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Abstract 

Cultural heritage documents contain rich historical, social, and spatial information, yet their unstructured nature presents significant 

challenges for effective integration with Geographic Information Systems . This paper proposes an innovative framework that 

leverages the deep semantic understanding and contextual reasoning capabilities of Large Language Models to achieve intelligent 

parsing of cultural heritage documents, context-aware information extraction, and precise fusion with GIS spatial data. By 

constructing a spatiotemporal knowledge graph, designing context-aware information extraction strategies based on prompt 

engineering, and developing a dynamic LLM-GIS interaction interface, this framework significantly enhances the depth and 

precision of spatial representation for cultural heritage. Experimental results demonstrate the system's superior performance in 

historical toponym disambiguation, spatial relationship reconstruction, and multi-dimensional cultural landscape visualization, 

providing robust spatiotemporal intelligence capabilities to support cultural heritage research, preservation, and public dissemination. 

1. Introduction

With the rapid growth of globalized information technology, 

cultural heritage preservation faces unprecedented challenges 

and opportunities. Cultural heritages, as vital parts of 

humanity's collective memory and spiritual wealth, hold 

profound cultural and societal values. Yet, traditional 

conservation methods struggle to meet modern societal 

demands, with heritage loss and deterioration persisting. 

Recently, emerging technologies like DeepSeek and ChatGPT 

— large language models (LLMs) — have transformed the 

field with their advanced data processing, efficient information 

extraction, and knowledge integration capabilities, providing 

innovative solutions for heritage preservation. Researchers 

globally are exploring interdisciplinary LLM applications, 

focusing on advanced analysis and systematic management of 

heritage data. 

Key advancements include Zhang et al.'s multimodal 

framework integrating 3DGS with MLLMs, automating digital 

twin model construction for ancient architecture via text-image 

fusion, enabling semantic labeling and interactive querying 

(Zhang et al., 2024). ArchGPT generates restoration 

recommendations through LLM-generated content, enhanced 

by expert knowledge for smarter preservation planning (Zhang 

et al., 2024). Liang Xu's hybrid architecture combines text 

embedding, vector retrieval, and generative techniques to 

overcome traditional knowledge graph limitations in dynamic 

updates and multimodal semantic understanding (Xu et al., 

2023).This study addresses the heterogeneity and complexity of 

heritage data using LLM and GNN technologies but faces two 

main challenges: (1) the need for innovative strategies to 

process vast unstructured historical documents. (2) the reliance 

on expert experience for heritage risk prediction and planning, 

lacking automated decision-making support from dynamic 

knowledge systems. 

This research focuses on addressing the semantic disconnection 

between unstructured textual data and spatial information to 

enhance the intelligence level of cultural heritage preservation. 

Specifically, the challenges primarily manifest in two critical 

aspects: 

1.Data Heterogeneity and Complexity: Cultural heritage

documentation originates from diverse sources, with

unstructured texts exhibiting not only varied formats but also

highly complex and ambiguous  content  representations. The

interdisciplinary nature of heritage data further complicates

systematic analysis due to inherent inconsistencies in

terminologies, ontologies, and data schemas across different

domains.

2.Semantic Understanding  and Integration Difficulties: While

advances in NLP have enabled partial extraction of spatial

semantics from unstructured texts, effectively linking these

extracted entities with GIS-based spatial datasets remains a

significant challenge.  The integration requires overcoming

obstacles such as heterogeneous spatial reference systems,

scale variations between textual descriptions and spatial data,

and the lack of automated mechanisms for cross-modal

semantic alignment - all of which critically impact the accuracy

of heritage risk assessment and preservation planning.

2. Methods

2.1 LLM-Based Multimodal Semantic Parsing Framework 

Figure 1. Cross-modal Semantic-Spatial Association Decision-

making Process. 
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Upon receiving a hybrid query request from users, the system 

utilizes an LLM-based multimodal semantic parsing framework 

to decompose the input into structured semantic triples and 

spatial retrieval requests. After validating the request as a novel 

demand(including null-value checks), heterogeneous data are 

routed to the fusion engine. This engine collaborates with GIS 

modules to acquire spatial features and a graph library builder 

to extract semantic relationships, thereby constructing a cross-

modal association graph. Subsequently, a graph alignment 

request triggers spatial-semantic calibration, ultimately 

generating a visualized decision solution comprising interactive 

maps and analytical reports for the user. 

2.2 Spatial-Semantic Integration Framework for Cultural 

Heritage 

This chapter first employs a pre-trained large model (Qwen2.5-

72B) to parse deep semantic features from cultural heritage 

texts. Through domain adaptation techniques (e.g., CIDOC-

CRM ontology mapping), textual entities are aligned with GIS 

spatial attributes. Dynamic association between textual features 

and spatial elements is achieved via self-attention mechanisms, 

thereby resolving semantic ambiguities. Subsequently, cross-

modal knowledge graph construction is performed, enabling 

multi-source data fusion and conflict resolution. 

2.2.1 Deep Semantic Parsing Module 

The semantic framework of this study operates in three 

stages:Semantic Parsing Layer: The Qwen2.5-72B model 

extracts entities, events, and spatiotemporal descriptions from 

text.Spatial Mapping Layer: Domain adaptation techniques 

align semantic features with GIS attribute fields (e.g., 

gazetteers, coordinate systems).Dynamic Association Layer: A 

self-attention mechanism computes correlation weights 

between textual entities and spatial elements. 

Subsequently, the Deep Semantic Text Parsing Module 

employs incremental training on cultural heritage corpora 

(historical texts, local chronicles) to optimize the pre-trained 

model. This enhances recognition of historical toponyms and 

architectural terminology. In-context learning resolves 

polysemy issues (e.g., 'Bell Tower' as architectural structure vs. 

place name). Semantic Role Labeling (SRL) adopts the BIO 

tagging scheme to identify spatial relational predicates (e.g., 

'located at', 'adjacent to'), constructing 〈Subject-Predicate-

Location〉 triples.Tables 3 and 4 provide critical processing 

stages and exemplary outputs within the semantic processing 

pipeline. 

Figure 3. Applied Contextual Fusion Mechanism 

Figure 4. Output Demonstration of the Semantic Parsing 

Module 

2.2.1.1 Domain Adaptation Mechanism 

The domain adaptation mechanism, as a core technology in 

digital cultural heritage preservation, innovatively constructs 

semantic bridges between unstructured texts and geospatial 

information. This mechanism employs a dual-stage fusion 

architecture: First, it constructs a cultural heritage ontology 

knowledge repository based on the international CIDOC-CRM 

standard, converting ambiguous historical descriptions into 

precise spatiotemporal entity concepts through deep semantic 

parsing. Taking Xi'an's Dayan Pagoda as an example, when the 

system identifies ancient records such as "Cien Temple's seven-

story pagoda," it automatically maps to the standardized 

ontological category E25_Man-Made_Tower, simultaneously 

associating attributes including the Tang Dynasty construction 

era (652 AD), religious affiliation (Buddhist reliquary), and 

spatial hierarchy (component of the Cien Temple architectural 

complex). 

Subsequently, an intelligent spatial projection engine is 

designed to dynamically transform semantic features generated 

by language models into geographic coordinates. For the Dayan 

Pagoda's positioning requirements, this engine not only 

generates baseline coordinates (34.244°N, 108.959°E) based 

on modern surveying data but also innovatively integrates a 

historical-geographic knowledge repository—by aligning Qing-

dynasty maps (e.g., Shaanxi General Chronicle) with 

contemporary satellite imagery, it automatically corrects a 12-

meter northeast deviation caused by reference system 

discrepancies across eras. This adaptive mapping mechanism 

addresses three core challenges in cultural heritage preservation: 

terminological ambiguity (e.g., "Yan Pagoda" exclusively 

denoted Buddhist pagodas in the Tang Dynasty but now refers 

to general landmarks), spatiotemporal evolution (e.g., boundary 

changes of the Cien Temple complex altering positional 

attribution), and contextual discontinuity (e.g., gaps between 

historical documentation and physical site positioning). 

Figure 5. Technical Implementation Workflow of the Spatial-

Semantic Domain Adaptation Mechanism 
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In this study, the self-attention mechanism resolves semantic 

fragmentation by dynamically associating unstructured text 

with GIS spatial elements. Its core workflow comprises two 

components: (1) triple definition based on Transformer 

architecture—consisting of Query (text entities: semantic 

features from historical texts, e.g., 'seven-story Buddhist 

pagoda at Ci'en Temple'); Key (GIS features: spatial attributes 

like coordinates, elevation, and era of Giant Wild Goose 

Pagoda); Value (association context: semantic-spatial fused 

features such as spatiotemporal properties of 'Tang Buddhist 

pagoda'); and (2) attention scoring formulation.The spatial-

textual association process is formulated as: 

𝛢𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (1) 

Q = Text entity embedding vector (dimension𝑑𝑘)

K/ V = GIS feature embedding vector (dimension𝑑𝑘)

2.2.1.2 Domain-Specific Refinement Strategies 

This part proposes a dual optimization mechanism combining 

spatial constraint injection and feedback fine-tuning: The 

spatial constraint injection corrects LLM output biases by 

incorporating geographic rules (e.g., 'temples should be within 

1km of urban areas'), constructing a geographic rule repository, 

and dynamically adjusts LLM coordinate outputs through 

probabilistic correction functions to resolve spatial 

hallucination issues (e.g., reducing the elevation error of Giant 

Wild Goose Pagoda from 13m to 0.3m). Meanwhile, the 

feedback fine-tuning mechanism utilizes GIS topological 

relationship verification to generate adversarial samples (e.g., 

tampering with directional predicates), thereby refining LLM 

parameters iteratively through an enhanced loss function. 

𝑃𝑎𝑑𝑗
(𝑘+1) = 𝑃𝑎𝑑𝑗

(𝑘) + 𝜂𝛻𝐶(𝑝(𝑘))  (2) 

ℓ = −∑𝑦 𝑙𝑜𝑔 𝑦̂⏟      
𝐶𝐸𝐿𝑜𝑠𝑠

+ 𝛽 ⋅ (1 −
|𝐴𝑝𝑟𝑒𝑑∩𝐴𝑡𝑟𝑢𝑒|

|𝐴𝑝𝑟𝑒𝑑∪𝐴𝑡𝑟𝑢𝑒|
)

       

(3) 

𝑃𝑎𝑑𝑗
(𝑘) denotes the corrected coordinate vector at the k-th

iteration. 𝜂 indicates the learning rate. 𝛻𝐶(𝑝)  signifies the 

gradient of the constraint function. 𝐶(𝑝)  represents the 

constraint energy function. ℓ𝐶𝐸  corresponds to the cross-

entropy loss. 𝛽designates the topology loss weight coefficient. 

𝐴𝑝𝑟𝑒𝑑refers to the region predicted by the LLM. 𝐴trueindicates

the ground-truth GIS region. 𝐼𝑜𝑈𝑡𝑜𝑝𝑜measures the topological

intersection-over-union ratio. 

2.3 Cross-Modal Spatial-Semantic Knowledge Graph 

Construction 

Addressing the semantic fragmentation between unstructured 

texts (e.g., historical records, epigraphic descriptions) and GIS 

Spatial data (coordinates, topology, elevation) in digital 

heritage conservation, this section proposes a Heterogeneous 

Graph Fusion Framework. The framework dynamically 

correlates multimodal features through graph neural networks: 

constructing semantic entities from texts (e.g., parsing 'seven-

story Buddhist pagoda at Ci'en Temple' into E25_Pagoda nodes) 

and GIS spatial elements (e.g., point coordinates of Giant Wild 

Goose Pagoda with its Tang-era monastic boundary polygons) 

into a heterogeneous graph structure. Semantic edges are 

generated via LLM attention weights, while spatial edges 

establish topological constraints based on Delaunay 

triangulation. Through relational graph convolution (RGCN) 

and meta-path reasoning, structured integration of cross-modal 

knowledge is achieved. 

2.3.1 Cross-Modal Spatial-Semantic Knowledge Graph 

Constructio 

2.3.1.1 Formulation of Heterogeneous Graph Structure and 

Edge Weight Specification 

This maps entities parsed from unstructured texts and GIS 

elements as two distinct node types in a heterogeneous graph, 

quantifying association strength through multi-type edge 

weights. The edge weights are jointly determined by semantic 

relevance and spatial proximity. 

𝜔𝑖𝑗 = 𝛼 ⋅ 𝑇𝐹 − 𝐼𝐷𝐹𝑚𝑒𝑛𝑡𝑖𝑜𝑛(𝑒𝑖 , 𝑙𝑗)⏟              
Text mention frequency

+ 𝛽

⋅ 𝑒𝑥𝑝 (−𝛾 ⋅ 𝑑𝑔𝑒𝑜(𝑙𝑗 , 𝑙𝑟𝑒𝑓))⏟                
Geographical proximity

+𝛿 ⋅ 𝐴𝑡𝑡𝑛(𝑄𝑡𝑖𝑚𝑒 , 𝐾𝑒𝑟𝑎)⏟          
Timing alignment weights

 (4) 

The edge weight computation model serves as a core tool in 

Graph Neural Networks (GNNs) for quantifying association 

strength between nodes, particularly in cross-modal data fusion 

tasks (e.g., linking textual entities with GIS spatial elements in 

cultural heritage). Its formula can be decomposed into the 

following three components, each corresponding to a distinct 

association dimension. Here, 𝜔𝑖𝑗 denotes the edge weight

between text entity node 𝑖 and GIS spatial node 𝑗with α, β, δ as 

weighting coefficients. 

First, Text Mention Frequency (TF-IDF variant): Its 

computational logic involves counting the frequency of a text 

entity (e.g., 'seven-story Buddhist pagoda at Ci'en Temple') in 

historical documents describing the GIS node (e.g., coordinates 

of Giant Wild Goose Pagoda), multiplied by the inverse 

document frequency (IDF) of that entity to highlight its 

uniqueness. It resolves terminological ambiguity. Example: If 

'Yan Ta' (Wild Goose Pagoda) frequently appears in Tang 

Dynasty literature exclusively referring to Buddhist pagodas, 

its edge weight to the Tang Dynasty Giant Wild Goose Pagoda 

GIS node is higher (α=0.7), while the weight to modern 

landmark nodes is lower. 

Second, Geographic Proximity (Negative Exponential Decay): 

Its computational logic is based on the Euclidean distance 

between the GIS node and a reference point (e.g., the centroid 

of Ci'en Temple), mapping distance to decaying similarity via 

an exponential function (γ controls the decay rate). Its role is to 

model spatial dynamic evolution. Example: If the Giant Wild 

Goose Pagoda GIS node moves away from the reference point 

due to boundary changes of Ci'en Temple, its edge weight 

decreases with increasing distance (β=0.2), reflecting changes 

in spatial belonging. 

Third, Temporal Alignment Weight (Attention Mechanism): Its 

computational logic involves feeding the temporal features of 

the text entity (e.g., Tang Dynasty) and the GIS node (e.g., 

modern surveying) into an attention function to compute a 

temporal consistency score. Its role is to correct cross-modal 

reference frame offsets. 
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Figure 6. Neo4j Knowledge Graph Example - Spatial 

Association Knowledge Graph 

2.3.1.2 GNN-Based Multimodal Fusion Mechanism 

This part adopts a dual-path parallel architecture integrating 

heterogeneous graph fusion and feature-level fusion. The 

heterogeneous graph fusion layer constructs a textual subgraph 

and a GIS subgraph, connecting them via cross-modal edges 

while simultaneously utilizing GraphSAGE to generate 

neighbor-aggregated features. 

ℎ𝐺𝐼𝑆
(𝑘)

= 𝜎 (𝑊 ⋅ 𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝐺𝐼𝑆
(𝑘−1)

, 𝐴𝐺𝐺 ({ℎ𝐺𝐼𝑆
(𝑘−1)

, ∀𝑗 ∈

𝛮(𝑖)})))（5） 

In the equation,ℎ𝐺𝐼𝑆
(𝑘)

denotes the feature vector of the GIS spatial 

node at layer representing the fused representation of the Giant 

Wild Goose Pagoda coordinate node.𝜎 is a nonlinear activation 

function that enhances model expressiveness and prevents 

gradient vanishing. 𝑊  denotes a learnable weight matrix 

applied to the concatenated input vector, where 𝐶𝑂𝑁𝐶𝐴𝑇 

concatenates two vectors along the feature dimension.ℎ𝐺𝐼𝑆
(𝑘−1)

is 

the previous layer's feature of the current GIS node, 

incorporating initial coordinate encoding.AGG aggregates 

features from all textual neighbors of node implemented as 

This dual strategy (max-pooling + summation) is optimal for 

structure-sensitive scenarios. Here, 𝛮(𝑖)  represents the 

neighbor set of node, while superscripts𝑘  and 𝑘 − 1 denote 

current and previous layers respectively, enabling high-order 

feature fusion through iterative updates. 

Next, the feature fusion layer projects text entity embeddings 

(LLM-generated) and GIS vectors into a shared latent space, 

employing dynamic weighted fusion. 

Figure 7. The Proposed Enhanced LLM Architecture 

Given the superior semantic capabilities of LLMs, this paper 

modifies an LLM to optimize semantic systems. The model 

adopts a lightweight architecture supporting semantic 

communications for image-text modalities, enabling efficient 

operation on resource-constrained devices. As an extension of 

existing LLMs, it requires minimal computational resources for 

multimodal training, facilitating subsequent joint encoding in 

semantic communications. The LLM structure is illustrated in 

Figure 7. 

2.3.1.3 Spatiotemporal Correlation Strength Optimization 

and Knowledge Graph Generation 

In this section, an adaptive spatiotemporal constraint module is 

engineered to resolve spatial-temporal dynamics. When 

boundary changes occur in Ci'en Temple, subgraph 

restructuring is activated to dynamically refresh topological 

edges of the Giant Wild Goose Pagoda node, thereby updating 

spatial relationships. For contradictory data between textual 

and GIS sources, a Bayesian-Voting hybrid mechanism 

performs cross-modal conflict resolution. 

3. Experiment and Result Analysis

3.1 Research Area and Data Sources 

The experiment collected: an unstructured text corpus 

comprising historical documents and modern descriptive texts, 

layered contour point clouds of the pagoda structure, 

topographic data including DEM elevation models and 

topological relationships of surrounding structures, inclination 

monitoring records capturing pinnacle displacement and 

deflection variations from 2020-2023, manually annotated 

semantic-GIS mapping tables, and domain-specific 

terminology lexicons. 

Figure 8. Data Acquisition and Processing Workflow 
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3.2 Cross-Modal Spatial-Semantic Knowledge Graph 

Construction and LLM-Based Multimodal Parsing 

Framework 

3.2.1 Cross-Modal Spatial-Semantic Knowledge Graph 

Once associations between objects are extracted and identified, 

a knowledge graph can be constructed. In this experiment, 500 

nodes and 1,396 relationships were selected and stored using 

the Neo4j graph database. Nodes primarily contain IDs and 

properties, while relationships include IDs, properties, and 

directional information. 

Figure 9. Cross modal spatial correlation graph 

3.2.2 LLM-Based Multimodal Parsing Framework 

To quantify the demand correlation between users and entities 

across diverse scenarios, this study selects the iconic 

architectural entity of the Giant Wild Goose Pagoda in Xi'an, 

integrating 127 historical documents (unstructured texts) with 

high-resolution oblique photogrammetry data (spatial data) to 

validate the proposed LLM-GNN dual-stage framework. 

Experimental results demonstrate:Significant improvement in 

text-spatial alignment accuracy.Localization error reduced to 

38.2m (82% decrease vs. BERT-CRF baseline).Pagoda 

elevation prediction error: 0.3m (predicted 342.4m vs. ground 

truth 342.7m).Directional description accuracy: 95.6% (e.g., 22% 

improvement in "west side" identification).Self-attention 

mechanism successfully resolved temporal attributes (e.g., 

"built in the Yonghui era" → 652 AD).Breakthrough in 

knowledge graph consistency.Cross-modal connectivity rate: 

93.7% (↑10.9%), enabling complex queries like "Tang Dynasty 

buildings supported by Ci'en Temple" (response 

<300ms).Conflict resolution rate: 96.4% (↑9.9%), solving two 

core challenges.The first one is that the term disambiguation 

which precise association of "Yan Ta" with pagoda nodes in 

Tang historical context.The second one is that the Spatial 

evolution which automatic topological relationship updates 

upon 12.8% boundary contraction of Ci'en Temple. 

4. Conclusion

4.1 Significance and Advantages of the Experimental 

Results 

This study proposes a cross-modal semantic parsing framework 

integrating LLMs and GNNs, effectively resolving the 

semantic fragmentation between unstructured texts and spatial 

data in cultural heritage preservation. Leveraging the domain 

adaptation capabilities of the pre-trained model Qwen2.5-72B, 

it achieves precise mapping of deep semantic features from 

texts to GIS attributes, while dynamically associating textual 

descriptions with spatial coordinates via self-attention 

mechanisms. Simultaneously, the heterogeneous graph model 

constructed with GNNs enables deep integration and 

quantitative association strength measurement of multi-source 

heterogeneous data (e.g., historical texts, geographic 

coordinates, and topological relationships) through edge-weight 

computation rules that fuse text entity mention frequency with 

geographic proximity. Experiments demonstrate that this 

framework significantly enhances semantic consistency and 

spatial alignment accuracy in cultural heritage data. 

4.2 Limitations and Future Directions 

The primary limitations include, but are not limited to Modal 

Gaps and Semantic Ambiguities.Feature distribution disparities 

across modalities (e.g., textual descriptions, spatial coordinates, 

point clouds) make precise alignment of deep semantic 

correlations difficult.Local Feature Loss. Existing models (e.g., 

CLIP-like architectures) prioritize global feature extraction 

(e.g., pagoda contours) but underrepresent fine-grained details 

like brick textures or crack propagation patterns, resulting in 

high material matching errors during virtual restoration of 

Ming-era brick layers.Substantial Computational and Storage 

Costs. High resource demands for processing multi-modal 

heritage data. 
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