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Abstract

Urban Heat Islands (UHIs) are intensifying under climate change, posing serious threats to the conservation of cultural heritage
in historic cities. This study presents a deep learning framework for forecasting land surface temperature (LST) at high temporal
resolution, aimed at supporting thermal risk mitigation in heritage-sensitive urban environments. Using hourly LST data from the
Copernicus Land Monitoring Service (CLMS), we developed a custom autoregressive Transformer model capable of predicting 72
future hourly temperature values based on the previous 168 hours of satellite observations. The model follows an encoder-decoder
architecture: the encoder processes the full input sequence with spatial and temporal embeddings, while the decoder generates the
forecast step-by-step, leveraging past predictions. We applied our approach to the city of Florence, Italy, using available data from
the years 2021, 2022, 2023, and 2024. The model was evaluated on the four summer months (June 2021, July 2022, August 2023

and September 2024) achieving a minimum MAE of 0.81° C and confirming its applicability for extreme heat forecasting.

1. Introduction

Urban Heat Islands (UHIs) represent one of the most critical
climate-related challenges for contemporary and historic cit-
ies. The phenomenon, driven by the concentration of anthro-
pogenic heat sources, impermeable surfaces, and limited veget-
ation, leads to elevated temperatures in urban cores compared to
surrounding rural areas, often around 7°C (Heisler and Brazel,
2010). This thermal anomaly becomes particularly severe dur-
ing heatwaves, amplifying environmental discomfort, increas-
ing energy consumption for cooling, and, most significantly, ac-
celerating the degradation processes of built heritage (Camuffo,
2019).

These risks are especially acute in cities with a high density of
culturally and architecturally significant sites (Quesada-Ganuzal
et al., 2023). Florence, Italy, stands as a paradigmatic case: its
historic center, a UNESCO World Heritage Site, hosts master-
pieces of Renaissance architecture and art whose conservation
is tightly coupled to environmental stability. For example, dur-
ing the 2017 heatwave, peak temperatures forced the temporary
closure of the Uffizi Gallery, underlining the vulnerability of
such spaces to climate extremes (Morabito et al., 2017).

The study and mitigation of UHIs has traditionally relied on re-
mote sensing, Geographic Information Systems (GIS), and stat-
istical modeling (Shi et al., 2021). More recently, the availab-
ility of large-scale satellite data, such as those from the Coper-
nicus Earth observation programme, has enabled more granular
and temporally rich analyses of urban microclimates (Biihler et
al., 2021). In particular, the Copernicus Land Monitoring Ser-
vice (CLMS) provides hourly Land Surface Temperature (LST)
products at approximately 5 km resolution, based on geosta-
tionary satellite observations. These data are highly relevant for
monitoring surface-level heat dynamics, particularly in urban
contexts where surface temperature often diverges significantly

from ambient air temperature (Copernicus Land Monitoring
Service, 2025).

Despite the growing availability of such datasets, relatively few
studies have focused on the specific impact of UHIs on cultural
heritage assets (Pioppi et al., 2020). Furthermore, there is a
growing need for tools that not only monitor but also predict
short-term thermal dynamics at city scale, providing actionable
insights for heritage protection, urban adaptation strategies, and
early warning systems (Li et al., 2024).

Recent advancements in Artificial Intelligence, and in particular
Deep Learning, have demonstrated strong capabilities in learn-
ing from spatiotemporal environmental data (Han et al., 2023).
Architectures such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and more recently, Trans-
formers, have been successfully applied to a range of hetero-
geneous tasks, from temperature forecasting (Alerskans et al.,
2022) and high-resolution mapping of urban thermal conditions
(Tehrani et al., 2024)) to anomaly detection (Russo and Schaerf,
2023) and sequence to sequence mapping (Yun et al., 2020).
Among them, Transformer-based models offer unique advant-
ages in capturing long-range dependencies in time-series data,
making them particularly suitable for medium-term forecasting
applications (Zhou et al., 2021)).

In this work, we propose a custom autoregressive Transformer
model designed to forecast urban land surface temperatures at
hourly resolution over a three-day horizon, using as input the
previous seven days of CLMS hourly LST data. The model
follows an encoder-decoder structure: the encoder receives the
entire past signal, encoding its spatiotemporal characteristics,
while the decoder generates the output signal step-by-step, con-
ditioning each new prediction on the previously generated val-
ues. This approach mimics the natural temporal causality of
prediction tasks and allows the network to refine its estimates
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as the sequence unfolds.

The objective is twofold: (1) to demonstrate the feasibility
of Transformer-based approaches for short-term forecasting of
LST fields in urban environments, and (2) to assess their poten-
tial in supporting risk-informed conservation planning for his-
toric city centers. The city of Florence is adopted as a case
study due to its climatic sensitivity and cultural value. This
research aims to support the integration of predictive climate
modeling into decision-support tools for urban heritage man-
agement. Our results show in fact promising performance, with
reasonable forecast accuracy even under challenging seasonal
generalization settings.

2. Related Works

The phenomenon of Urban Heat Islands has been widely doc-
umented in the literature, with numerous studies analyzing its
causes, spatial dynamics, and implications for urban resilience
(O’Malley et al., 2015). Originating from a combination of
factors, including the concentration of artificial surfaces, re-
duced vegetation, and anthropogenic heat sources, UHIs res-
ult in significantly higher temperatures in densely built urban
cores compared to surrounding rural areas (Shahmohamadi et
al., 2011). This effect, first measured in the mid-20th cen-
tury, has become increasingly pronounced due to the intensific-
ation of climate change and urban expansion. In recent years,
UHI studies have extended beyond purely meteorological ana-
lyses, increasingly intersecting with concerns related to public
health, energy sustainability, and environmental justice (Das et
al., 2024).

However, a more specific and less explored dimension of UHI
research pertains to its impact on cultural heritage assets. While
much attention has been given to the structural and chemical
degradation of heritage materials under conditions of humidity,
pollution, and biological colonization, the role of heat stress has
only recently started to gain recognition (He et al., 2023). Cul-
tural landmarks, especially those located in open-air settings or
lacking modern climate control systems, are particularly vul-
nerable to continuous thermal fluctuations and extreme temper-
ature events. As pointed out in works such as (Camuffo, 2019),
thermal anomalies can accelerate deterioration processes, espe-
cially in materials like marble, sandstone, and frescoes. How-
ever, the integration of UHI monitoring into conservation plan-
ning is still not widely spread, and predictive tools to support
preventive measures remain scarce.

Remote sensing has played a pivotal role in advancing the
study of urban heat patterns. Earth observation missions such
as MODIS, Landsat, and Sentinel-3 have made it possible to
systematically retrieve Land Surface Temperature (LST) data
at various spatial and temporal resolutions (Onacillova et al.,
2022). These datasets are widely used to characterize the spa-
tial footprint of UHIs, quantify surface temperature anomalies,
and track seasonal dynamics. Among recent contributions, the
Copernicus Land Monitoring Service (CLMS) provides hourly
LST data derived from geostationary platforms, offering an un-
precedented temporal granularity suitable for short-term cli-
mate monitoring in European cities. This rich stream of satel-
lite data has been exploited for urban heat vulnerability as-
sessments, land cover correlation studies, and thermal map-
ping (Reis et al., 2022). Nonetheless, a considerable portion
of the literature remains descriptive, focusing on retrospective
analysis rather than forward-looking prediction.

Parallel to the growth of remote sensing applications, recent
years have witnessed the rapid expansion of Deep Learning
techniques for environmental monitoring. Neural networks,
particularly Convolutional Neural Networks (CNNs) and Re-
current Neural Networks (RNNs), have demonstrated signific-
ant capabilities in extracting patterns from complex geospatial
time-series data. More recently, Transformer-based architec-
tures, initially developed for natural language processing tasks
(Vaswani et al., 2017), have shown exceptional performance
in learning long-range dependencies in sequential data, mak-
ing them highly suitable for climate forecasting applications.
Their self-attention mechanism enables the model to capture
temporal and spatial correlations simultaneously, an essential
feature when dealing with non-linear and multi-scale climate
phenomena.

Several studies have begun to apply Transformers and hy-
brid models (e.g., CNN+Transformer) to temperature forecast-
ing, air pollution estimation, and weather pattern classification
(Tehrani et al., 2024). These approaches often combine mul-
tiple data sources, including satellite observations, reanalysis
fields, and ground station measurements (Balsamo et al., 2018).
Despite these promising advancements, the vast majority of
such works focus on regional or global scales, and rarely ad-
dress urban-scale, high-resolution forecasting tasks. Even less
common are applications aimed at supporting the conservation
of historic urban environments, where the granularity and spe-
cificity of forecasts can have a tangible impact on risk mitig-
ation. An example is the use of a Continuous Wavelet Trans-
form (CWT) for improving the predictive accuracy of sea sur-
face temperature models based on Copernicus data (Conforti
et al., 2024). These methods demonstrate the effectiveness of
combining remote sensing with Deep Learning and open prom-
ising perspectives for applications in environmental forecasting,
ranging from marine to urban contexts.

In this context, our work contributes to bridging a critical gap
between predictive environmental modeling and cultural herit-
age protection. We propose a deep learning framework based on
a custom autoregressive Transformer model trained on CLMS
hourly LST data, applied to the city of Florence, a historic urban
environment particularly exposed to UHI effects. The model
forecasts hourly surface temperatures over a three-day horizon,
leveraging the temporal richness of satellite observations and
the predictive capacity of the Transformer architecture. Unlike
traditional time-series models, our approach generates the fu-
ture temperature sequence step-by-step, conditioning each pre-
diction on both the encoded historical features and the sequence
of previously generated outputs. This autoregressive structure
is particularly well-suited to capturing the compounding effects
of thermal inertia and urban microclimate dynamics.

To our knowledge, this is one of the first studies to apply such
a methodology specifically in the context of heritage risk fore-
casting. By focusing on short-term, high-resolution temperat-
ure prediction using purely satellite-derived data, our approach
complements existing monitoring strategies and opens new av-
enues for anticipatory conservation. The results demonstrate
that deep learning models, when carefully adapted and trained,
can play a vital role in supporting the adaptive management of
historic cities under climate pressure.
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Figure 1. Overview of the model pipeline. The 7-day input grid (5x5 spatial) is embedded with positional and temporal encodings

before entering the encoder. The decoder then generates
3. Methodology
3.1 Dataset

The dataset employed in this study is the Hourly Land Surface
Temperature, Global (Version 2.0), provided by the Coperni-
cus Land Monitoring Servicd(I)] This product provides hourly
Land Surface Temperature observations representing the skin
temperature of the Earth’s surface, making it particularly suit-
able for assessing surface heat accumulation in densely built-up
environments.

Regarding the spatial reference, the data are organized on a reg-
ular latitude/longitude grid based on the WGS 1984 ellipsoid
(terrestrial radius = 6378 km). The grid resolution is defined as
5° /112, and the coordinates refer to the center of each pixel.

From a temporal perspective, the LST product consists of in-
stantaneous fields estimated hourly (00, 01, 02, ..., 23 UTC)
using geostationary satellite data representative of each time
step. The dataset is distributed globally in multi-band NetCDF4
format, with metadata compliant with the Climate and Fore-
cast (CF) conventions. Additionally, an INSPIRE-compliant
metadata file in XML format, a corresponding XSLT stylesheet
for visualization, and a subsampled color quicklook in GeoTIFF
format are provided separately. Physical values (PV) of LST are
derived from the digital numbers (DN) using the linear relation:
PV = Scaling x DN + Offset.

Validation of the LST product follows the protocol recommen-
ded by the CEOS Cal/Val LPV subgroup for Land Surface Tem-
peraturel@ The dataset is compared with in-situ observations
from a set of ground stations spanning diverse land cover types
and climate zones. To ensure representativeness, each station’s
surroundings are analyzed using high-resolution information on

(1https://land.copernicus.eu/en/
products/temperature-and-reflectance/

hourly-land-surface-temperature-global-v2-0-5km
(2https://1lpvs.gsfc.nasa.gov/LSTE/LSTE_home.html

3 days of hourly temperature forecasts step-by-step.

orography, land cover, and Landsat-derived LST (processed via
Google Earth Engine), in order to identify, within a 5x5 pixel
window, the pixel that best corresponds to the ground truth
measurements.

We extracted a 25 x 25 km window centered on Florence, Italy,
structured as a 5 x 5 point grid. The dataset includes hourly data
from 2021 to 2024 (except made from the first 18 days of Janu-
ary 2021). To evaluate the model under peak thermal condi-
tions, we selected as test set the entire summer months of June
2021, July 2022, August 2023 and September 2024, totaling
82 overlapping windows of 10 days (20 for June and Septem-
ber, 21 each for July and August). Each window includes 168
hours (7 days) of input and 72 hours (3 days) of output.

Unfortunately, we found out that in many regions there was a
high number of missing data, for approximately the 48% of the
total: to account for this issue, we implemented interpolation
techniques. After testing cubic and spline interpolation (both
of which led to non-realistic outputs) we opted for a linear in-
terpolation, trading some temperature realism for stability and
smoother results.

The data, originally in Kelvin, were converted to Celsius for
improved interpretability and consistency in visualization. Dur-
ing the training procedure, all values were normalized by sub-
stracting the mean and dividing by the standard deviation. To
prevent possible overfitting caused by the limited spatial resolu-
tion and repetitive sequences, we applied early stopping during
training. We found that the use of added gaussian noise did not
change the model performances.

3.2 Method

We propose an autoregressive Transformer-based model for the
short-term prediction of land surface temperatures in urban en-
vironments. The model is trained to generate an hourly tem-
perature forecast over a 72-hour horizon, given the preceding
168 hours of data. The overall architecture follows an encoder-
decoder design, adapted to handle spatiotemporal data extracted
from satellite-based temperature grids.
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Model Formulation Let X = {x¢—167,...,%+} denote a
sequence of 168 hourly LST frames, each represented as a
5 x 5 grid. The goal is to predict the sequence ¥ =
{&41,...,Te472}, Where each &4 is also a 5 x 5 grid rep-
resenting the LST field at hour ¢ + 4.

The model consists of:

e Encoder: A stack of Transformer layers that processes the
full input sequence. Each frame is flattened and embedded
with spatiotemporal positional encodings to preserve both
time order and grid location. Multi-head self-attention
captures dependencies across the entire input window.

e Decoder: An autoregressive decoder that generates the
output sequence one frame at a time. At each timestep
t + 1, the decoder uses the encoder output and the previ-
ously predicted frames Z¢41, . . ., T¢+i—1 to compute Ti4;.
Masked self-attention ensures causality in the generation
process.

Training Strategy The model is trained using the Mean Ab-
solute Error (MAE) loss:

72
1 .
Lmag = E Z |£Ut+k — T4k

k=1

We experimented also with Mean Squared Error (MSE) and
Root Mean Squared Error (RMSE), noticing a degradation of
the performances. In fact, as shown in the Results section, des-
pite an increase of overfitting the MAE loss was able to pro-
duce the lowest estimation error. We used Adam optimizer,
with early stopping based on validation MAE. A small Dropout
value, equal to 0.1, helped prevent overfitting.

The decoder constructs the output autoregressively: after the
first prediction 41 is generated, it is used to compute T2,
and so on, building the 72-hour sequence recursively. In this
way, it is possible to exploit the model to produce longer or
shorter predictions while keeping good performances.

4. Results

We evaluate the performance of the model on 82 test windows
drawn from three distinct summer months across 2022-2024.
These months were held out during training to assess the
model’s ability to generalize across years and climatic condi-
tions.

Evaluation Metrics
We report both Root Mean Square Error (RMSE), Mean

Squared Error (MSE), and Mean Absolute Error (MAE), com-
puted as:

MAE =

Results and Temporal Forecast Behavior

Using MSE, the model achieves an average error of 1.48° C2,
which is largely influenced by the smoothing and information
loss due to linear interpolation. The use of L1 loss, however,
results in a significantly improved MAE of 0.79° C, demon-
strating the effectiveness of using absolute error minimization
in this context. Finally, the model trained and tested with RMSE
scored an error value equal to 1.18° C.

As relates to the forecast accuracy, it remains consistent over
the first 48 hours and slightly degrades in the final third of the
prediction window, reflecting the expected uncertainty accumu-
lation typical of autoregressive decoders.

The following figures show the evolution of loss values over
the 72-hour prediction window, averaged across all 82 test se-
quences. Specifically, Figure 2] presents the RMSE values over
time, while Figure [3] highlights the corresponding MSE trend;
Figure [f]demonstrates the improved accuracy of the MAE used
both as training loss and as metric for assessing performances.

Training and Test Loss per Epoch

—— Train Loss
—— Test Loss

Figure 2. RMSE values over the 72-hour forecast horizon,
averaged across all test windows.

Training and Test Loss per Epoch

—— Train Loss
—— Test Loss

Loss.
o

Figure 3. MSE values over the 72-hour forecast horizon,
averaged across all test windows.

These plots illustrate that while RMSE and MSE highlight the
model’s sensitivity to peak errors, especially relevant in critical
climate scenarios, MAE provides a more stable assessment of
forecast reliability. Moreover, the MAE training-testing curves
exhibit some overfitting: for this reason, we applied early stop-
ping after 15-20 training epochs and thus obtained an accur-
ate model capable of consistent previsions throughout the 3-day
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Figure 4. MAE values over the 72-hour forecast horizon,
showing improved performance with L1 loss.

forecast window, which is especially valuable in urban climate
risk contexts.

Case Study: Selected Grid Points in Florence

To further evaluate the quality of the model predictions, we ana-
lyzed the temperature forecasts for three specific spatial grid
points selected within the city of Florence. These points were
chosen along the same longitude (11°15°00”E) but at different
latitudes according to the spatial structure of the CLMS dataset
as follows:

e Point A: 43°45°00”N, 11°15°00"E
e Point B: 43°47°40”N, 11°15’00”E

e Point C: 43°50°21”N, 11°15°00"E

Figure E] illustrates the selected locations, which can be as-
sumed as representative of the thermal behavior across a lat-
itudinal gradient spanning the urban and peri-urban zones of
Florence. For each point, we plotted the 72-hour predicted tem-
perature time series against the ground truth. Figures [f] [7] and
[Bdisplay the model’s prediction vs. ground truth for each loca-
tion.

The results confirm that the model captures the fundamental
shape and timing of temperature variations across different lat-
itudes within the grid. Despite the smoothing introduced by
linear interpolation and the slight phase lag in some peaks, the
forecast curves closely match the measured values.

An interesting observation emerges when comparing Point A
(Fig. [6) and Point B (Fig. [7). Although Point A is located in
a less densely built-up area than Point B, which lies in a res-
idential urban zone, it consistently exhibits higher peak tem-
peratures. This unexpected thermal behavior may be linked to
the limitations of satellite-based LST data, particularly the re-
latively coarse resolution and the presence of missing values
that required interpolation. While linear interpolation ensured
continuity, it may not preserve local thermodynamic variations,
especially in mixed land cover regions. These anomalies high-
light the importance of integrating satellite data with additional
information, such as in-situ ground station measurements,
detailed land use classifications, and emissivity maps. Further
analysis is needed to confirm whether the elevated values in
Point A reflect microclimatic conditions, land surface character-
istics or artifacts introduced during preprocessing. These plots

support the overall conclusion that the model’s prediction is ac-
curate not only in terms of global metrics (RMSE, MSE, MAE),
but also in localized point-based performance—a key require-
ment for effective application in microclimatic monitoring and
heritage risk assessment.

5. Conclusions

In this work, we presented a deep learning framework for short-
term forecasting of urban land surface temperature, with a spe-
cific focus on heritage-sensitive areas affected by the Urban
Heat Island phenomenon. Leveraging hourly satellite observa-
tions from the Copernicus Land Monitoring Service, we trained
a custom autoregressive Transformer model to predict temper-
ature distributions over a 72-hour horizon at 5 km spatial resol-
ution.

The results on the Florence case study demonstrate the model’s
ability to capture both temporal dynamics and spatial patterns of
urban heat. Despite being trained on a limited set of three sum-
mer months across different years, the model achieved prom-
ising accuracy, with MAE values as low as 0.79°C. These find-
ings highlight the feasibility of applying Transformer-based ar-
chitectures to climate forecasting tasks using remote sensing
data alone.

Beyond quantitative performance, the method provides a valu-
able tool for anticipatory temperature-related risk assessment
in historic urban environments. By generating high-resolution
forecasts of surface temperature, the framework supports in-
formed decision-making for heritage conservation, such as
planning mitigation measures, identifying thermal hotspots and
deploying Nature-Based Solutions during heatwave episodes.

The analysis of specific locations within the Florence grid fur-
ther revealed discrepancies that challenge the interpretations of
LST patterns. For instance, a less urbanized grid cell (Point
A) recorded consistently higher predicted temperatures than a
more built-up counterpart (Point B), suggesting the need for
more nuanced and spatially contextualized validation strategies.
Such anomalies highlight the limitations of relying solely on
satellite-derived LST data and emphasize the value of integrat-
ing auxiliary information from ground stations, land use data-
sets, and emissivity maps.

Looking ahead, enhancing the spatial resolution of forecasts
by incorporating multi-source observations will be essential for
making precise predictions at the microclimate level. This in-
tegration will enable targeted conservation strategies and im-
prove the interpretability and applicability of UHI forecasts in
heritage-rich urban areas. Future work will also explore tem-
poral expansion using multi-year datasets and the application
of attention-based interpretability to identify the driving factors
behind the extreme thermal patterns.

In conclusion, our research aims to contribute to the growing
intersection between artificial intelligence, remote sensing, and
cultural heritage management, offering a scalable and transfer-
able methodology to anticipate thermal stress in historic cities
under increasing climate pressure.

Acknowledgment

This project is supported by the Spoke 7 within the Italian Na-
tional Research Programme (NRP) - PEO5 (CHANGES), CUP:

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-399-2025 | © Author(s) 2025. CC BY 4.0 License. 403



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025
30th CIPA Symposium “Heritage Conservation from Bits:
From Digital Documentation to Data-driven Heritage Conservation”, 25—29 August 2025, Seoul, Republic of Korea

1238320E 1245320E 1252320E 1259320E
o -

5440700N
NOOLOYYS

5433700N
NOOLEEYS

5426700N
NO00L9ZYS

1238320E 1245320E 1252320E 1259320E

Figure 5. Satellite image of Florence and its surrounding area showing the three selected grid points used for model validation, labeled
as Point A (43°45°00”N), Point B (43°47°40”N), and Point C (43°50°21”N), all aligned along longitude 11°15’00”E. The selected
points exhibit different degrees of urbanization despite their geographic proximity, underscoring the importance of capturing
microclimatic variability and motivating the integration of finer-resolution and ground-based data for future analyses.
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