
correlations difficult.Local Feature Loss. Existing models (e.g.,
CLIP-like architectures) prioritize global feature extraction
(e.g., pagoda contours) but underrepresent fine-grained details
like brick textures or crack propagation patterns, resulting in
high material matching errors during virtual restoration of
Ming-era brick layers.Substantial Computational and Storage
Costs. High resource demands for processing multi-modal
heritage data.
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