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Abstract 
 
Pores, as one of the channels for water, air, and microorganisms to enter the rock, accelerate the rock weathering process and change 
the physical and mechanical properties of the rock. Therefore, the study of the microscopic pore structure is of great significance for 
stone cultural heritage. This paper proposes a multi-scale pore structure characterization method based on backscattered scanning 
electron microscope (BSE) images, integrating feature engineering and machine learning techniques. First, for each pixel, 16 features 
are generated to construct a feature engineering. Then, these features are input into four commonly used machine learning models 
(Random Forest, Support Vector Machine, Multi-Layer Perceptron, Gradient Boosting Decision Tree) to distinguish pore and mineral 
matrix. To verify the effectiveness of the multi-channel feature input method, we compared the confusion matrix parameters (accuracy, 
precision, recall, and F1-score) of the four models before and after adding the feature engineering, and found that the indicators of all 
models increased by 1%-15%. In addition, the study also found that the Random Forest model performed the best. It can effectively 
segment the pores in different new images, thus could be directly applied to weathered sandstone images, providing data support for 
the scientific protection of stone cultural heritages. 
 
 

1. Introduction 

As a famous Buddhist sculptural site, the Yungang Grottoes were 
inscribed on the UNESCO World Heritage List in 2001, 
reflecting their significant historical, artistic, and cultural value. 
Yungang Grottoes is mainly composed of sandstone. Due to 
natural weathering process and anthropogenic influences, 
invaluable historical information on the surfaces of many 
grottoes has been lost (Liu et al., 2011). Therefore, it is of great 
significance to understand the weathering mechanisms of the 
grottoes, evaluate the degree of grotto weathering, and thus 
formulate effective conservation and restoration strategies 
accordingly. 
 
The microscopic pore structure of sandstone plays a crucial role 
in the weathering process of cultural heritage. These pores 
provide pathways for water, air, and microorganisms to infiltrate 
the rock interior, thereby influencing water and heat transfer 
within the rock matrix (Hao et al., 2022; Zhao et al., 2024). The 
pore structure also determines the permeability and mechanical 
properties of sandstone. Furthermore, pore characteristics are 
established parameters for quantifying the degree of rock 
weathering (Zhang et al., 2024a). Consequently, analysis of the 
microscopic pore structure in weathered sandstone is essential for 
elucidating weathering mechanisms and developing effective 
conservation and restoration strategies. 
 
Traditional methods for studying the internal pore structure of 
rocks include nuclear magnetic resonance (NMR), mercury 
intrusion porosimetry, and physical adsorption methods  
(Benavente et al., 2021). For example, Xin et al. (2022) studied 
the pore structure of sandstone through NMR measurements and 
fractal analysis. However, these methods can only provide bulk 
measurements for the entire sample and make it difficult to reveal 
local details. In recent years, imaging techniques such as thin-

section microscopic analysis, X-ray computed tomography (CT), 
and scanning electron microscopy (SEM) have been widely 
adopted to image porous media such as sandstone (Liu et al., 
2024; Ni et al., 2021). Traditional image processing algorithms, 
such as threshold segmentation, the watershed algorithm, and the 
K-Means algorithm, can analyze mineral images based on visual 
information such as color, brightness, and texture (Wei et al., 
2023; Zhang et al., 2017). However, when dealing with complex 
textures and boundaries, the operation processes of these 
algorithms are complex, which limits the processing efficiency 
and performance. 
 
Machine learning (ML) methods can significantly improve pore 
identification efficiency while reducing manual operation 
complexity. Several studies have applied ML algorithms for pore 
structure analysis, including random forest-based segmentation 
for sandstone CT images (Wang & Sun, 2021; Zhang et al., 
2024b). Traditional single-feature extraction methods have 
limitations when dealing with complex pore characteristics of 
sandstone. To achieve more accurate analysis, this paper adopts 
a machine-learning-based image segmentation method with 
multi-channel feature engineering. We apply this approach to 
four machine learning models and evaluate their performance 
using confusion matrix parameters for identifying pores in 
weathered sandstone of the Yungang Grottoes.  
 

2. Data 

The Yungang Grottoes, as shown in Figure 1, are located on the 
south side of Wuzhou Mountain, about 16 km southwest of 
Datong City, Shanxi Province, China. The sandstone core 
samples we used in this study are samples of natural weathering 
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from the Yungang Grottoes. The diameter of the core is about 
50mm. The cores are cut and polished along the cross-section 
direction, and finally made into thin-slice samples and placed in 
the instrument to obtain images. 
 

 
Figure 1. The location of the study area in Datong City, 

Shanxi Province. 
 
In the backscattered electron imaging (BSE) mode of Scanning 
Electron Microscopy (SEM), images can be obtained by 
detecting high-energy electrons scattered from the sample 
surface in the direction of the electron beam source (Klein et al., 
2012). So we finally use BSE images to study the multi-scale 
porous structure of rock samples.  
 

3. Methodology 

The objective of this study is to develop a method for 
automatically identifying pores based on BSE images. The 
workflow, as shown in Figure 2, mainly includes pixel-by-pixel 
annotation and creation of pore labels, multi-channel feature 
extraction, construction and division of the dataset, training and 
evaluation of the model, and finally applying the model to the 
images of weathered sandstone in the Yungang Grottoes to verify 
its effectiveness. 
 

 

 
Figure 2. The Workflow of this study. 

 
The performance of machine learning models are influenced by 
the training dataset. The pixels within the pore components are 
manually annotated. The machine will define other components 
in the same image as non-pore components, namely matrix. After 
selecting the training pixels, multiple features are extracted for 
each pixel. The data is divided into a training dataset required for 
training the classifier and a validation dataset for verifying the 
performance of the classifier at a ratio of 8:2. 
 
3.1 Construction of Feature Engineering 

Pixel grayscale can be used as a feature to distinguish different 
parts in an image. For example, the traditional threshold 
segmentation method operates based on this feature. However, 
the pore structure of sandstone is complex. Training a model 
relying solely on a single feature is likely to result in poor 
segmentation performance. The pore edge feature can help 
identify the boundary between pores and non-pores, which is 
beneficial for outlining the pore regions in the sandstone structure. 
The grayscale gradient, representing the rate of change of 
grayscale, can reveal the fine-scale changes within the pore and 
non-pore regions. In the frequency domain, the spectral 
distribution of grayscale can visually display the intensities of 
different frequency components in the image, by means of which 
pores and non-pores can be distinguished. Analyzing the 
grayscale relationship between each pixel and its neighboring 
pixels helps to further identify the texture characteristics of pores. 
Therefore, increasing the number of features can capture the 
complex information of the pore structure from different 
dimensions, which is crucial for improving the performance of 
the segmentation model and achieving a more accurate analysis 
of the sandstone pore structure.  
 
In this study, eight types of transformations are used to construct 
the feature engineering, namely image inversion, logarithmic 
transformation, contrast enhancement, image binarization, 
bilateral filtering, Roberts operator, hessian matrix, and wavelet 
transforms. These features describe each pixel and its adjacent 
area based on multi-resolution spatial and scale-related 
information. The classifier uses this information to assign pore 
labels to each specific pixel in the image. 
 
3.1.1 Image Inversion: As shown in Figure 4(a), image 
inversion is used to obtain the inverted image of an image with 
pixel values in the range of [0, L], which is regarded as a feature. 
This method can enhance the white or grey areas in the image, 
especially when black dominates the image. The formula for 
image inversion transformation is as follows: 
 

s = L − 1 − r  (1) 
 

where      r = original pixel value 
s = transformed pixel value 
L − 1 = maximum grayscale of the image pixels 
 

3.1.2 Logarithmic Transformation: Image logarithmic 
transformation can yield one feature. Its main function is to 
compress the dynamic range. Logarithmic transformation can 
expand the low grayscale part of the image, and revealing more 
details in this part. Meanwhile, it can compress the high grayscale 
part of the image, and reduce the details in this part. Therefore, 
logarithmic transformation can enhance the darker part of the 
image. The formula for logarithmic transformation is:  
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s = clog(1 + r) (2) 
 
where      r = original pixel value 

s = transformed pixel value 
c = principal distance 

 
3.1.3 Contrast Enhancement: Stretching the grayscale to the 
entire range of 0-255 can significantly enhance the contrast of the 
image, which is called contrast enhancement. By stretching the 
grayscale details of the feature objects as needed, the grayscale 
intervals of interest can be enhanced. There are various methods 
for contrast enhancement. In this paper, a feature is obtained by 
using piece - wise linear transformation, and the specific 
transformation formula is: 

 

y = /m! ∙ x + b!			if	x! ≤ x ≤ x"
m" ∙ x + b"			if	x# ≤ x ≤ x$

 (3) 

 
where      𝑚! = slope of the first linear segment 
                𝑏! = intercept of the first linear segment 
                𝑚" = slope of the first linear segment 
                𝑏" = intercept of the first linear segment 
 
3.1.4 Image Binarization: Image binarization sets the 
grayscale of pixels in an image to either 0 or 255, making the 
entire image appear in distinct black and white colors. By setting 
a threshold, pixels with grayscale greater than this threshold are 
set to the maximum grayscale (usually 255), and pixels with 
grayscale less than this threshold are set to the minimum 
grayscale (usually 0), thus achieving binarization. Image 
binarization yields one feature. The traditional threshold 
segmentation method uses this approach to segment images 
(Garg & Garg, 2013). Commonly used binarization methods 
include the bimodal method, the mean method, and Otsu's 
method, etc. In this paper, Otsu's method is adopted. It is a 
clustering-based image binarization method that separates the 
foreground and background pixels of an image by calculating the 
optimal threshold, maximizing the inter-class variance. Figure 
4(b) shows the binarized image. 
 
3.1.5 Bilateral Filtering: Bilateral filtering yields one feature, 
and it adds a pixel values’ weight term based on Gaussian 
filtering. That is to say, both the distance factor and the influence 
of pixel values’ differences need to be considered. The more 
similar the pixel values are, the greater the weight. For example, 
in a window centered on q, the calculation formulas for the pixel 
weight and the spatial distance weight of a point p during the 
filtering process are as follows: 
 

G% = exp(− ||'()||!

"*"!
) (4) 

G+ = exp(−
,-.#(.$-,

!

"*%!
) (5) 

 
The filtering result of the entire filter is: 
 

BF =
1
w)

AG%(p)G+(p) ∗ I'
'∈0

 (6) 

 
where      w)= sum of the weights of each pixel value 
 

3.1.6 Roberts Operator: The Roberts operator uses local 
difference operators to find edges. It approximates the gradient 
magnitude by the differences between two adjacent pixels in the 
diagonal direction to determine whether the current point is an 
edge, thus obtaining edge features. However, it is sensitive to 
noise. The Roberts operator uses two 2x2 templates: (-1 0, 0 1) 
and (0 -1, 1 0) to perform convolution operations on the image, 
and calculate the grayscale differences in the horizontal and 
vertical directions respectively. By calculating the sum of the 
absolute values of the gray differences in the two directions, the 
edge intensity can be obtained.  
 
3.1.7 Hessian Matrix: In image analysis, we can regard an 
image as a continuous function, where the value of each pixel is 
the output of the function. The first-level derivative of an image 
represents the change in image grayscale, namely the grayscale 
gradient, and the second-level derivative represents the degree of 
change of the grayscale gradient. In practical applications, the 
Hessian matrix is calculated by convolving the image with the 
second-order derivatives of the Gaussian kernel in the x and y 
directions.  Since edges usually correspond to areas where the 
image grayscale gradient changes significantly, this method can 
be used to extract the edge features of an image. Based on the 
neighborhood of the pixel defined by the function f(x, y), three 
features, namely H11, H12 and H22 are calculated at each pixel 
location. 
 
The Hessian matrix applied to a two-dimensional image f(x, y)	is 
expressed as: 
 

H[f(x, y)] = [
H11 H12
H21 H22

] (7) 

 
where      H11 =

3!4
31!

, which represents the second order rate of 
change of the image function f(x, y) in the x-direction. 
																		H12 =

3!4
31 32

= H21= 3!4
3231

, which represents the result of 
first taking the partial derivative of the function f(x, y)with 
respect to x and then taking the partial derivative with respect to 
y. 
																		H22 =

3!4
32!

, which represents the second order rate of 
change of the image function f(x, y) in the y-direction. 
 
3.1.8 Wavelet Transforms: Wavelet transform conducts 
multi-resolution spatial scale analysis of signals and can 
decompose images layer by layer. It uses a series of wavelets of 
different scales to decompose the original function. The result 
after transformation is the coefficients of the original function 
under wavelets of different scales, which can match different 
spatial frequencies in the image. Medium and low spatial 
frequencies usually match the image content, while high 
frequency coefficients usually represent noise or texture regions. 
 
Figure 3 shows a schematic diagram of the two-layer wavelet 
decomposition of an image. LL! and LL"  represent the low-
frequency components. LH!andLH"represent the high-frequency 
components in the horizontal direction of the first layer and the 
second layer respectively. HL!  and HL"	 represent the high-
frequency components in the vertical direction of the first layer 
and the second layer respectively. HH!and HH"  represent the 
high-frequency components in the diagonal direction of the first 
layer and the second layer respectively. The low-frequency part 
retains the general appearance information of the original image, 
while the high- frequency component part contains the detailed 
information of the image.  
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Figure 3. Wavelet transforms generated in the first layer and the 

second layer. 
 
For image segmentation, we finally obtain the details in the 
horizontal, vertical, and diagonal directions of the image after 
two-layer wavelet decomposition. Figure 4(c) and (d) show the 
high-frequency details in the vertical and horizontal directions of 
the one-layer wavelet decomposition of the image respectively. 
We don’t use LL! and LL" as features of the image because they 
are merely blurred versions of the original image, which are not 
suitable for distinguishing pores from matrix components nor for 
accurately identifying pore contours. For each pixel in the image, 
we finally generate six features. 
 

  
(a) Image inversion (b) Image binarization 

  
(c) 𝐻𝐿! (d) 𝐿𝐻! 

Figure 4. Examples of features extracted from one SEM image 
after the first level of processing. 

 
3.2 Machine Learning Models for Image Segmentation 

Based on the above 16 features and labels, several commonly 
used machine learning models were trained to segment the 
images of weathered sandstone in the Yungang Grottoes, 
including Random Forest, Support Vector Machine, Multi-Layer 
Perceptron, and Gradient Boosting Decision Trees. 
 
Random Forest (RF) is an ensemble learning model based on 
the Bagging strategy. It can effectively handle non-linear 
problems and over-fitting issues. Moreover, it can effectively 
deal with a large number of samples and features, enhancing the 
generalization ability of the model. Random Forest also has a 

certain degree of interpretability. The prediction results of the 
model can be explained through feature importance. These 
characteristics make Random Forest has excellent application 
effects in many practical problems. 
 
Support Vector Machine (SVM) is a supervised learning 
algorithm that can be used for classification and regression tasks. 
In image segmentation, SVM is usually applied to classification. 
Its core idea is to find the optimal classification hyperplane in the 
training dataset, so that misclassified samples are as far away 
from the classification hyperplane as possible. This process can 
be achieved by maximizing the margin between the support 
vectors. SVM is often used to handle high dimensional data and 
performs particularly well when the number of samples is small. 
 
Multi-Layer Perceptron (MLP) is a feed-forward neural 
network that typically consists of an input layer, one or more 
hidden layers, and an output layer. During the training process, 
the pixel feature vectors are fed into the network through the 
input layer. In the hidden layers, each node applies weights and 
activation functions to the input data to generate an output. The 
output of the network is compared with the actual labels to 
calculate the error. Finally, the back propagation algorithm is 
used to adjust the weights in the network to reduce the error. The 
MLP optimizes the weights through multiple iterations until the 
network can classify pixels with a high degree of accuracy. 
 
Gradient Boosting Decision Trees (GBDT) is an iterative 
decision tree algorithm. It optimizes an accumulative prediction 
function iteratively. At each step, a new weak learner is 
constructed for the residual of the previous round (that is, the 
difference between the true value and the predicted value). 
Specifically, in each iteration, the model calculates the negative 
gradient of the residual as the new learning target, trains a 
decision tree to fit this gradient, and adds the new tree to the 
accumulative function with an appropriate learning rate. In this 
way, Gradient Boosting Decision Trees gradually reduce the 
residual, and can obtain better prediction performance and 
generalization ability than a single model while maintaining the 
simplicity of the model. 
 
3.3 Model Evaluation 

The constructed training dataset was put into each model for 
training , and the validation dataset was put into the model to 
verify the model's performance. By calculating and comparing 
the confusion matrix parameters of each model, namely accuracy, 
precision, recall, and F1-score, before and after the addition of 
feature engineering, we select the model that is most suitable for 
the pore segmentation of weathered sandstone images in the 
Yungang Grottoes for subsequent discussion and research.  
 
The Confusion Matrix is a visualization tool for evaluating 
machine learning models, mainly used to compare the differences 
between predicted results and actual results. The structure of the 
confusion matrix for a binary classification problem is shown in 
Figure 5. We consider both the predicted value and the true value 
as 1 or 0. In the confusion matrix, TP (True Positive) refers to the 
situation where the model predicts 1 and the true value is also 1. 
TN (True Negative) refers to the situation where the model 
predicts 0 and the true value is also 0. FP (False Positive) refers 
to the situation where the model predicts 1, but the true value is 
0. FN (False Negative) refers to the situation where the model 
predicts 0 while the true value is 1. 
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Figure 5. Binary confusion matrix. 

 
For a large amount of data, from the confusion matrix, we can 
obtain more advanced classification metrics, namely Accuracy, 
Precision, Recall, and F1_Score. Among them, Accuracy 
represents the proportion of correctly identified samples by the 
model to the total number of samples. Precision is the proportion 
of samples that are actually positive among all the samples 
predicted as positive by the model. Recall measures how many 
of all the true positive samples are correctly identified by the 
model. F1_Score is defined as the harmonic mean of precision 
and recall, considering recall and precision to be equally 
important. Generally, the closer these metrics are to 1, the better 
the model performance. The calculation formulas for the above-
mentioned metrics are as follows: 
 

Accuracy = 56758
56796798758

	 (8) 

Precision =
TP

TP + FP	
(9) 

Recall =
TP

TP + FN	
(10) 

F1_Score =
2 ∗ Precision ∗ Recall
Precision + recall 	

(11) 

 
4. Results and Discussion 

4.1 Performance of Different Models 

The parameters of the confusion matrix are used to compare the 
differences between the predicted results and the actual results. 
As shown in Table 1, the accuracy, precision, recall, and F1-
Score of the four models on the training set are presented. Among 
them, the Random Forest stands out with the best performance 
across various indicators, boasting an accuracy, precision, recall, 
and F1 - Score all as high as over 99%.  
 

Model Accuracy Precision Recall F1_Score 
RF 99.99% 99.97% 99.99% 99.98% 

SVM 97.82% 80.11% 81.84% 80.97% 
MLP 98.28% 87.56% 81.08% 84.20% 

GBDT 98.28% 89.11% 79.33% 83.93% 
 

Table 1. Quantitative evaluation of the method proposed in 
this paper on training datasets. 

 
Before and after the addition of feature engineering, the 
performance of the four models varied. The specific data of 
various evaluation indicators are detailed in Table 2. It can be 
seen from the table that after incorporating feature engineering, 
the performance of all models has improved. The recall and F1-
score of all models have increased by 1% - 15% to varying 
degrees, indicating that the models' ability to identify pores has 
been enhanced and they can complete the segmentation more 
accurately and comprehensively. At the same time, the precision 
of each model has also increased. For example, the precision of 

SVM has increased from 79.26% to 86.74%, enhancing the 
reliability of the model in segmenting pores. 
 

Model  RF 
(%) 

SVM 
(%) 

MLP 
(%) 

GBDT 
(%) 

Accuracy before 97.64 97.48 97.64 97.64 
after 98.33 98.12 98.28 98.28 

Precision before 87.29 79.26 85.90 87.38 
after 90.53 86.74 87.60 89.09 

Recall before 68.27 75.01 69.82 68.35 
after 78.68 78.77 81.22 79.43 

F1_Score before 76.62 77.08 77.03 76.70 
after 84.19 82.56 84.28 83.98 

 

Table 2. Quantitative evaluation of the four models 
proposed in this paper before and after feature engineering. 

 
4.2 Pores Segmentation Results 

In order to evaluate the generalization ability of the proposed 
models, all of them were applied to segment new images. The 
segmentation results are shown in Figure 6. The areas within the 
blue rectangular frames are where the model's segmentation 
performance is poor. For example, the Support Vector Machine 
misidentifies the matrix as pores, the Multi-Layer Perceptron 
fails to fully recognize the pore contours, and the Gradient 
Boosting Decision Tree connects independent pores during 
recognition. In conclusion, the Random Forest has the best 
segmentation effect. 
 

 
Figure 6. Segmentation results on new images. 

 
To further verify the generalization and stability of the random 
forest model, it was employed to segment other new images. The 
segmentation results are shown in Figure 7, with the red regions 
denoting the pore components. The model has basically achieved 
the identification of pores. Consequently, it can be directly 
applied to the BSE images of weathered sandstone samples from 
the Yungang Grottoes, which in turn facilitates the subsequent 
extraction of pore parameters of different weathered sandstones.  
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Figure 7. Application of the trained model on other BSE 

images of sandstone samples. 
 

5. Conclusion 

In this study, a machine learning-based feature extraction and 
model construction method is proposed to efficiently identify the 
pore components in the backscattered electron (BSE) images of 
weathered sandstone samples. A multi-channel feature input 
method is adopted to construct the feature engineering, and the 
performance of four models (Random Forest, Support Vector 
Machine, Multi-Layer Perceptron, Gradient Boosting Decision 
Tree) before and after the addition of feature engineering is 
evaluated on the training set and the validation set. The study 
finds that the performance indicators of the models after adding 
feature engineering have increased by 1% - 15% respectively on 
the validation set. Among them, the Precision of the Support 
Vector Machine has increased from 79.26% to 86.74%. Among 
all these trained models, the Random Forest performs the best, 
with all indicators in the training set reaching over 99%, and the 
Precision of the validation set is as high as 98.33%. When apply 
the four models to segment new images, it is found that the 
Random Forest has the best segmentation effect, with strong 
model generalization ability, good applicability and application 
value. In future research, the established feature engineering will 
continue to be explored and optimized, and attempts will be made 
to combine it with deep learning technology to further improve 
the accuracy and efficiency of pore extraction from weathered 
sandstone samples of the Yungang Grottoes. 
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