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Abstract 

The study proposes an optimized approach for feature selection in the semantic segmentation of point clouds within the 
architectural domain of cultural heritage, with a specific focus on historical monastic architecture. The goal is to enhance the 
automatic recognition and classification of architectural elements using the Random Forest algorithm, by reducing classifier 
dependency and increasing the model’s generalization capability. The developed method is based on a multiscale statistical 
selection of features, through p-value analysis and the optimization of influence radii, fully automating the process within a Python 
environment. The method was tested on a TLS point cloud dataset specifically built for Franciscan cloisters in the Campania 
region, segmented into ten architectural classes.  The new approach builds upon the existing but implemented RF4PCC model, 
against which it was compared, showing significant improvements in the classification of minority classes, thanks to the 
adoption of the class_weight=”balanced” parameter and the expansion of the dataset. The analysis of feature_importances_ 
revealed biases related to class imbalance, which were addressed through regularization strategies and complexity control of the 
decision trees. Experimental results show an increase in the macro F1-score and greater fairness in class classification. The 
proposed approach proves effective for applications in the cultural heritage field, offering an interpretable, efficient, and adaptable 
method for complex architectural contexts. 

1. Introduction

The evolution of studies on point cloud segmentation using 
Artificial Intelligence (AI) algorithms has opened new 
opportunities in the field of cultural heritage (CH), enabling the 

interpretation and classification of architectural elements 
characterized by complex, often non-standardizable geometries 
(Cao et al., 2022; Zhao et al., 2023; Yang et al., 2023). One of 
the main challenges in developing AI-based approaches for 
semantic segmentation lies in the difficulty of collecting a 
sufficiently large dataset - especially in the context of Deep 
Learning (DL) - to train the algorithm and define a reliable 
predictive model (Terruggi et al., 2020). Considering these 

limitations, the development of Machine Learning (ML) 
approaches has led to promising results in recent years, even 
when working with small-scale datasets. In the CH domain, 
studies frequently reference the use of the Random Forest (RF) 
algorithm, where the computation and selection of features play 
a critical role in optimizing the classifier’s predictive accuracy 
(Pierdicca et al., 2020). This study develops an innovative 
methodological approach to overcome the limitations of current 
feature selection systems by introducing an external statistical 

validation framework that replaces traditional impurity-reduction-
based methods. The primary objective is to fully optimize and 
automate the selection and computation of geometric features, 
significantly reducing classifier dependency and enhancing the 
model’s generalization capability across architectural contexts 
beyond the training data. This approach improves classification 
performance and computational efficiency, with particular focus 
on identifying minority architectural elements such as moldings, 

openings, and decorative details, which, despite their numerical 
underrepresentation, are crucial for the stylistic characterization of 
historic buildings. The analysis was conducted on point cloud 
datasets acquired through Terrestrial Laser Scanning, 
concentrating on the cloister architecture of Franciscan religious 
complexes. An advanced feature selection technique was 

developed based on multi-radius statistical analyses and p-value 
evaluations for each feature relative to target classes, employing 
triangular significance matrices to automatically determine the 
optimal radius for each feature and maximize class separability. 
The entire approach, implemented in Python, provides an 
interpretable, efficient, and adaptable method for complex 
architectural scenarios, with direct applications in digital 
documentation and cultural heritage analysis. 

2. State of the Art

In recent years, the use of AI techniques - particularly ML and 
DL - has significantly enhanced automatic classification and 

semantic segmentation of point clouds for cultural heritage 
documentation (Xie et al., 2020; Gaber et al., 2023; Gîrbacia, 
2024). Supervised ML techniques can perform well even with 
small datasets; however, the user’s role remains central in 
defining the geometric or radiometric features. The RF algorithm 
has shown good performance on limited datasets, provided that 
features are selected based on the characteristics of the target 
classes (Ni et al., 2017). Adding relevant features improves 
segmentation accuracy (Atik and Duran, 2022), but selecting the 

most appropriate ones and determining their influence radius 
remains crucial (Weinmann et al., 2013; Buldo et al., 2024), 
especially for model generalization (Grilli and Remondino, 
2020). Targeted feature selection helps reduce model complexity 
and enhances predictive performance (Guyon and Elisseeff, 
2003; Moyano et al., 2024). While wrapper methods often yield 
better results than filter-based methods, they carry a higher risk 
of overfitting, like embedded methods. Effective feature 

selection requires a balance between representativeness and 
generalizability (Harshit et al., 2022).  
A critical issue is class imbalance, frequently encountered in CH 
datasets: some classes (e.g., walls) are overrepresented, while 
others (e.g., moldings) are underrepresented. This imbalance 
affects the assessment of feature importances in RF: features 
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associated with majority classes tend to be overestimated, while 

those related to minority classes are undervalued, making 
accurate classification of the latter more difficult (Gu et al., 
2022). RF calculates feature importance by summing the 
impurity reductions in the splits where each feature is used. 
However, imbalanced datasets distort this process: decision trees 
are more likely to generate splits that favor dominant classes, 
penalizing minority ones. Lin and Nguyen (2020) proposed 
oversampling and undersampling techniques to improve minority 

class prediction, though these methods often face practical 
limitations. Gu et al. (2022) also reported promising results using 
artificial balancing techniques, offering a solid methodological 
foundation for applications in CH. Nonetheless, parameter 
optimization of RF for architectural scenarios remains 
underexplored. This study introduces a new approach to feature 
selection that reduces classifier dependency and enhances 
generalization by adopting cost-sensitive learning strategies 
(Chen et al., 2004) and applying balancing techniques such as 

class_weight = "balanced".  
Finally, the proposed work introduces a methodological 
framework that integrates: - external statistical validation; - 
advanced parameter optimization; - class balancing techniques.  
The goal is to develop a robust, interpretable, and generalizable 
system for semantic segmentation of point clouds within 
monastic architectural heritage. 
 

3. Methodology and Materials 

The proposed methodology combines multiscale statistical 
analyses with ML techniques to create an automated system for 
selecting geometric features in architectural 3D models. The 

innovative aspect lies in replacing traditional feature selection 
methods based on impurity reduction with an external statistical 
validation system that employs robust tests to evaluate 
differences between class distributions. This approach ensures an 
objective and reproducible identification of the optimal feature-
radius combinations, eliminating interpretative subjectivity and 
enhancing the reliability of the predictive model's generalization. 
Specifically, the methodological workflow includes the 

following steps:  
 

1. Comparison between classifications obtained using the 
predictive model from Random Forest for Point Cloud 
Classification (RF4PCC) (3DOM-FBK/RF4PCC 2024) 
and those derived from its implementation (RF4PCC - 
implemented), in terms of feature and radius selection 
using accuracy metrics and statistical significance 
criteria.  

2. Analysis of feature importances and the impact of class 

frequency on the assigned weights, to assess the relative 
contribution of each feature in the decision-making 
process and understand how class size influences weight 
distribution.  

3. Optimization of the new feature selection approach, 
aimed at reducing informational redundancy and 
improving feature selectivity, while ensuring high 
computational efficiency.  

4. Implementation and experimental validation of the 
optimized method, including recalculation of the selected 
features, training of the new predictive model, and 
quantitative performance evaluation on test data, to 
assess the effectiveness of the proposed method and 
measure improvements over the RF4PCC - implemented 
approach. 
 

The methodological process was applied and validated on a 
purpose-built dataset developed through collaboration between 

the Department of Civil, Building, and Environmental 

Engineering (DICEA) and the Department of Architecture 
(DiARC) at the University of Naples Federico II, in partnership 
with the Religious Provinces of the Monastic Order of Saint 
Francis in the Campania region. 
The dataset focuses on the architectural typology of the cloister 
structure with a standardized geometric base (quadrangular or 
rectangular with arcades) yet marked by significant formal 
diversity. This combination of complexity and standardization 

makes the cloister an ideal case study for automatic 
morphological analysis using ML techniques.Specifically, the 
dataset consists of eight point clouds acquired using range-based 
survey techniques. These represent monastic cloisters from the 
following sites: the Convent of San Francesco in Montella (AV), 
the Convent of S.S. Pietà in Teggiano (SA), the Convent of San 
Francesco in Padula (SA), the Monastic Complex of San Lorenzo 
Maggiore in Naples (NA), the Convent of Sant’Andrea in Nocera 
Superiore (SA), the Convent of Sant’Antonio in Nocera Inferiore 

(SA), the Convent of San Francesco in Solofra (AV), and the 
Convent of San Francesco in Benevento (BN). The discrete 
models in the form of point clouds were captured using phase-
based Terrestrial Laser Scanners (TLS), configured to record a 
scan grid of 7 mm at 10 m, combined with color information. For 
each point cloud, manual annotation was performed on a 
significant portion of the dataset, segmenting and classifying 
groups of points into 10 architectural classes, corresponding to: 

“wall”, “floor”, “column”, “molding”, “vault”, “arch”, “stair”, 
“window/door”, “roof”, and “other”.  
 
3.1 Implementation of RF4PCC model and Comparison of 

Results 

The first step of the adopted methodology involved applying the 
pre-trained RF4PCC predictive model to the dataset of monastic 
cloisters. This model had been previously developed and trained 
by the 3DOM research unit of the Bruno Kessler Foundation 
(FBK). The aim of this phase was to assess the model's 
performance in a specific architectural context and to identify any 
areas for improvement to optimize classification results. 

However, the application of the pre-trained model revealed 
significant limitations in segmenting and recognizing the typical 
macro-elements of cloisters. This highlights the need for a novel 
methodological approach tailored to the specific characteristics 
of historical architecture, especially monastic architecture.  
The RF4PCC model adopts a feature selection method based on 
Random Forest (RF) impurity reduction. This selection is applied 
iteratively to an initial feature set. Based on a multi-scale analysis 
of the training set, the authors progressively selected the most 

relevant features using RF - such as Planarity, Omnivariance, 
Surface Variation, and Verticality - computed at specific 
predefined radii, while also integrating the z coordinate. 
Although this method is computationally efficient, it relies solely 
on the internal discriminative power of the RF classifier, without 
considering the statistical significance of class distributions in the 
specific domain. In fact, applying this approach to the Franciscan 
dataset revealed systematic misclassifications between 

architecturally distinct classes, such as “column” and “wall”, as 
well as “molding” and “window/door”. These results underscore 
the limitations of a selection process driven exclusively by 
impurity reduction, without any external statistical validation 
tailored to the cloister (CH) domain.    
As a result, the methodology proposed here, RF4PCC – 
implemented, introduces several modifications compared to the 
original RF4PCC approach, replacing impurity reduction with an 

external statistical validation framework, structured around four 
key methodological innovations: 
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Figure 1. Selection of the optimal feature–radius combinations was carried out through an integrated analysis based on two tools: 

boxplots, used to visually compare class distributions and identify the most effective radii for each feature (a); triangular p-value 

matrices, used to assess the statistical significance of differences between class distributions (b). 

 
 

1. Expansion of the geometric feature set: the new 
approach extends the initial set (Planarity, 
Omnivariance, Surface Variation, Verticality, RGB, b*, 
R+G+B/3) by integrating Linearity, Sphericity, 
Anisotropy, and Eigenentropy, specifically selected to 
capture morphological characteristics typical of CH; 

2. Multiscale radius optimization: unlike RF4PCC, which 
uses predefined fixed radii, the new method implements 
systematic optimization (range 0.25–1.00 m) identifying 
the optimal radius for each feature through comparative 
analysis of class distributions using boxplots; 

3. Independent statistical validation: Impurity reduction in 
Random Forest is replaced by triangular p-value 
matrices used to evaluate the statistical significance of 

differences between class distributions, offering external 
and objective validation of discriminative power; 

4. Automated feature computation: All features are 
computed via a fully automated Python script, 
eliminating reliance on external software and ensuring 
full reproducibility and control over the feature 
extraction process. 
 

The boxplot analysis examines the relationships between classes 

through the position of the median and the shape of the boxes: 
overlapping boxes and coinciding medians indicate similar 
distributions. The p-value matrices identify indistinguishable 
classes and features that are ineffective for discrimination. By 
combining boxplots and p-value matrices, it was possible to 
identify the optimal radii and geometric features for class 
differentiation (Figure 1). The new model was then trained using a 
dataset consisting of four monastic cloister point clouds, three for 
training and one for validation. The resulting predictive model was 

tested on two different point clouds, one partially and one 
completely unknown to the system. The comparison between the 
original and the implemented RF4PCC shows significant 
improvements: accuracy increased from 0.565 to 0.615, and 
weighted F1-score from 0.569 to 0.587, accounting for the unequal 
distribution of classes, while the macro F1-score decreased from 

0.434 to 0.333, indicating lower average performance across all 
classes. So, the new model performs better in classifying major 
categories ("floor”, "wall" and "vault") but struggles with 
morphologically similar classes ("arch"/"vault”, 
"moldings"/"wall") (Figure 2). The "other" class still aggregates a 

high number of misclassifications. Notable improvements are 
observed for the "column" class (from 2490 to 7398 correctly 
classified points) and the "vault" class (from 15549 to 22113). 
Challenges persist for the "roof" class (due to poor representation 
in the dataset) and for classes with weakly distinctive geometric 
features, highlighting the need for dataset enrichment. 
 
3.2 Study of features_importances_ and the Influence of an 

increased number of Classes on Assigned Weights 

To better understand the importance of each feature in the 
training process and to evaluate the reliability of the model's 
predictions, an in-depth analysis of the feature importance 
weights was conducted using the feature_importances_ indicator 

from the Random Forest (RF) algorithm (Figure 3).  
This analysis was necessary to identify potential biases - i.e., 
systematic errors or distortions that may undermine the model’s 
performance - and to assess whether an imbalanced class 
distribution in the dataset affects the estimation of feature 
importance. Indeed, it was observed that when a particular class 
is overrepresented compared to others, the model tends to 
systematically favor features that better discriminate the 

dominant class, thereby reducing the weight assigned to features 
that could be essential for the correct recognition of minority 
classes (Figure 4).This issue is particularly critical in the context 
of cultural heritage (CH), where elements such as moldings, 
capitals, and decorative details are underrepresented compared to 
structural elements like walls and floors. The imbalance leads to 
overfitting on the dominant class (i.e., excessive specialization on 
majority patterns by memorizing specific features rather than 

learning generalizable relationships), underfitting on minority 
classes, and a reduced ability to generalize to new data containing 
examples of the underrepresented classes. 
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Figure 2. Comparison of the classification of an unknown portion of the point cloud, obtained through: the implemented RF4PCC 

model (a) and the RF4PCC model (c), compared to the ground truth (b) derived from the manual segmentation of the point cloud 

module of the monastic cloister of S. Francesco (BN). 

 

So, to address class imbalance, a systematic approach was 
adopted based on the optimization of the 
class_weight='balanced' parameter in Random Forest, which 
automatically applies inverse weighting: underrepresented 
classes are assigned higher weights, while overrepresented 
classes receive lower weights. This artificial balancing improves 
both problem understanding and generalization capacity, 
allowing each class to contribute equally to the learning process 

regardless of its frequency in the dataset, and reducing the 
tendency to favor dominant classes. However, artificial balancing 
can paradoxically lead to overfitting, which is particularly 
problematic when working with small datasets. To leverage the 
benefits of class balancing while avoiding overfitting, two 
complementary strategies were implemented: 
 

• Dataset expansion: Four new point clouds were added 
to increase category representativeness and enable the 
learning of more robust patterns, reducing the 
memorization of specific features and mitigating the 
distorting effects of artificial balancing. 

• Tree complexity control: The parameters 
max_depth=10 (an optimal compromise to capture 

complex relationships without excessive 
specialization) and min_samples_leaf=5 (preventing 
terminal nodes for single examples and leaves tailored 
to individual samples from minority classes) were 
optimized. These values were selected empirically, 
considering that excessive max_depth leads to 
overfitting in small or imbalanced datasets, while 
overly high min_samples_leaf limits the model’s 

ability to learn relevant details, thus impairing 
predictions. 
 

This approach results in a robust, interpretable, and reliable 
model capable of accurate predictions regardless of class 
distribution, while avoiding the overfitting risks associated with 
artificial balancing techniques. 
 
3.3 Optimization of the New Feature Selection Approach 

Following the analysis of feature importance and the 
implementation of strategies to mitigate overfitting, a systematic 
and objective method was developed to further accelerate and 
optimize the feature selection process. 

 

 

Figure 3. Relationship between feature importance (a) and class point counts (b). The most important feature is Verticality (radius 

1.70 m), and the class with the most points is “wall”. 
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Figure 4. The boxplot analysis of the feature Surface variation, calculated with a 0.25 m radius (a), and the feature Eigenentropy (b),  

calculated with a 0.1 m radius - with feature importance values of 0.17 and 0.02 respectively - highlights a relationship between the 

importance assigned to a feature and the number of points in the class it helps to distinguish. 

 
The main goal was to overcome the limitations of the previous 
approach by reducing the risk of interpretive errors and 
computational inefficiencies.  

As previously mentioned, the feature selection process adopted in 
the earlier RF4PCC–implemented model required a multi-step 
approach involving the simultaneous comparison of p-value 
matrices (statistical significance of feature-radius combinations) 
and boxplots (class distribution analysis across the 0.25–1.00 m 
range). So, to eliminate subjectivity in evaluating overlaps, a 
single triangular matrix was developed, providing an immediate 
overview and significantly reducing analysis time (Figure 5). 
Information previously dispersed across boxplots is now directly 

embedded in each cell through the automatic computation of the 
classes best discriminated by each feature-radius combination. 
 

 

Figure 5. Triangular summary matrix of the feature-radius 

combinations adopted in the optimized model, where each cell 

automatically indicates the best-discriminated classes, integrating 

information obtained from boxplots and p-value matrices. 

The analysis employs an automated summary table that 
simultaneously evaluates all triangular matrices from the training 
dataset, automatically identifying the optimal feature-radius 

combinations (Figure 6). The result is a system that directly 
delivers the optimal feature and radius selections for each class, 
removing the need for manual interpretation, reducing the risk of 
decision-making errors, eliminating inter-operator variability, 
and significantly shortening analysis time. 
 
3.4 Implementation and Experimental Validation of the 

Optimized Method 

Once the methodological framework for optimizing the RF4PCC 
algorithm was defined, an automated feature selection process 
was implemented on the monastic cloisters dataset. The 
automated summary table identified the optimal feature-radius 
combinations through the simultaneous analysis of all point 

clouds in the training set, ensuring statistical significance in 
discriminating between architectural classes specific to the 
monastic environment. This approach significantly reduced the 
dimensionality of the feature space, yielding a highly selective 
and computationally efficient subset, while minimizing the 
interpretive subjectivity inherent in the previous process. 
The new predictive model was trained using the optimized 
feature dataset, retaining the previously validated RF 

configuration with regularization parameters (max_depth=10, 
min_samples_leaf=5, class_weight='balanced') to ensure 
robustness against overfitting and fair treatment of all classes. As 
an additional anti-overfitting strategy, the training dataset was 
expanded from four to eight monastic cloisters, significantly 
increasing the morphological and stylistic variety of the training 
set and offering a more comprehensive representation of 
monastic architectural variability, thereby reducing the risk of 

memorizing specific patterns. So, the optimized model was 
validated following a rigorous experimental protocol using two 
types of test data: portions of point clouds partially seen during 
training and point clouds entirely unseen by the model. This dual 
approach enabled the assessment of both generalization 
capabilities on unexplored sections of architectures included in 
the training set, and predictive robustness on completely novel 
case studies, offering a comprehensive evaluation of 
performance in real-world operational scenarios.
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Figure 6. Automated summary table of the optimal feature-radius combinations for the different point clouds in the training dataset. 

The system simultaneously aggregates and analyzes the results of the triangular matrices, automatically identifying the most effective 

choices for class discrimination, while reducing analysis time, subjectivity, and operator variability. 

 

Figure 7. Comparison between the classification of the portion of the point cloud partially known to the classifier, obtained through: 

the optimized model (a) and the implemented RF4PCC model (c), versus the ground truth (b) derived from the manual segmentation 

of the point cloud module of the monastic cloister of San Francesco in Padula (SA). 

 

3.4.1 Performance Comparison: Implemented RF4PCC vs. 

Optimized Model on Known Dataset 

 
The comparative analysis of performance metrics reveals a 
targeted pattern of improvements with the optimized method, 
aligned with the objectives of class balancing and enhanced 
identification of minority architectural elements (Figure 7). 
Overall accuracy shows a slight decrease from 66.9% to 65.3% 

(-2.4%), offset by a significant increase in the macro F1-score 
from 0.499 to 0.512 (+2.6%) and in the weighted F1-score from 
0.623 to 0.632 (+1.4%), indicating more balanced performance 
across the different architectural classes.  
The most notable results emerge in the analysis of minority 
classes, which have historically been underrepresented in 
architectural datasets. The “molding” class shows an F1-score 
improvement from 0.487 to 0.549 (+12.7%), driven by a 
substantial increase in recall from 34.4% to 46.3% (+34.6%), 

indicating a significantly improved ability to identify decorative 
elements within the point cloud. Although precision drops from 
83.2% to 67.4%, this trade-off is strategically beneficial in the 
context of monastic heritage analysis, where capturing all 
significant decorative features - even at the cost of requiring 
subsequent manual validation - is preferred. 
The “column” class reflects a strategic shift in classification 
approach, with a notable increase in recall from 69.4% to 90.8% 

(+30.8%), showing that the optimized model identifies over 90% 
of columns present. The reduction in F1-score from 0.733 to 0.621 
(-15.3%) is primarily due to a decline in precision (from 77.8% to 
47.2%), reflecting a more "inclusive" strategy that favors 
comprehensive identification of vertical structural elements, 
crucial for the morphological analysis of monastic cloisters.  

 

Figure 8. Confusion matrix of the optimized model compared to 

the classification of the point cloud partially known to the 

classifier. Significant increases are observed in correctly 

classified points for the classes “column” (43694), “molding” 

(46856), “floor” (87389), and “stairs” (8201). The “vault” class 

shows a slight decrease (117532), while confusions between 

adjacent classes are reduced, confirming the model’s 

effectiveness in improving the discrimination of architectural 

elements in the point cloud. 
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Figure 9. Comparison between the classification of the portion of the point cloud unknown to the classifier, obtained through: the 

optimized model (a) and the implemented RF4PCC model (c), against the ground truth (b) derived from the manual segmentation of 
the point cloud module of the monastic cloister of S. Francesco in Benevento (BN). 

 

The comparative analysis of the confusion matrices (Figure 8) 
highlights significant improvements with the optimized method 
when classifying the point cloud partially known to the model, 
confirming the trends observed in the performance metrics.  
The most significant improvement is seen in the classification of 
the “column” class, which increased from 33370 to 43694 
correctly classified points. This is accompanied by a notable 
reduction in confusion with the “molding” and “wall” classes, 

indicating a stronger discriminative capability of the optimized 
model in distinguishing vertical structural elements, consistent 
with the recall increase (from 69.4% to 90.8%).  
Similarly, the “molding” class shows a substantial improvement 
from 34846 to 46856 correctly classified points, reflecting better 
discrimination of decorative elements, which have historically 
posed challenges for automated classification systems in historic 
architecture. This result aligns with the +12.7% F1-score 

improvement for the “molding” class and confirms the 
effectiveness of the optimized method in identifying 
underrepresented decorative elements. 
 
3.4.2 Performance Comparison: Implemented RF4PCC 

vs. Optimized Model on Unknown Dataset 

 
The analysis of results on the entirely unseen point cloud 

provides a critical assessment of the generalization capabilities of 
the two classification approaches (Figure 9).  
Contrary to the results on the partially known point cloud, the 
RF4PCC method achieves higher accuracy (61.5% vs. 57.7%), 
indicating greater stability on novel data. However, the optimized 
method shows a significant increase in the macro F1-score (from 
0.333 to 0.414, +24.3%), demonstrating a superior ability to 
handle minority classes even under completely new dataset 
conditions.  

The comparison of the confusion matrices (Figure 10) confirms 
the strategic differences between the two approaches.  
The “column” class exhibits the most significant improvement, 
with an F1-score increase from 0.444 to 0.578 (+30.2%), 
resulting from a substantial rise in recall from 36.7% to 71.0%, 
which translates to an increase in correctly classified points from 
7398 to 14335. Particularly noteworthy is the improvement in the 
classification of “window/door” elements, where the optimized 

method achieves an F1-score of 0.499 compared to 0.227 in the 
previous method, driven by a dramatic recall increase from 
13.1% to 52.4%. 
The comparative analysis on unseen data confirms the 
effectiveness of the optimization framework in reducing bias 
toward dominant classes and significantly enhancing the 
identification of minority architectural crucial elements for 
comprehensive documentation of historical heritage.  

 
Figure 10. Confusion matrix of the optimized model on point 

clouds unknown to the classifier, showing significant increases 
in correctly classified points for “column” (14335) and 

“window/door” (4478). 

The optimized method successfully meets its objectives of 
improving the recognition of minority elements while 

maintaining competitive performance on dominant classes, thus 
providing a more balanced approach tailored to the specificities 
of the monastic heritage analyzed. 
 

4. Conclusions and future developments 

The proposed implementation method proved effective in 
improving the segmentation and classification of point clouds 
within the context of architectural cultural heritage, with specific 
reference to Franciscan monastic cloisters. The results confirm 
that the systematic optimization of feature selection, combined 
with external statistical validation, can overcome the limitations 
of approaches based solely on impurity reduction in the Random 
Forest classifier. Feature selection based on variable radii 

improved model accuracy by reducing classification ambiguities, 
while the use of p-value matrices made the process more 
objective and automated, enhancing generalization capability. 
The creation of a dedicated cloister dataset enabled rigorous and 
context-specific validation, demonstrating the model’s ability to 
adapt to complex morphologies. However, generalization 
remains limited to the cloister typology, highlighting the need for 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-41-2025 | © Author(s) 2025. CC BY 4.0 License.

 
47



 

testing on different structural types. Balancing precision and 

recall for minority classes requires further development, 
especially in cases where minimizing false positives is critical, 
and the method still depends on the availability of high-quality 
annotated datasets. Future developments aim to extend the 
application to architectural subcategories, increasing the analysis 
granularity to include the recognition of specific details such as 
moldings, capitals, and decorative elements, which will require 
dataset diversification and integration with hybrid learning 

systems to balance interpretability and performance. Overall, the 
framework represents a significant contribution to the automatic 
classification of point clouds for cultural heritage, demonstrating 
that rigorous, statistically grounded approaches can surpass the 
limitations of traditional methods and marking a substantial 
advancement in the digital documentation of heritage assets. 
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