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Abstract

Under the current rapid development of digitalization and artificial intelligence in heritage practice, deep-learning-driven pathology 
detection is emerging as a pivotal tool for preventive conservation. Deep learning-based intelligent pathology detection in heritage 
conservation has garnered increasing attention. This study explores intelligent pathology detection techniques using the YOLO11-seg 
model, taking the pathology identification of shedthin tiles of Suzhou classical gardens as a case study. Through data collection and 
annotation of 1,250 high-resolution images of shedthin tiles, a training dataset was constructed. After 362 training epochs, the model 
achieved automatic recognition of four key pathological type-water stains, color aberration, surface scaling, and excessive gaps-with 
respective accuracies of 79.31%, 73.38%, 61.12%, and 75.60%, and an overall accuracy of 74.38% that meets practical application 
requirements.that generally meets practical application requirements. The study further conducted quantitative analysis of detection 
results to assess the severity of shedthin tiles damage, providing critical references for formulating scientific restoration strategies. 
Compared with traditional visual surveys, the proposed workflow (i) increases detection speed by an order of magnitude, (ii) 
standardises assessments across inspectors, and (iii) captures early-stage micro-pathologies often overlooked in manual inspections. 
The results demonstrate that how integrating deep learning with heritage diagnostics can offer a replicable template for other fragile, 
repetition-rich surface historical materials of architectural heritage.

1. Introduction

1.1 Development History of Shedthin Tiles and Their
Application in Ancient Chinese Architecture

Shedthin tiles, also known as "brick sheathing" or "wangba（望

笆）", are important components of the roof structure in ancient
Chinese architecture. In practical applications, shedthin tiles
primarily serve to carry the finish roof tiles, block rainwater
infiltration and act as an interior wind- and dust-screen while
lending the ceiling a refined, rhythmic appearance (Figs. 1, 2).
According to Yingzao Fayuan (《营造法原》 , The Craft of
Architectural Construction), the laying process of shedthin tiles
must adhere to strict standards: "When laying shedthin tiles, a
face edge (mian-yan，面檐) should first be set at the eaves, and
shedthin tiles should be laid on wooden rafters. A primary
bedding (le-wang，勒望 ) is set on each purlin to prevent the
shedthin tiles from sliding and ensure neat horizontal alignment.
For shedthin tiles with insufficient width, narrow infill pieces
called “zhao-wang” (找望 ) should be inserted at the upper
end of each bay. If the roof has “flying rafters”(fei-chuan,飞椽)
an additional layer of shedthin tiles should be laid on the flying
rafters. To protect shedthin tiles from the heavy pressure of the
upper roof, wooden strips are typically laid between the
shedthin tiles and the turtle-shell plates to buffer the load" (Hou
and Hou, 2014).

Figure 1. Laying steps and detail drawings of shedthin tiles.

Figure 2. Structural position of shedthin tiles in garden
architecture.
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Figure 3. Extensive application of shedthin tiles in Suzhou
garden architecture.

The application of shedthin tiles in architecture can be traced
back to the Song and Jin dynasties. During the Ming and Qing
dynasties, their application gradually narrowed, mainly used in
small buildings, especially in the Jiangnan region. However, the
limitations of ancient manufacturing techniques led to shedthin
tiles having the disadvantages of brittle texture and insufficient
toughness, making them prone to damage and detachment due
to the deformation of wooden rafters, hence they were not
widely promoted. In the architecture of Suzhou gardens,
shedthin tiles are relatively widely used (Fig. 3). During
building repairs, shedthin tiles are often polished and reused,
and the differences in their age, color, and material often form a
unique texture effect, thereby enhancing the visual beauty of the
architecture.

1.2 Material Characteristics and Pathological Types of
Shedthin Tiles

Shedthin tiles in the Suzhou area can be divided into three
categories according to their craftsmanship: rough shedthin tiles,
brushed shedthin tiles, and fine-processed shedthin tiles. Rough
shedthin tiles are unprocessed and are mostly used in areas that
cannot be directly seen; brushed shedthin tiles are coated with a
grayish-white slurry on the surface before laying, and a white
edge is trimmed at the corners to form a continuous white line;
fine-processed shedthin tiles are finely processed through
planing, polishing, etc., and are mostly used in buildings of
higher grades.

Compared with wooden sheathing, shedthin tiles have better
water absorption performance, thus they can better protect the
underlying wooden rafters from decay. Mr. Chai Zejun wrote in
The Repair Engineering Report of the Mituo Hall in Chongfu
Temple, Shuozhou: "Using shedthin tiles for the hall roof is
more conducive to water absorption than wooden sheathing,
which is quite advantageous for protecting the rafters from
decay. In the northwest corner, a small part of the sheathing was
replaced by later generations, and the eaves rafters are severely
decayed, which was not discovered in the past" (Chai, 1993).
Due to this characteristic of shedthin tiles, they have been
widely used in the hot and humid climate of southern China.

The pathologies of shedthin tiles mainly stem from climatic
factors and construction techniques. The hot and humid
environment in the south and long-term erosion by rainwater
keep shedthin tiles in a humid state, making them prone to mold
growth and accelerating brick damage. In winter, after multiple
freeze-thaw cycles of ice formation from water, the structure of
shedthin tiles is easily damaged. In addition, uneven thickness
during the firing process and subsequent processing and
polishing easily cause structural damage, accelerating their
deterioration.

In terms of pathological types, China's current standard
Overview of Diseases and Classification of Stone and Brick

Collections (GB/T 30688, 2014) classifies brick and stone
pathologies into fifteen categories, including cracks, local
defects, surface corrosion, pulverization, lamellar glass, rust
crusts, surface pigment damage, etc. In addition, the
pathological characteristics of mansory heritage can be broadly
grouped into three types: mechanical damage, surface
weathering, and surface pollution and discoloration (Zhou et al.,
2014). Therefore, considering the above information and
combining with the actual situation of Suzhou garden
architecture, this paper summarizes the four typical pathologies
of shedthin tiles and their characteristics as follows (Table 1):

(1) Water stains: Under the long-term action of humidity
and freeze-thaw cycles, water accumulation in shedthin tiles
forms water stains, accelerating aging. Water stains are divided
into surface water stains and penetrating water stains, and the
presence of water stains often indicates roof leakage problems.

(2) Color aberration: Inconsistent colors or polishing
scratches when treating the surface of shedthin tiles with gray
water or mortar often lead to color aberration. Scratched areas
easily absorb dust and pollutants, making the brick surface
darken or turn yellow.

(3) Surface scaling: Rainwater and humidity affect the aging
of surface mortar, and water penetration forms bubbles. After
the bubbles burst, the surface material peels off.

(4) Excessive gaps: In the repair of ancient buildings,
shedthin tiles are often cleaned, polished, and reused after
processing (Li et al., 2023). However, due to long-term wear
and tear, the size of reused shedthin tiles is reduced, and the
brick joints cannot be aligned during laying, affecting
waterproof performance and structural stability, and even
threatening pedestrian safety.

At present. most of the new gardens and antique buildings use
aluminum boards to replace the traditional shedthin tiles, and
the number of craftsmen who can fire the shedthin tiles is
decreasing, so it is very important to identify and repair the
pathologies of the shedthin tiles in time to protect the world
cultural heritage of Suzhou's classical gardens.

water stains color aberration

surface scaling excessive gaps

Table 1. Four typical pathology types of shedthin tiles.

1.3 Traditional Pathology Detection workflow and Its
Limitations

Traditionally, detecting pathologies in historic buildings relies
on manual inspection, following a workflow of survey,
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diagnosis, treatment, monitoring, and prognosis. However, this
approach has significant limitations.For example,this model
relies on on-site visual inspection by experts or data collection
through photography and other means, followed by post-
analysis to assess the damage status. Although these methods
can ensure detection accuracy to a certain extent, they require a
lot of human and material resources. Moreover, this method
lacks a quantitative assessment of the degree of damage, and the
detection results are easily affected by the subjective judgment
of inspectors, limiting their rationality. Therefore, there is an
urgent need for a more efficient detection method to assist
inspectors in accurately identifying damage and reducing
unnecessary further damage.

2. Deep-Learning Object Detection for Architectural
Heritage Pathologies

2.1 Evolution of Deep Learning-Based Object Detection
Technology

With the rapid development of deep learning, deep learning-
based object detection technology has been widely used due to
its excellent performance. Object detection extracts features
from data such as images and videos and uses multi-layer neural
networks to achieve learning and recognition of complex
patterns. The current mainstream deep learning-based object
detection models can be divided into two categories: one-stage
object detection models represented by SSD and YOLO, and
two-stage object detection models represented by the RCNN
series. Compared with two-stage object detection models, one-
stage object detection models only need to extract target
features once, with the advantage of fast detection speed, but
their accuracy is generally slightly lower than that of two-stage
models (Zhang et al., 2023).

R-CNN was the first deep learning-based object detection
algorithm, which mainly uses a convolutional neural network
(CNN) to extract features of target regions and a support vector
machine (SVM) for classification (Girshick et al., 2015) . The
subsequent Fast R-CNN made many improvements based on R-
CNN, taking the entire image as input and introducing a region
of interest pooling layer (RoI pooling) to extract features
(Girshick, 2015). These two-stage detectors divide the detection
process into two stages: feature extraction and regression
classification, and finally output the results. Although such
algorithms can provide higher accuracy, they also bring higher
computational requirements (Zhu et al., 2023). Therefore, in
order to reduce computational complexity and improve
detection efficiency, many one-stage models have emerged. For
example, SSD (Single Shot MultiBox Detector) is a one-stage
algorithm that can predict bounding boxes on multiple scales to
achieve detection of objects of different sizes (Liu et al., 2016).
In recent years, in the field of object detection, the YOLO (You
Only Look Once) series of algorithms has stood out for its real-
time performance and high accuracy. This algorithm transforms
the object detection problem into a regression problem and
achieves end-to-end object detection through a single
convolutional neural network (Wang et al., 2023).

2.2 Applications in Architectural Heritage Pathology
Detection

With the development of computer vision technology,
especially the development of object detection technology, it
has brought new opportunities for the innovation of
architectural heritage pathology detection technology (Zhang,
2024). For example, in 2022, Ma Jian, Yan Weidong, et al. used

deep learning models such as YOLO, SSD, and Faster RCNN
for crack detection in ancient building timber structures and
compared the advantages and disadvantages of different models
(Ma et al., 2022). In 2023, Karadag, I. used a conditional
generative adversarial network (cGAN) to predict the missing or
damaged parts of historical buildings within the scope of early
Ottoman tombs (Karadag, 2023).

Since its release in 2016, the YOLO series of algorithms has
received widespread attention due to its excellent detection
performance and efficient detection speed. In recent years, with
the continuous optimization of the YOLO algorithm, the
application of the YOLO series of algorithms in architectural
heritage conservation has also made great progress, especially
in the surface pathology detection of building materials such as
bricks and stones, roof tiles, and wooden components (Mishra
and Lourenço, 2024). For example, Yan, L. et al. used the
YOLOv4 model to detect pathologies of shedthin tiles in
Suzhou gardens, achieving an average mAP50 of 43.57% (Yan
et al., 2024). Narges Karimi et al. used the YOLOv7 model and
trained the model with more than 5,000 collected pathology
images to detect pathologies of traditional Portuguese tiles,
achieving an overall accuracy of more than 72% (Karimi et al.,
2024).

In addition to simply improving traditional pathology detection
methods, some scholars have also optimized and improved the
object detection model itself to optimize model performance
and improve detection efficiency. For example, Qiu et al. used
an improved YOLOv8 model to detect roof pathologies in
traditional villages in Fujian, with an average accuracy of
89.4%. Compared with the baseline model, this method
improved the average accuracy by 1.5% while reducing model
parameters and computational complexity (Qiu et al., 2024). In
addition, some scholars have also explored unsupervised
learning models such as autoencoders for intelligent detection
systems to detect roof surface pathologies (Zhang et al., 2024).

In recent years, deep learning-based object detection technology
has shown significant advantages in architectural heritage
pathology detection. This type of method not only improves
detection efficiency but also ensures high accuracy. With the in-
depth research and technological development, the detection
objects have gradually expanded from single materials to
multiple materials, and model performance and detection
efficiency have been continuously optimized. In the future, with
the continuous update and iteration of technology and the
increasing integration of interdisciplinary, deep learning
technology will continue to promote innovation and
development in the field of architectural heritage conservation.

3. Deep-Learning Workflow for Intelligent Pathology
Detection of Shedthin Tiles

3.1 Data Collection

In this study, a total of 1,283 high-resolution pathology photos
covering various pathology types were collected from multiple
classical gardens in Suzhou (Fig. 4). To ensure data diversity,
the shooting locations were selected from different pavilions,
terraces, and halls, which are representative and have different
pathology conditions. During data acquisition, the team used a
mobile-phone camera to photograph the tiles under diverse
weather conditions—clear, overcast, and immediately after
rainfall—to bolster the model’s robustness against
environmental and lighting variations.
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Figure 4. Data collection locations.
3.2 Data Preprocessing

Through manual screening, a total of 1,250 high-quality photos
were retained for dataset construction. Each photograph was
then pre-processed—shadow suppression and denoising—to
maximise the visibility of pathology features. All images were
uniformly rescaled to 512 × 512 pixels, both to satisfy YOLO’s
input specification and to reduce computational overhead.
Finally, an extensive augmentation pipeline—random cropping,
flips, rotations, color jitter, and synthetic noise—was applied to
enlarge the effective training set and strengthen the model’s
generalisation capacity.(Chen et al., 2021).

3.3 Dataset Construction

In the dataset construction process, Labelme was selected
because its polygon-based tools allow more accurate delineation
of pathology margins—critical for downstream quantitative
analysis. In addition, several team members independently
produced labels, after which a senior reviewer reconciled
discrepancies and ensured stylistic consistency. After the
annotation was completed, a computer-vision specialists further
verified the annotated data, including geometry, class codes,
and file integrity. Finally, this study constructed a high-quality
dataset containing 1,250 annotated photos, which was randomly
divided into a training set (1,000 photos) and a validation set
(250 photos) at an 8:2 ratio to ensure data quality.

3.4 YOLO11-Seg Architecture and Training
Configuration

As a representative of one-stage object detection models,
YOLO (You Only Look Once) was proposed by Joseph
Redmon et al. in 2015, and its core is to achieve end-to-end
real-time object detection through regression problem modeling.
YOLO11 is the latest object detection model in the YOLO
series, further improved and optimized by Ultralytics based on
the original YOLOv8 model.

This study adopted the YOLO11-seg model optimized for
instance segmentation tasks. The structure of YOLO11-seg
mainly includes three parts: the backbone network, the neck
network, and the head network (Fig. 5). It uses an improved
CSPDarknet in the backbone network, which improves
computational efficiency and feature extraction capabilities
through cross-stage partial connections (CSP) to ensure that the
model can not only process data quickly but also capture rich
feature information. In addition, the C3k2 module is introduced
in the backbone network to replace the traditional Bottleneck
structure, which not only reduces the amount of computation
but also maintains efficient feature learning capabilities. In
terms of the neck network, the model combines the feature
pyramid network (FPN) and the path aggregation network (PAN)

to generate multi-scale feature maps and enhance feature fusion
and transmission. The model also adds the C2PSA position-
sensitive attention mechanism to further improve the effect (Ali
and Zhang, 2024). The head network design of YOLO11-seg
mainly includes a decoupled head and a segmentation head
optimized for instance segmentation, to support classification,
regression, and high-quality pixel-level mask output. In addition,
YOLO11-seg uses the SPP module and various attention
mechanisms to further improve the model's receptive field and
performance.

The YOLO11-Seg model was trained for 362 epochs using a
two-phase transfer-learning schedule. This study adopted a
transfer learning strategy in the experimental stage. In the first
stage, a pre-trained model was loaded, the backbone network
was frozen, the learning rate was 0.005, the batch size was 8,
and 3 epochs of training were conducted to extract basic
features. In the second stage, the learning rate was adjusted to
0.00001, the backbone network was unfrozen, and deep features
were extracted. In the final 10 epochs of training, Mosaic
augmentation was turned off to improve detection performance
in real-world scenarios. During the entire training process, if the
model performance did not improve after 100 epochs, the
training would automatically stop.

Figure 5. Architecture diagram of YOLO11-seg model.

4. Model Result Testing and Analysis

4.1 Model Testing Results and Manual Verification

After 362 epochs of training, the loss-curve analysis (Fig. 6)
revealed that the network reached its minimum object-detection
loss at epoch 355, while the instance-segmentation loss
bottomed out at epoch 360. Considering both tasks jointly, the
aggregate loss was lowest at epoch 360. Accordingly, the
weights from epoch 360 were selected for subsequent
performance evaluation and quantitative pathology analysis.
During testing, the IoU threshold was fixed at 0.5. On the
validation set, the model achieved a mean average precision of
51.7 % for object detection (mAP50) and 49.8 % for instance
segmentation (Fig. 7). The detection accuracies of different
pathologies varied significantly. For example, in the instance
segmentation task, the accuracy of excessive gaps (EG) was
69.5%, while that of surface scaling (SS) was only 30.9%.
Further analysis of the confusion matrix showed that surface
scaling (SS) was easily confused with color aberration (CA) and
water stains (WS), which may be due to the diverse and
overlapping morphologies of shedthin tile pathologies, thereby
increasing the difficulty of model recognition. For example,
surface scaling varies in morphology, size, color, and texture,
and exists in various forms, some of which are large-area
scaling, while others present punctate scaling. This diversity
undoubtedly increases the difficulty for the model to accurately
recognize pathology features.
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Figure 6. Training loss gradient diagram of YOLO11-seg model.

Figure 7. Performance metrics and confusion matrix of
YOLO11-seg model.

Class Images
Inst-

ances

Box

Precisi

on
Recall mAP50

all 236 5357 0.559 0.506 0.517

CA 200 898 0.558 0.529 0.558

SS 190 1272 0.472 0.342 0.347

EG 154 851 0.69 0.669 0.694

WS 234 2336 0.515 0.483 0.469

Class Images
Inst-

ances

Mask

Precisi

on
Recall mAP50

all 236 5357 0.546 0.491 0.498

CA 200 898 0.559 0.523 0.551

SS 190 1272 0.444 0.318 0.309

EG 154 851 0.686 0.662 0.695

WS 234 2336 0.496 0.461 0.436

Table 2. Model detection performance metrics for different

pathologies.

Subsequent analysis revealed that shedthin tiles frequently
exhibit overlapping deterioration types: for instance, water
staining (WS) often coincides with surface scaling (SS).
Because YOLO treats every bounding box independently,
overlapping annotations cannot be recognised simultaneously;
annotators therefore marked only the most visually dominant
defect, inevitably depressing detection accuracy. To mitigate
this limitation, we introduced the notion of “compound
pathologies” (Fig. 8), explicitly labelling overlap zones as
combined classes (e.g., WS + SS). This strategy reduces
annotation bias and improves model sensitivity to complex, co-
occurring damage. Although the current detection performance

still falls short of the ideal, the experiment confirms the
method’s promise for non-destructive diagnosis of shedthin-tile
pathologies.

Figure 8. Schematic diagram of compound pathology
annotation.

Subsequently, we manually validated the model using a separate
set of 566 photographs.The detection standard was that a
detection box was considered correctly detected if it overlapped
with the annotated box by more than 50% (Table 2). The results
showed that the detection accuracies of water stains (WS), color
aberration (CA), surface scaling (SS), and excessive gaps (EG)
were 79.31%, 73.38%, 61.12%, and 75.60%, respectively, with
an average accuracy of 74.38% (Fig. 9). Among them, the
detection performance of surface scaling (SS) was relatively
weak, providing a clear direction for model optimization.
Subsequent model improvements will enhance its robustness
through data augmentation, attention mechanism improvements,
or multi-scale feature fusion.

Figure 9. Model detection accuracy chart.
4.2 Model Application and Analysis

In the application phase, complete roof-elevation panoramas
were extracted from two Suzhou gardens—Mountain Villa with
Embraced Beauty (环秀山庄) and the Garden of the Couple’s
Retreat（耦园）—and processed through the trained pipeline
(Fig. 10). The analysis proceeded as follows:(a)Site localisation
and roof extraction The target buildings were pinpointed within
each garden; their roof typology and the position of the
shedthin-tile layer were confirmed, and a seamless elevation
image was generated;(b)Pathology detection The YOLO11-Seg
model was applied to the elevation to produce pixel-level masks
of each deterioration type;(c)Thermal mapping Segmentation
outputs were aggregated into heat maps, revealing the spatial
distribution of roof pathologies;(d)In the application phase,
complete roof-elevation panoramas were extracted from two
Suzhou gardens—Mountain Villa with Embraced Beauty and
the Garden of the Couple’s Retreat—and processed through the
trained pipeline (Fig. 10). The analysis proceeded as
follows:Quantitative ranking Coverage and lesion-area
statistics were computed for every class, allowing the relative
severity of shedthin-tile pathology across the roofscape to be
objectively ranked.
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Figure 10. Basic flowchart of model application analysis.

The pathology detection results showed (Fig. 11) that the model
used in this study performed ideally in detecting shedthin tile
pathologies of complete roofs, basically achieving the research
expected goals. At the same time, the pathology detection
heatmap displayed the response intensity distribution of the
model in different roof areas, where the red area represented the
area with high model response values, and relatively, the blue
area indicated the background area with low response or non-
key areas. By observing the heatmap, it can be found that
although the overall model performance is satisfactory, there are
still certain missed detections and false detections in some cases,
and the accuracy still has room for improvement.

Figure 11. Pathology detection results and thermal analysis
chart.

In terms of quantitative analysis, the Guidelines for Safety
Assessment of Modern Historical Building Structures (WW/T
0048, 2014) propose a structural damage assessment method
based on the proportion of damaged area, which provides a
reference for the quantification of architectural heritage
pathology severity. In addition, some scholars have quantified
the damage severity of heritage buildings or sites by calculating
the proportion of pathology area or conducting weighted
assessments of pathology severity (Zhai, 2024;Yao and Sun,
2016). To express the overall deterioration state of the shedthin-
tile layer on a given roof, we define a dimensionless indicator—
the Shedthin-Tile Pathology Index (STPI). The calculation
formula for this index is:

𝐷 ൌ
𝑆𝑐𝑎
𝑆𝑡

𝛼 ൅
𝑆𝑤𝑠
𝑆𝑡

𝛽 ൅
𝑆𝑠𝑠
𝑆𝑡
𝛾 ൅

𝑆𝑒𝑔
𝑆𝑡

𝛿

In this formula, 𝑆𝑥𝑥represents the area of each type of pathology,
𝑆𝑡 is the total area of the roof, and α, β, γ, δ are dimensionless
weight coefficients, whose specific values are determined

according to the severity of different pathologies on component
hazards. In this study, according to the hazard levels of these
four pathologies, the coefficients were determined as α=0.5, β
=1, γ =2, δ =1.5, respectively. Based on this formula, the
shedthin tile pathology index of a building can be calculated. By
comparing the shedthin tile pathology indices of different
buildings, the relative severity of shedthin tile component
damage can be determined to set the priority for subsequent
repairs.

Quantitative assessment was carried out on two garden-roof
elevations. The resulting Shedthin-Tile Pathology Index values
were 0.162175 for Roof 1 and 0.093364 for Roof 2 (Fig. 12,13).
Because Roof 1 exceeds the 0.15 threshold, it ranks as the
higher-priority candidate for intervention, whereas Roof 2, with
a markedly lower index, can be scheduled for subsequent
treatment. Incorporating these index scores into the repair
timetable supports rational resource allocation and ensures that
conservation funds are directed first to the areas of greatest need.

Figure 12. Quantitative detection results and pathology area
ratio of roof 1.
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Figure 13. Quantitative detection results and pathology area
ratio of roof 2.

4.3 Inter-model Performance Comparison

Before contrasting the various YOLO versions, an internal
benchmark was essential for three reasons: it eliminates
confounding variables by training and testing every model
under identical data, hardware, and hyper-parameter conditions;
it verifies whether architectural upgrades from YOLOv8
through YOLO11 actually translate into measurable gains for
the specific task of shedthin-tile pathology detection; and, most
pragmatically, it pinpoints the model that offers the best balance
of accuracy, inference speed, and resource consumption for
eventual field deployment.

A head-to-head evaluation was conducted on four
segmentation-enabled YOLO variants: YOLOv8-seg, YOLOv9-
seg, YOLOv10-seg, and YOLO11-seg, Validation-set results
(Fig. 14) reveal that, aside from YOLOv9-seg model, which
had significantly lower detection accuracy due to technical
problems during training, the other four models showed
relatively close detection accuracies, with the difference in Box-
mAP50 and Mask-mAP50 indicators within 3%, indicating that
each model has high performance consistency in object
detection and instance segmentation tasks.

Figure 14. Comparison of detection results of different models.

Among them, the YOLO11n-seg model stands out particularly
in terms of parameter quantity and computational efficiency.
Experimental data showed that the number of parameters and
floating-point operations (GFLOPs) of this model were both
less than 1/10 of other models, significantly lower than other
models. This characteristic enables YOLO11n-seg to ensure
faster inference speed, lower hardware requirements, and make
subsequent integration with real-time terminal devices such as
drones possible, thereby significantly expanding its application
potential.

5. Conclusions and Discussions

Shedthin tiles constitute both a functional weather-shield and a
signature aesthetic element within Suzhou classical gardens.

Their conservation is increasingly threatened by environmental
exposure, material ageing, and the dwindling transmission of
traditional craftsmanship. To address the low efficiency and
limited quantitative insight of manual surveys, this study
developed a deep-learning pathology-detection workflow. The
study uses the YOLO11-seg model, and by constructing a high-
quality dataset containing 1,250 high-resolution sample images,
based on the model training completed with 362 iteration cycles,
the final mean average precision (mAP50) of 51.7% is achieved.
Through manual verification, the model's automatic recognition
accuracies for the four main pathologies of water stains, color
aberration, scaling, and excessive gaps reached 79.31%, 73.38%,
61.12%, and 75.60%, respectively, with a comprehensive
accuracy of 74.38%, showing great application potential. The
experimental results show that this method has the following
significant advantages:

(1) Improving the efficiency of building pathology detection:
Compared with traditional manual detection, deep learning
technology significantly accelerates the detection speed of
architectural heritage pathologies, plays an important role in
large-scale detection, and thus saves a lot of human and material
resources.

(2) Enhancing the detection accuracy of shedthin tile
components: This study uses the advanced YOLO11-seg model
to further improve the detection accuracy of shedthin tile
components based on previous research.

(3) Realizing quantitative analysis of shedthin tile
pathologies: Using the YOLO11-seg model, this study can
effectively segment detected targets, realizing quantitative
analysis of pathology detection. At the same time, the study
introduces the index of "shedthin tile pathology index",
providing an important basis for determining the priority of
subsequent repair work and laying the foundation for the
practical application of the technology.

While this study highlights the promise of deep learning for
pathology detection in architectural heritage, notable limitations
remain in dataset coverage, model precision, and operational
robustness. We therefore identify four parallel lines of future
work:

(1) Constructing a higher-quality dataset: Future research
will collect more pathology data and consider different data
sources and environmental conditions to further enhance the
model's generalization ability and adaptability.

(2) Improving the model to enhance detection accuracy:
Researchers will continue to optimize and improve the model in
follow-up studies, introducing different mechanisms to further
enhance detection accuracy.

(3) Considering multi-modal learning: Combining deep
learning with multi-modal detection technologies such as point
cloud technology and laser scanning to improve the model's
detection performance and applicability.

(4) Deploying real-time detection terminals: Exploring the
combination with technologies such as drone photography,
deploying real-time detection terminals, and realizing real-time
monitoring of building pathologies.

Future research will focus on resolving the current technical
constraints and practical limitations, and promoting the
application of deep learning technology in non-destructive
detection of architectural heritage pathologies through
continuous model optimization and integration with other
technologies. Against the backdrop of the rapid development of
artificial intelligence technology, introducing deep learning
technology into the field of heritage conservation will further
promote interdisciplinary integration and promote the traditional
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heritage conservation field to shift from experience-based to
technological and innovative.
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