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Abstract 

This study presents a practical approach to applying deep learning for the conservation of built heritage, focusing on automatic crack 

detection in historic masonry using the YOLOv5 object detection model. While most existing research emphasizes model precision 

under controlled conditions, this work evaluates YOLOv5’s performance in real-world scenarios, accounting for variations in image 

acquisition conditions. The study contributes a qualitative comparison of deep learning models relevant to automatic surface 

pathology detection in built heritage and introduces a field-oriented framework to guide experts in selecting and deploying those 

tools. A key innovation is the investigation of Ground Sampling Distance (GSD), already used in actual inspection methods like 

photogrammetry, as a critical parameter influencing detection accuracy and model usability. Results show that YOLOv5 can 

effectively detect both large cracks and microcracks across varied GSD values, and reinforce the value of interdisciplinary practices 

that combine Deep Learning technologies with established heritage documentation practices. 

1. Introduction

The conservation of built heritage is a fundamental challenge in 

maintaining culturally and historically significant structures. 

Among these, masonry constructions represent a substantial 

portion of global heritage architecture. However, many of these 

structures continue to serve well beyond their originally intended 

lifespan, rendering them increasingly vulnerable to structural 

deterioration due to the progressive aging of construction 

materials (Saviano et al., 2022). One of the most prevalent and 

concerning manifestation of this degradation is the appearance of 

cracks within masonry elements, which, if not identified and 

addressed in time, can significantly affect structural integrity, 

leading to long-term damage (Philipparie, 2019). 

Traditional visual inspection methods, which rely on expert 

evaluation, are time-intensive and subject to human 

interpretation, potentially leading to inconsistencies in diagnosis 

(Watt & Swallow, 1995) while the use of existing digital 

documentation techniques based on photogrammetry and 

lasergrammetry already enhance the accuracy and repeatability 

of visual surveys (Hallot et al., 2022). Moreover, the integration 

of artificial intelligence and deep learning presents an 

opportunity to automate and further improve the accuracy of 

pathology detection in heritage buildings, enhancing expert 

analysis (Mishra & Lourenço, 2024).   

Yet, most existing research regarding automatic pathology 

detection in built heritage emphasizes the precision and technical 

performance of deep learning models, and often overlooks image 

acquisition in real-world conditions or operational deployment 

for professionals in the heritage field - an aspect this work seeks 

to address. Studies by Hallée et al. (2021), Marín-García et al. 

(2023), and Pratibha et al. (2024), all focusing on brick walls, 

employed ideal conditions during dataset preparation. Marín-

García et al. maintained consistent image distance and angle, 

while Pratibha et al. excluded images with unrelated pathologies, 

heterogeneous colors, deformed brick surfaces, or irregular 

mortar joints. Hallée et al. constructed brick wall segments in the 

laboratory and manually created cracks for controlled imaging. 

Although such controlled image acquisition often leads to high-

performing models, they limit applicability in real-world 

scenarios, which are inherently more variable. In contrast, Zou et 

al. (2019) introduced variation into image capture conditions to 

better prepare models for environmental fluctuations, and Yang 

et al. (2023) accounted for diverse brick types, joint sizes, and 

textures to improve results across different masonry walls. 

This paper extends research originally conducted as part of a 

master’s thesis in architecture. It aims to assess the relevance of 

deep learning in the context of built heritage conservation by 

focusing on its real-world application - particularly regarding its 

accessibility to field operators and the robustness of model 

predictions under varying image acquisition conditions and 

parameter configurations. The paper is structured as follows: 

First, a state-of-the-art review of the various DL tasks and models 

was conducted to develop a practical guide that helps field 

operators understand the distinctions between some of the more 

commonly used DL models in surface pathology detection of 

built heritage, up to December 2024.  

Next, the model deployment methodology was developed as well 

as image acquisition parameters and conditions.  Then, a detailed 

comparison of local and cloud-based execution environments 

suitable for running the model was conducted including key 

training parameters and their impact on model performance. 

Finally, we evaluated the results and robustness of YOLOv5’s 

predictions and assessed the accessibility of the technology for 

its potential users during the image acquisition phase. To do so, 

we conducted a study on various buildings, manually verifying 

detected cracks against AI predictions. In this paper, we focused 

specifically on the impact of Ground Sampling Distance (GSD) 

on crack detection performance. Although not detailed in this 

article, we also considered several other image acquisition 

parameters to better reflect field conditions. To simulate spatial 

limitations or obstructions around a surveyed building, images 

were captured at various incidence angles, introducing 

perspective distortions. Nighttime images with artificial lighting 

and varying ISO levels simulated low-light conditions, assessing 

the impact of illumination artifacts and reduced contrast. Some 

scenes also included visual noise such as vegetation or 

architectural elements to evaluate the model’s robustness. 

Complete and detailed results of those experiments can be found 

in Boutet (2025). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-179-2025 | © Author(s) 2025. CC BY 4.0 License.

 
179

mailto:simon.boutet@student.uliege.be
mailto:p.hallot@uliege.be


2. Deep Learning for Pathology Detection

2.1 State-of-the-art review 

Since the first documented studies of automatic surface 

detection around 2017 (Guo et al., 2024), deep learning has 

emerged as a powerful tool for RGB image analysis in 

built heritage conservation. While the most documented 

and often more complicated research lies in surface 

pathology detection, many studies have demonstrated the 

capacity of DL to support diverse tasks, including damage 

classification, architectural element recognition, 

quantification of missing features, and real-time detection of 

pathologies. 

For example, Dini et al. (2023) explored the classification of 

façade conditions. They employed a convolutional 

neural network to assign a severity level—ranging from 

intact to severely damaged—to historic building facades, 

enabling conservation teams to prioritize interventions. 

Similarly, Kumar et al. (2020) explored post-disaster buildings 

by applying CNNs to social media images, allowing for rapid 

evaluation of whether the shown buildings were heritage 

structures and whether they were damaged or intact. Kwon 

and Yu (2019) applied DL to identify missing parts in Korean 

stone structures while Zou et al. (2019) proposed a method to 

not only detect but also quantify missing components within 

heritage buildings in Beijing’s Forbidden City. 

Beyond basic object detection, some studies quantified damage 

severity. For example, Hatır et al. (2021) integrated crack width 

measurement into a pixel-wise segmentation model. This 

enabled not just localization of the pathology, but also the 

estimation of its seriousness and variation over time. Finally, 

studies such as Wei et al. (2023) and Pratibha et al. (2024) 

introduced real-time detection using lightweight models and 

mobile platforms. These approaches were compatible with 

smartphones, surveillance systems, or even augmented reality 

via drones, focusing on more agile, on-site diagnostics.  

Together, these studies reflect a wide range of applications 

in which deep learning technologies increasingly support not 

only the detection and interpretation of pathologies but 

also the documentation and intervention planning for cultural 

heritage buildings. While some reviews of surface defect 

detection using deep learning already address data limitations 

(Guo et al., 2024) and explore various applications in cultural 

heritage (Mishra et al., 2024), model performance is 

typically assessed using quantitative metrics such as mean 

Average Precision (mAP), Intersection over Union (IoU) and 

inference speed (Padilla et al., 2021). However, these indicators 

alone do not fully capture the models' specifications for diverse 

tasks. In fact, the most widely employed models are often 

designed and reviewed for specific computer vision tasks, such 

as image classification (IC), object detection (OD), semantic 

segmentation (SS), or instance segmentation (IS). As a 

result, it is unclear in which applications those models might 

perform better, and when an alternative should be selected. 

Consequently, there seems to be a lack of a comprehensive and 

task-oriented framework that clearly outlines the specialization, 

strengths, and limitations of deep learning models in the field of 

built heritage conservation. This gap makes it challenging 

for field experts to determine which models best suit their 

needs, which ultimately hinders the broader 

adoption and democratization of automatic pathology 

detection processes. 

To address this issue, this section proposes a qualitative approach 

as an alternative to mAP-based benchmarking, aiming to support 

experts in identifying the most relevant models and tasks for their 

specific applications. 

2.2 State-of-the-art framework 

The evaluation framework is based on six criteria tailored to the 

specific needs of automatic pathology detection in built heritage. 

These include Precision, Speed, Efficiency, Accessibility, 

Automation Potential and Versatility. These criteria were chosen 

to align with both technical performance benchmarks and field 

constraints observed in heritage conservation. Scores were 

derived from reported results in literature and qualitative analysis 

(Boutet, 2025). 

- Precision reflects the model’s ability to accurately localize

pathologies within an image. It covers both the mAP

performance relative to similar models and the prediction

accuracy, with pixel-wise predictions being considered

more precise than bounding box predictions. The image

classification task is excluded from this criterion, since it

does not involve any localization of the defect.

- Inference speed applies to the number of images the model

can process in a given amount of time (often in frames per

second), which is crucial for real-time or large-scale

inspection. While many state-of-the-art models today can

produce near-instantaneous predictions, this parameter

remains essential for identifying models best suited for

continuous video-feed analysis or on-site deployment

scenarios, and is already commonly used in many studies.

- Efficiency concerns the model’s training time,

recommended dataset size, and number of epochs needed

to reach convergence during training. A more efficient

model needs fewer epochs to reach convergence and thus

requires fewer computational resources, while non-

efficient models require huge amounts of training data and

iterations to reach acceptable mAP values.

- Accessibility indicates the computational demands of the

model. Higher accessibility typically means lower GPU

and RAM usage, making it suitable for standard or lower-

end hardware. Conversely, low accessibility indicates that

the model is resource-intensive and may require high-

performance computing infrastructure.

- Automation potential describes how easily experts can use

and interpret the model’s prediction outputs for heritage

conservation tasks, ideally without requiring extensive

post-processing. It is closely associated with the model’s

precision and recall metrics, as lower values typically

indicate a greater need for prediction cleaning and

additional labeling, respectively. Additionally, automation

potential considers the compatibility of the model’s outputs

with other digital documentation tools, such as

photogrammetry and lasergrammetry, enabling better

integration of predictions into 3D heritage models.

- Versatility indicates the model’s ability to perform multiple

deep learning tasks (image classification, object detection

and image segmentation), increasing its adaptability across

various use cases. This parameter is evaluated solely based

on scientific literature related to pathology detection in

built heritage up until December 2024 and may not

accurately represent all the tasks DL models can perform in

other domains.
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Based on these criteria, nine commonly used models and 

architectures across all four computer vision tasks were analyzed 

to give a qualitative comparison of their strengths and 

weaknesses (Table 1). We compared Convolutional Neural 

Network (CNN) for image classification and Region-based 

Convolutional Neural Network (R-CNN), Fast R-CNN, Faster 

R-CNN, Single Shot MultiBox Detector (SSD), and You Only

Look Once (YOLO) for object detection. For segmentation

tasks, Mask R-CNN, Fully Convolutional Network (FCN) and

DeepLab (based on FCN) were chosen.

Table 1. Performance comparison of DL models and 

architectures across computer vision tasks (scale from 1 [poor] 

to 6 [best]) 

This table provides a clear classification of the computer vision 

tasks and their specifications, as well as a visual overview of the 

performances of the deep learning models.  This diversity allows 

for the selection of a model according to project needs, whether 

that involves real-time results, high precision, use on low-

performance computing infrastructure or minimal additional 

operations by the user. 

Regarding precision, each task type addresses a specific level of 

spatial understanding and annotation complexity: image 

classification assigns a single label to an entire image, object 

detection identifies and localizes elements via bounding boxes, 

semantic segmentation classifies each pixel, and instance 

segmentation differentiates between multiple objects of the same 

class on a pixel level. This means that in terms of precision, 

segmentation models like FCN, DeepLab and Mask R-CNN 

dominate, as they are capable of precisely outlining object 

contours. FCN is known for its simplicity and speed in semantic 

segmentation but lacks fine edge precision due to resolution loss 

across successive convolutional layers. DeepLab builds on this 

by introducing the Atrous Spatial Pyramid Pooling (ASPP) 

module, which enhances its ability to detect objects at multiple 

scales. This architectural improvement comes at the cost of 

increased training time and computational load. 

Mask R-CNN further refines segmentation by performing 

instance segmentation, allowing the model to distinguish 

between separate instances of the same pathology. While this 

model offers the highest precision among the compared 

approaches, it also demands significant processing resources. It 

is, however, built from the architecture of Faster R-CNN and its 

predecessors, which allows it to achieve other tasks like object 

detection, making it rather versatile. Despite its complexity, 

Mask R-CNN allows for near-perfect automation potential with 

its high accuracy and by being capable of instance segmentation, 

treating images on the pixel level like other digital survey tools.  

If the emphasis lies in higher model accessibility or if pixel wise 

predictions are not necessary for a selected application, object 

detection focused models like Faster R-CNN, SSD and YOLO 

become better choices. Being one stage detectors, the latter two 

are frequently selected for real-time detection tasks due to their 

high inference speed and lightweight architecture, making them 

well suited for mobile or field-based applications. According to 

Bharati and Pramanik (2020), architectures like SSD and FCN 

offer high inference speed but fall short of the precision and 

accuracy achieved by Faster R-CNN. SSD demonstrates strong 

performance in detecting large objects and maintains a balance 

between speed and accuracy, outperforming YOLO in precision 

while remaining faster than Faster R-CNN. While the first 

iterations of both YOLO and SSD used to encounter difficulties 

when detecting small objects, especially in images containing 

larger elements, these limitations have been progressively 

addressed over the years. 

Study from Li et al. (2019) follows these observations by 

presenting encouraging results for YOLOv5 in pathology 

detection, while also comparing its efficiency with Faster R-

CNN. Although both models achieve comparable accuracy, 

Faster R-CNN requires nearly four times more training time on 

the same dataset and 160 times more epochs, making YOLO 

architecture more efficient in practice.  

Image classification seems less pertinent for pathology detection 

due to the lack of localization of defects, but its simplicity usually 

allows for more approachable and accessible models following a 

CNN architecture. 

3. YOLOv5 Development Methodology

3.1 Model and case study selection 

The study deliberately limits itself to a single category 

of pathology, one type of material, and one model to 

focus observations on the model’s behavior under varying 

image acquisition conditions and to obtain sufficiently precise 

results within the research timeframe.  

Based on the scientific literature review by Guo et al. (2024) 

and observations presented in other studies (Cha et al., 2018; 

Rao et al., 2020; Li et al., 2023), cracks were identified as 

the most relevant pathology due to their complexity, 

their diverse characteristics, and the limitations of bounding 

boxes in object detection models like. 

Following a similar line of reasoning, brick masonry was 

selected as the target material, as it is observed that most 

research on automatic damage detection has been 

concentrated on modern and simpler construction materials 

like concrete, asphalt, and metal. Karimi et al. (2024) states 

that there is a growing interest in applying similar techniques 

to historic masonry structures within the field of built 

heritage conservation. Also, masonry presents greater 

challenges, as brick and stone exhibit variations in color, 

bonding patterns, and shapes depending on context—factors 

that make it difficult to represent comprehensively within a 

dataset (Ye et al., 2024). These difficulties are further 

compounded by the limited availability of annotated datasets 

focused on masonry-related pathologies, which hinders the 

development of effective deep learning models (Katsigiannis et 

al., 2022). 

Regarding the deep learning model, YOLOv5 was selected due 

to its high computational efficiency and accessibility. Recent 

studies by Pratibha et al. (2023) and Guo et al. (2024) have 
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further highlighted YOLOv5’s advantages in real-time object 

detection and its effectiveness during training, making it 

especially well-suited for the precise localization of cracks in 

historic masonry. Based on these observations, this specific 

version of the YOLO architecture was adopted for the study.  

3.2 Dataset selection 

To realistically evaluate the model's robustness in a context 

different from its original training environment, we employed a 

dataset created and annotated by Karimi et al. (2024), which is 

publicly available on Kaggle (https://www.kaggle.com/datasets/ 

nargeskarimii/various-materials-from-historic-buildings). It 

features different types of cracks under varying lighting 

conditions and masonry textures from historical bridges in 

Isfahan, Iran (fig. 1).  

Figure 1. Brick dataset sample from Karimi et al. (2024). 

To create the brick dataset, Karimi et al. (2024) acquired high-

resolution images using a Samsung Galaxy A32 (64 MP), under 

diverse weather and lighting conditions. After manually filtering 

these images to remove non-relevant or low-quality data, 

brightness and contrast processing were applied to improve 

damage visibility. Also, 45° image rotation was employed as a 

data augmentation technique to prevent the model from 

confusing cracks and mortar joints and to enhance the model’s 

robustness. 

Images were then downscaled from 3456 × 3456 pixels to 416 × 

416 pixels to match the input requirements of the YOLOv5 

architecture and to optimize GPU resource usage during training. 

This resolution adjustment was not related to ground sampling 

distance (GSD) evaluation but rather meant to comply with the 

model’s standardized input format. Finally, the dataset was 

partitioned into training (70%), validation (20%), and testing 

(10%) subsets, resulting in a total of 861 annotated images 

available for training. 

3.3 Model preparation and training 

After retrieving the YOLOv5 source code, which is publicly 

available on GitHub, we chose Google colab, a cloud-based 

execution environment to run and train the model. It allowed for 

the execution of the model with minimal setup on the browser 

using remote GPU servers, significantly accelerating processing 

time. The model achieved a mAP50 of 96.8% and a mAP50-95 

of 68.3% after training for 100 epochs with a batch size of 16. 

This configuration was identified as the most balanced during the 

training phase, offering an optimal compromise between training 

time, hardware resource consumption, and prediction accuracy. 

An analysis of epoch variation showed that increasing the 

number of training epochs led to a linear increase in training time. 

Although training the model for 500 epochs yielded a near-

perfect mAP of 99.5%, prediction quality in unseen data was 

suboptimal, likely due to overfitting—where the model learns 

training data too precisely and fails to generalize to unseen 

images. Conversely, training for 50 epochs proved insufficient 

for model convergence, with the mAP only reaching 87%. 

Therefore, 100 epochs were identified as the optimal choice, 

offering above 96% mAP while maintaining a reasonable training 

duration of 21 minutes and 12 seconds.  

The impact of batch size on training efficiency and memory 

usage was equally significant. A batch size of 16 was identified 

as optimal, requiring only 2.3 GB of GPU memory and 

approximately 4 GB of system RAM, thus making it suitable for 

standard cloud computing platforms such as Google Colab. 

Larger batch sizes, such as 128 and 192, slightly reduced training 

time (to around 19 minutes) but led to a substantial increase in 

memory usage, up to 15.1 GB of GPU memory and more than 

8.5 GB of RAM, approaching the limits of typical hardware and 

providing only marginal performance gains. 

YOLOv5’s training output also revealed a balanced spatial 

distribution of defects within the dataset (Fig. 2a). However, it 

simultaneously highlighted a typological imbalance with a 

disproportionate number of small, vertically oriented cracks 

dominating the dataset (Fig. 2b). This imbalance and lack of 

representation of horizontal and stepped cracks could outline 

some of the model’s prediction and performance issues when 

faced with these kinds of cracks. 

Figure 2. Spatial representation of cracks from the dataset: 

a) position relative to the image, b) height and width of defects

3.4 Camera settings 

All other images presented in this study were used to evaluate 

YOLOv5’s performance and were captured using a Nikon Z6 

camera with a native resolution of 6048 × 4024 pixels in various 

masonry facades in the city of Liège, Belgium (fig. 3). A Nikon 

Speedlight SB-700 flash was employed for nighttime 

photography and a Vanguard tripod was used to mark and 

replicate camera positions across day-and-night sessions, 

allowing for consistent framing and enabling the comparison of 

lighting conditions under near-identical setups. 
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Figure 3. Masonry façades used for testing YOLOv5’s 

robustness in the Faculty of Architecture of the University of 

Liège, Belgium. 

To ensure optimal image quality and consistency across all image 

acquisition conditions, the experimental campaign was 

conducted over a short period in winter. This limited timeframe 

allowed for controlled natural lighting conditions, thereby 

reducing external interference in the evaluation of model 

performance across the parameters studied. Specifically, the 

choice of season and case study location excluded facades 

exposed to extreme sunlight or deep shadows, which could be 

addressed in a further study to better evaluate YOLOv5 

robustness under varied natural lighting conditions. 

Similarly, camera settings were adjusted manually in response to 

varying field conditions to allow for ideal image exposure. By 

default, images were captured with a shutter speed of 1/30 s and 

an aperture of f/5. For daytime images, ISO sensitivity was 

maintained at 100. These parameters were selected in reference 

to commonly used guidelines in architectural photogrammetry to 

ensure compatibility with documentation standards. For 

consistency, the white balance was fixed to “cloudy” throughout 

the study. 

3.5 Image acquisition parameters 

The study systematically varied several image acquisition 

parameters to reflect challenges commonly encountered in 

heritage visual inspections. This helped assess their potential 

impact on model performance and offered insights into its 

robustness beyond controlled laboratory conditions. The first set 

of experiments focused on validating the trained model in semi-

controlled conditions, designed to closely resemble the training 

environment with similar crack proportions. The goal was to 

establish a performance baseline for further experiments and to 

identify early signs of the model's limitations due to training 

imbalances. While this process allows for rapid verification of a 

DL model’s effectiveness, it holds little value for architects and 

experts aiming to diagnose an entire facade or building. Pre-

identifying pathologies or cropping them outside their original 

context before applying the model is ultimately less efficient than 

manually annotating the original images. Therefore, it was 

essential to verify whether pathology detection could be 

performed from greater distances. 

Following this objective, one of the most critical parameters 

tested was GSD variation. The GSD (Ground Sampling Distance) 

corresponds to the distance between the centers of two 

consecutive pixels. It varies depending on the size of the camera 

sensor, the image resolution, the focal length used, and the 

distance to the photographed surface. It is equivalent to the 

spatial resolution of the image captured and can be calculated 

using the following formula (Hallot et al., 2022): 

While the focal length and distance can only be adjusted during 

field analysis, the image resolution is modified during predictions 

to comply with the model’s input requirements. The sensor size 

depends on the camera used and measures 36×24 mm for the 

Nikon Z6. This means that the operator’s distance to the defect, 

the focal length of the camera and the model’s detection 

command settings directly affect the number of pixels 

representing each crack and, by extension, their minimum visible 

detail. Since pathology datasets typically rely on low-resolution, 

highly zoomed-in images of defects to reduce training time, it is 

crucial for field operators to understand how the model responds 

to varying defect proportions and sizes within the image. By 

extension, we examined the maximum distance at which 

YOLOv5 could accurately locate cracks to determine its 

relevance in visual inspections of cultural heritage. 

4. Predictions and Results Analysis

4.1 Training validation 

Initial trials using cracks framed similarly to those in the 

training dataset confirmed the model’s baseline ability to 

detect real pathologies in unprocessed and never seen field 

images (fig. 4). Results were satisfactory for vertical cracks; 

however, YOLOv5 demonstrated limitations in detecting 

oblique defects, likely due to their low representation in the 

dataset. The model's tendency to fragment a single crack into 

multiple smaller bounding boxes also appears to originate 

from the training data with a high concentration of small 

vertical instances of defects, suggesting a training imbalance. 

Figure 4. First predictions of YOLOv5 
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To further explore spatial sensitivity, peripheral pathologies were 

introduced by capturing scenes where target cracks appeared near 

the image edges instead of being centered (fig. 5). This aimed to 

test whether the position of defects within the image affected 

detection accuracy. In accordance with the graph shown in fig. 

2a, results indicated that defect location had no significant impact 

on performance. 

Figure 5. Predictions on peripheral pathologies 

Next, rotated images were used to assess the model’s orientation 

invariance. Cracks were either photographed or digitally rotated 

to a 45° angle to verify whether background brick alignment 

interfered with prediction, and whether the detection gap between 

vertical and oblique cracks was due to limited representation in 

training. It was confirmed that background orientation did not 

affect performance (fig. 6) but YOLOv5’s reduced accuracy for 

oblique cracks is attributable to insufficient representation during 

training, as represented earlier in fig. 2b. 

Figure 6. Predictions on images rotated at a 45° angle 

4.2 Influence of GSD variation on model performance 

Since it was not possible to calculate the ground sampling 

distance (GSD) of the training images due to the unknown 

distance between the camera and the object, subsequent 

experiments were conducted using different image resolutions, 

thereby generating different GSD values, to determine which 

range of GSD yielded the most accurate results. The presented 

results all originate from a specific image which offered optimal 

conditions for visualizing various crack scales, captured 7 meters 

from the facade. For clarity, representative results were 

selectively cropped and enlarged to facilitate the readability of 

predictions at different input resolutions. Resolution steps were 

chosen arbitrarily, primarily as multiples of 416 pixels, which is 

the default input resolution for YOLOv5.  

The evaluation of YOLOv5 performance across varying input 

resolutions revealed that resolution (and GSD) significantly im-

pacts both detection accuracy and operational usability. At lower 

resolutions such as 208 and 416 pixels, the model failed to detect 

the two main cracks of the image and only predicted false posi-

tives (fig. 7a). However, at 624 pixels, two of the four primary 

defects were correctly identified. Increasing the resolution to 832 

pixels resulted in improved confidence scores and enabled the 

detection of a third crack, while predicted areas accurately cov-

ered most of the crack surfaces, with limited overlap and a man-

ageable number of false positives. Starting from 1040 pixels, the 

fourth and last main crack became visible, and previously identi-

fied cracks remained consistently detected. At 1664 pixels, the 

model achieved its first successful detections of microcracks, 

particularly those confined to individual bricks or along mortar 

joints, without a significant rise in false positives and while keep-

ing confidence scores (fig. 7b). 

Figure 7. Results at various GSD values: 

a) False positive at 8.65 mm/pix, b) Primary crack and first

visible micro-crack at 2.16 mm/pix 

Beyond this point, however, detection quality began to degrade. 

At very high resolutions such as 4160, 6240 pixels, and above, 

the confidence scores for the main cracks decreased, and alt-

hough the model identified a greater number of microcracks, the 

volume of predictions and false positives rose sharply. This in-

crease hindered the image output’s readability and interpretabil-

ity, making it more challenging for human operators to distin-

guish relevant defects. Table 2 shows a quantitative analysis of 

those results, while figure 8 allows for better visual representa-

tion. True positive predictions were subdivided into main cracks 

and microcracks, representing respectively the primary targeted 

defects and smaller, less critical cracks. False positives were cat-

egorized into mortar joints and brick textures and noise. The first 

category reflects cases where the model confuses background 

patterns with actual cracks, while the second is due to unexpected 

architectural elements which are absent from the training data. 

Table 2. Analysis of predictions for specific GSD values 

Figure 8. Visual graph of predictions for specific GSD values 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-179-2025 | © Author(s) 2025. CC BY 4.0 License.

 
184



Based on these findings, the study concluded that a selected range 

of input resolutions yielded better results in maximizing true pos-

itives while minimizing false positives. In this case, a resolution 

of 832 pixels provided an optimal balance between accuracy and 

speed for identifying primary damage. Higher resolutions, such 

as 1664 and 2080 pixels, showed an improved sensitivity to the 

shape of major defects and enabled the detection of finer cracks. 

At resolutions up to 6240 pixels, the model produced finer and 

more detailed predictions at the cost of an increase in false posi-

tives. Further increases in resolution lowered performance mean-

ingfully and even resulted in reduced detection clarity and longer 

inference time, while resolutions under 624 did not detect any of 

the primary cracks. Figure 9 further illustrates the impact of GSD 

and image resolution on prediction accuracy. Annotated colors 

correspond to earlier tables and figures.  

Figure 9. Predictions of YOLOv5 at various GSD values: 

a) 5.77 mm/pix, b) 1.73 mm/pix and c) 0.25 mm/pix

Similarly to photogrammetry principles, the experiment under-

scored the importance of maintaining consistent focal length and 

distance to the object across all images, as excessive variation in 

ground sampling distance (GSD) negatively impacts the model’s 

performance. However, if field conditions do not allow constant 

image acquisition settings, manually adjusting the GSD through 

YOLOv5 detection parameters shows great potential.  

5. Conclusion

The integration of Deep Learning models like YOLOv5 into built 

heritage conservation already represents a significant 

advancement in automated crack detection, assisting manual 

inspections while improving diagnostic accuracy. Nonetheless, 

automatic pathology detection still requires refinements to 

address environmental and architectural variations. 

Despite training on a rather small sample of images from Iran, 

YOLOv5 demonstrated strong generalizations in detecting 

previously unseen cracks on varied brick types in Belgium. 

Performance remained robust under challenging conditions, 

including high incidence angles, low lighting, and unwanted 

elements like vegetation. However, the model struggled with 

certain crack typologies, particularly horizontal and stepped 

cracks, due to insufficient representation during training. Image 

rotation and peripheral detection experiments confirmed that 

these limitations originated from insufficient training rather than 

model deficiencies. 

This study highlighted the critical influence of Ground Sampling 

Distance (GSD) and input image resolution on the performance 

and interpretability of deep learning models applied to heritage 

pathology detection. Through the deployment and testing of 

YOLOv5 across multiple resolutions, it was demonstrated that 

specific resolution thresholds enhanced the detection of fine-

scale features, such as microcracks, and improved model confi-

dence. However, detection performance declined heavily when 

the resolution and consequently the GSD value did not meet the 

specific range. When GSD was significantly lower than training 

data, it caused YOLOv5 to realize an excessive number of pre-

dictions, increasing false positives and causing longer inference 

times because of the images’ high resolution, all of which reduce 

operational clarity and usability in conservation workflows. 

These findings underscore the need to define an optimal GSD not 

only as a technical parameter, but also as a strategic variable that 

must be adapted to show various scales of the pathology. In this 

context, GSD also serves as a bridge between automatic detection 

methods and traditional photogrammetric standards, offering a 

quantifiable reference that can guide image acquisition protocols 

and ensure consistency in field conditions. Future studies should 

take this into consideration when developing datasets featuring 

diverse pathologies. This would enable a more comprehensive 

analysis and comparison of GSD values between training data 

and field-acquired images, leading to a better understanding of 

their impact on model predictions. 

By framing image resolution within a GSD-based logic, this 

study provides a foundation for improving both the robustness 

and efficiency of DL-based detection systems in heritage con-

texts. Ultimately, the calibration of GSD parameters, alongside 

appropriate acquisition angles, lighting, and framing, can sub-

stantially enhance the interpretability of automated predictions 

and facilitate their integration into existing documentation and 

monitoring tools. This reinforces the value of interdisciplinary 

practices that combine Deep Learning technologies with actual 

visual inspection methods. 
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