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Abstract 

The recurrent crystallization and dissolution of salts within murals lead to significant internal structural damage, ultimately causing 

paint loss and compromising mural integrity. This study explores the effectiveness of five training dataset partitioning methods in 

improving the accuracy of models designed to non-invasively predict salt content in murals using spectral data collected across 350 nm–

2500 nm. Firstly, spectra were acquired from laboratory-simulated murals using a spectroradiometer, followed by smoothing and 

denoising via the Savitzky-Golay (S-G) algorithm. To further enhance salt-related spectral features and eliminate baseline drift, both 

first-order and second-order differentiation techniques were applied. Secondly the performance of five partitioning strategies—Random 

Selection (RS), Kennard-Stone (KS), Sample Set Partitioning Based on Joint X-Y Distance (SPXY), Kernel Distance-Based Sample 

Set Partitioning Based on Joint X-Y Distance (KSPXY), and Sample Set Partitioning Based on Joint X-Y-E Distances (SPXYE)—was 

evaluated. A salt content inversion model was then developed using Random Forest (RF) and Partial Least Squares Regression (PLSR). 

Results showed that PLSR, combined with KSPXY partitioning and first-order derivative enhancement, achieved the best predictive 

performance. Validation of the model with a test dataset yielded the RMSE of 0.068 and the R² of 0.954, indicating high accuracy. Our 

findings underscore the pivotal role of sample partitioning method selection in enhancing model accuracy and predictive outcomes. 

This study provided an effective technique for the inversion of mural salt content non-invasively, which would facilitate the 

preservation of these invaluable cultural artifacts. 

1. Introduction

A mural is a form of painting art created on walls for decorative 

or other purposes. It holds significant research value, as it 

contains a wealth of historical information, including politics, 

economics, culture, science and technology, as well as 

production techniques(Guo et al., 2023) . However, with 

temperature changes, soluble salts migrate to the surface through 

capillary channels in the murals under humid conditions. After 

repeated cycles of dissolution and crystallization, the bonding 

force within the ground preparation layer is weakened, leading to 

loosening, detachment, scattering, or peeling of the pigment layer 

and consequently resulting in common deterioration phenomena 

such as plaster disruption, blistering, and salt efflorescence. 

Therefore, salt content testing of frescoes is very important for 

the prevention of salt damage and the preservation of murals. 

Yu found a large amount of NaCl both inside and outside the 

mural walls using ion chromatography (IC). They conducted a 

comprehensive study on the water vapor distribution inside the 

mural walls by combining high-density electrical methods, 

microwave humidity measurement, and thermal infrared imaging 

with temperature and humidity monitoring results( Yuet al., 

2017). Their findings confirmed that water vapor activity poses a 

serious threat to the safe preservation of the mural in the temple. 

Based on Raman spectral analysis,  Madariaga discussed the 

formation of weathering layers on the mural of Pompeii, 

Italy(Madariaga et al., 2014). They explained how the chemical 

reaction of acidic gases with the wall materials led to the 

formation of salt crystals, which further exacerbated the 

deterioration of the mural. Sawdy and Price used Raman 

Inductively Coupled Plasma Atomic Emission Spectrometry 

(ICP-AES) combined with thermodynamic modelling software 

to analyses the salts in the murals. They found that the repeated 

crystallization and dissolution of potassium nitrate at high 

humidity was the main cause of damage to the mural at Cleeve 

Abbey, UK(Sawdy and Price, 2005). Gil et al. used optical 

microscopy (OM), scanning electron microscopy (SEM-EDS), 

µ-Raman, and Fourier Transform Infrared Spectroscopy (µ-FTIR) 

to identify the main salts in the walls as calcium carbonate and 

calcium-magnesium carbonate(Gil et al., 2015). The deposition 

and crystallization of these salts, along with the growth of fungal 

hyphae, led to cracking, flaking, and loss of adhesion of the 

coating. The paint layer containing malachite and staurolite was 

the most affected part. 

In recent years, hyperspectral technology has been applied to the 

inversion of the material composition of mural, showing 

promising prospects for the inversion of salt content due to its 

high spectral resolution and spectral continuity. Guo 

experimentally simulated mural painting samples with different 

salt concentrations and compared the accuracy of the spectral salt 

index after continuum removal, first-order differentiation, and 

Savitzky-Golay (SG) smoothing filtering. Based on the extracted 

characteristic bands, Partial Least Squares Regression (PLSR), 

Support Vector Regression (SVR), and Random Forest (RF) 

models were established to estimate salt concentration(Guo et al., 

2023). Ren conducted a simulation experiment to construct 

solutions with different concentrations of sodium dihydrogen 

phosphate dodecahydrate to simulate a salt-hazardous 

environment. They enhanced the spectral features using 

fractional-order differentiation and established bi- and tri-band 

spectral indices. Based on these indices, they developed 

univariate mural conductivity inversion models and constructed 

a conductivity-based inversion model for mural phosphate 

content using partial least squares(Ren and Liu, 2024). 
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Currently, research on the spectral characterization of salt content 

in mural in China is still in its early stages, with significant 

differences in property estimation models for different soluble 

salts. As an important way into the display of China's ancient 

culture, mural have a long history, substantial preservation, and 

wide distribution, making them of great research and 

preservation value. Therefore, the study of spectral 

characteristics and attribute inversion of ancient mural is of great 

scientific and practical significance. To improve model accuracy, 

many scholars have applied various spectral transformation 

methods to process spectral data. However, fewer scholars have 

explored different sample set partitioning methods for estimating 

the soluble salt content of mural or combined spectral 

transformations with sample partitioning methods to build 

models and analyse their impact on estimation accuracy. To 

explore the effects of different sample set partitioning methods 

and spectral transformations on model accuracy, this study uses 

spectral reflectance data to develop models based on two 

modelling methods—partial least squares regression and random 

forest. The study aims to: (1) compare and analyse the effects of 

five sample set partitioning methods on the estimation results of 

mural's dissolved salt content in simulation; (2) compare the 

accuracy of different spectral enhancement methods combined 

with different sample set partitioning methods for salt content 

modelling; and (3) evaluate the reliability of estimating the 

soluble salt content of mural using reflectance spectroscopy. 

 

2. Materials and Methods 

2.1 Simulation of Murals and Acquisition of Spectral 

Reflectance Data  

This experiment takes the temple murals as the prototype, with 

the simulated mural representing the structure of the interaction 

between the support body and the paint layer. The interaction 

serves as the main location for soluble salt transportation, 

including the coarse plaster layer and the fine plaster layer. 

According to the research murals production process , Dunhuang 

soil, loess, clarified board soil, Dunhuang sand, wheat straw and 

hemp rope are used as raw materials(Yao et al., 2023). Sufficient 

amount of deionized water is added to remove soluble salts in the 

materials, and desalination treatment is performed to produce 

simulated mural. Anhydrous sodium sulfate was chosen as the 

soluble salt, and the salt-to-soil ratio ranged from 0% to 1%, with 

each concentration set at intervals of 0.05%. A total of 60 

simulated mural samples were prepared, with three samples for 

each of the 20 concentration levels. The salts were weighed and 

mixed with deionized water to fully dissolve. The mixture was 

then thoroughly mixed with sandy soil, hemp rope, and other raw 

materials. It was placed into round moulds with a height of 18mm 

and a diameter of 90mm. The mixture was levelled and dried in 

the shade at room temperature, away from light. During the 

experiment, the humidity and temperature of the simulated mural 

were continuously monitored using an MDN-6813 soil detector. 

This ensured that the concentration of sodium sulfate was the 

only variable. Several simulated murals with different 

concentrations of Na2SO4 were prepared in a laboratory setting, 

as shown in Figure 1. 

 
Figure 1. Laboratory-simulated murals containing different 

concentrations of Na2SO4 

 

The spectral reflectance of the murals surface was measured 

using the ASD-FieldSpec4 Hi-Res Spectroradiometer, 

manufactured by Analytical Spectroscopy Equipment, USA. The 

wavelength range of the instrument is 350–2500 nm, with 

sampling intervals of 1.4 nm (350–1000 nm) and 1.1 nm (1001–

2500 nm). The data collection environment was a dark room after 

sunset, with the only light source being a 70W quartz-tungsten-

halogen lamp provided with the contact probe. First, the spectral 

reflectance was normalized with a white standard reflectance 

measured on a Spectralon plate (Labsphere, Inc., North Sutton, 

NH, USA). Each laboratory-prepared simulated mural was 

measured 15 times to prevent ambient light interference and 

reduce operational errors. Snap the contact probe onto the surface 

of the mural and wait for the curve to stabilize before collecting 

the reflectance data. Then, rotate the probe by 90° and measure 

again, taking four measurements at each position. 

 

2.2 Spectral Data Enhancement 

To reduce systematic error, the spectral data were corrected for 

breakpoints, and the four measurements were averaged. A total 

of 102 spectral data points was obtained. The noisy front and rear 

50 bands of each spectrum were removed, yielding the original 

spectra R. Savitzky-Golay smoothing and filtering were 

performed on R. SG smoothing is a mathematical method used 

for data smoothing and noise suppression, which is able to retain 

the original features of the data to a larger extent. A third-order 

polynomial is used for smoothing with a window width of 5. 

Spectral differentiation is a commonly used mathematical 

method in spectral analysis that can reveal features not easily 

detected in the original reflectance. It effectively removes 

baseline drift and noise, reduces background interference, 

highlights weak signals or subtle features, and improves target 

feature recognition. The smoothed results were processed using 

the First Derivative (FD) and Second Derivative (SD). The four 

types of datasets obtained include: original spectral reflectance 

(R), spectra smoothed by SG, smoothed first-order differential 

spectra (SG-FD), and smoothed second-order differential spectra 

(SG-SD). The spectra before and after processing are shown in 

Figure 2. 

 

2.3 Sample Set Segmentation Methods 

In this experiment, the sample set partitioning method refers to 

dividing the full set of spectral reflectance data into a training set 

and a calibration set. The dataset contains 102 spectral curves and 

their corresponding soluble salt content each derived from a 
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single measurement of a simulated mural. There is one dependent 

variable, salt content, and 2051 independent variables, which are 

the reflectance values in 2051 bands (the number of bands will 

be reduced after differentiation). In addition to the commonly 

used Random Selection (RS) method, the Kennard-Stone (KS) 

algorithm, and the Sample Set Partitioning based on Joint X-Y 

Distance (SPXY) algorithm, two derivations of the SPXY 

method were selected: Kernel Distance-Based Sample Set 

Partitioning based on Joint X-Y Distance (KSPXY) and Sample 

Set Partitioning based on Joint X-Y-E Distance (SPXYE). In the 

RS method, 1000 random samples were used for regression 

modelling and prediction evaluation to fully verify the 

performance of the method. The KS algorithm is the most widely 

used sample partitioning algorithm. It calculates the Euclidean 

distances of the independent variables between two data points, 

selects the two data points with the greatest distance as the cluster 

seeds, and then clusters the data based on the minimum Euclidean 

distances. This process continues until the number of samples in 

the calibration set reaches the threshold value, with all remaining 

data grouped into the training set. SPXY is based on the KS 

algorithm and introduces the Euclidean distance between 

dependent variables. In this method, the distance formula used 

for dataset partitioning combines the Euclidean distance between 

the dependent variables, assuming equal weights for both 

variables. The joint distance is then calculated through 

summation for clustering. KSPXY follows the same variables 

and process as SPXY, but replaces the Euclidean distance 

formula with a kernel-based distance for calculation. Unlike the 

KSPXY method, the SPXYE algorithm continues to employ the 

traditional Euclidean distance formula, which considers both the 

independent and dependent variables. Moreover, it incorporates 

an error vector E as an additional input to enhance the 

partitioning process. The specific process in the initial stage is 

the same as SPXY, after regression based on the error vector to 

calculate the Euclidean distance and summed with the results of 

the distance value in the initial stage to obtain a new distance 

value as the basis for clustering again. 

 

2.4  Modelling Methodology and Model Evaluation 

The partial least squares regression is a linear method commonly 

used for hyperspectral attribute estimation in fields such as soil 

or agriculture, where the number of independent variables 

significantly exceeds the number of data points. It effectively 

addresses the issue of strong multicollinearity between 

independent parameters during the estimation process, as well as 

the dimensionality problem in multi-parameter calibration. Its 

core is to identify a new set of orthogonal variables that maximize 

the explanation of the correlation between independent and 

dependent variables, and to construct a regression model to 

predict the dependent variable. Random forest is a nonlinear 

ensemble learning method used for regression analysis of 

hyperspectral data. Random sampling with replacement is 

performed on the original dataset to create multiple training 

subsets. Each subset is used to train an independent decision tree, 

where the nodes are split by randomly selecting a subset of 

features and choosing the best features for splitting. Each 

decision tree is trained independently to maximize the fit to its 

respective subset. The final predicted values are obtained by 

averaging the results from all the trees. 

 

For the evaluation metrics of the dataset, in addition to the 

maximum, minimum, average, and standard deviation, the 

Coefficient of Variation (CV) is used to supplement the 

evaluation of sample partitioning. The coefficient of variation is 

a statistical metric that measures the relative dispersion of a 

dataset. Unlike the standard deviation, the coefficient of variation 

is a dimensionless proportional value. 

 

The Pearson Correlation Coefficient (PCC) was used to measure 

the correlation between the bands and salt concentration before 

and after the spectral enhancement process. The PCC not only 

indicates whether the two variables are correlated, but also 

quantifies the strength and direction of the correlation. The result, 

expressed as r, ranges from -1 to 1. A positive r value indicates a 

positive correlation, while a negative r value indicates a negative 

correlation. The absolute value of r below 0.4 indicates a weak 

correlation, 0.4 to 0.6 indicates a moderate correlation, and 0.6 to 

1 indicates a strong correlation between the band and salt 

concentration index. 

 

The accuracy of the hyperspectral prediction model was assessed 

using the coefficient of determination (R2) and the root mean 

square error (RMSE). R2 indicates the confidence level of the 

model. When R2 is less than 0.5, it means that the model lacks 

predictive ability. When it is between 0.5 and 0.7, it means the 

model shows preliminary predictive ability. When it is greater 

than 0.7, it means the model indicates good predictive 

ability(Sawut et al., 2018) . The RMSE represents the model 

accuracy. A smaller value represents the higher accuracy of the 

model prediction. 

 

3. Results and Discussion  

3.1 Statistical Analysis of Salt Content in the Training Set 

The reflectance of the simulated mural is determined by the 

components of sodium sulfate, Dunhuang soil, loess, clarified 

board soil, Dunhuang sand, and hemp rope. Fig. 3 shows the 

original and enhanced spectra. The reflectance curves of the 

simulated mural with different salt contents are parallel, showing 

similar morphology and trends, but there are significant 

differences in the reflectance values overall. The reflectance 

curves of the original salt-containing mural data show distinct 

characteristics in each wavelength band. In the visible 

wavelength range, the reflectance increases rapidly with the 

wavelength, levelling off after 800 nm. After entering the near-

infrared range of 1400–2500 nm, the reflectance shows strong 

fluctuations and an overall decreasing trend. Asymmetric 

absorption valleys appeared at 1410 nm and 1940 nm, with the 

valley at 1940 nm being more pronounced. Its width and depth 

were evident, while the peak and valley positions showed no 

significant shift. 
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(a) (b) 

(c) (d) 

Figure 3.  Spectral Curves of the Original and Enhanced Spectra(a) Spectral Curve of the Original Data; (b) Spectral Curve of the 

SG Data; (c) Spectral Curve of the SG-FD Data; (d) Spectral Curve of the SG-SD Data. 

Sample partitioning methods should effectively capture the 

characteristics of small datasets to rationally divide the training 

and calibration sets. In this study, the range (maximum-

minimum), mean, standard deviation, and coefficient of variation 

were used to describe the characteristics of the simulated mural 

salt concentration dataset. In Table 1, the statistics of the full set 

without spectral enhancement and the training set with different 

sample partitioning methods are presented. All sample 

partitioning is made into training and calibration sets at a 7:3 ratio, 

with the RS method generating 1000 sets through random 

sampling. However, only the dataset corresponding to the 

optimal inversion results is selected for analysis in the table. In 

the comparison analysis, the range data (Range) is consistent 

across all methods. The values closest to the original dataset in 

the remaining metrics are underlined. The results show that, in 

terms of coefficient of variation and mean, SPXY, KSPXY, and 

SPXYE perform better. The RS method results are more different 

from the original dataset and the KS methods are generally closer 

to the original dataset. On the standard deviation metric, the 

methods were ranked as KSPXY < SPXYE < KS = RS < SPXY. 

In contrast, on the coefficient of variation metric, the ranking was 

SPXY < SPXYE < KS < KSPXY < RS. 

Taken together, the five sample partitioning methods perform 

reasonably well on the raw data, with SPXYE showing an overall 

advantage. SPXY and KSPXY also demonstrate potential worth 

noting. The ultimate goal of the study is to select the data 

inversion model that provides high accuracy. Therefore, both a 

linear model (PLSR) and a nonlinear model (RF) should be used 

to perform salt concentration inversion on the five training sets. 

The results should then be further analysed by calculating the 

accuracy of the calibration set. 

Methods Average Standard Deviation CV Range 

Total 0.437 0.295 0.676 1 

RS 0.392 0.292 0.745 1 

KS 0.443 0.292 0.659 1 

SPXY 0.423 0.290 0.687 1 

KSPXY 0.449 0.296 0.658 1 

SPXYE 0.442 0.293 0.664 1 

Table 1. Training set design results for salt concentration of 

simulated murals 

3.2 Inversion Results for the Original Dataset 

The inversion results of the original dataset using the PLSR and 

RF models are presented in Tables 2 and 3, respectively. Based 

on the calibration set performance, the RF model generally 

demonstrates superior predictive accuracy compared to the PLSR 

model. The results under the RF model, as shown in Table 2, 

indicate that the 𝑅𝐶
2  values are all above 0.926, and 𝑅𝑀𝑆𝐸𝐶  is

below 0.084. However, when evaluating the calibration set 

performance, it is observed that the coefficients of determination 

for the remaining methods are all below 0.376 except for the R-

KSPXY-RS model, whose 𝑅𝑉
2  exceeds 0.6. This suggests poor 
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predictive performance and indicates potential overfitting. It is 

possibly caused by the use of full-band data containing excessive 

noise and indistinct features. Spectral feature enhancement may 

help mitigate this overfitting issue. 

 

Techniques 
RF 

𝑅𝑀𝑆𝐸𝐶 𝑅𝐶
2 𝑅𝑀𝑆𝐸𝑉 𝑅𝑉

2  

RS 0.084 0.926 0.129 0.706 

KS 0.079 0.927 0.246 0.341 

SPXY 0.073 0.936 0.241 0.376 

KSPXY 0.073 0.934 0.197 0.615 

SPXYE 0.072 0.939 0.271 0.186 

Table 2. Inversion results of raw spectral data in RF model 

 

As shown in Table 3, under the PLSR model, the RS-PLSR 

model yields the best performance. Most calibration set models 

exhibit more stable performance except for the KS method whose 

𝑅𝐶
2 is 0.518(below the 0.6 threshold), indicating a slightly weaker 

fitting effect. Similarly, the KS model also shows the highest  

𝑅𝑀𝑆𝐸𝐶  value at 0.20, further confirming its relatively poor 

fitting. In the calibration set, the 𝑅𝑉
2  for SPXY is the smallest at 

0.825, still greater than 0.6, suggesting that the PLSR model has 

some generalization. The maximum and minimum 𝑅𝑀𝑆𝐸𝑉  of 

0.124 and 0.082 were observed in the KS and RS methods, 

respectively. KSPXY-PLSR yields the best results, except for the 

RS method. 

 

Techniques 
PLSR 

𝑅𝑀𝑆𝐸𝐶 𝑅𝐶
2 𝑅𝑀𝑆𝐸𝑉 𝑅𝑉

2  

RS 0.156 0.681 0.082 0.896 

KS 0.201 0.518 0.124 0.832 

SPXY 0.126 0.797 0.123 0.825 

KSPXY 0.167 0.658 0.095 0.878 

SPXYE 0.140 0.758 0.111 0.855 

Table 3. Inversion results of raw spectral data in PLSR model 

 

Therefore, using different sample partitioning methods for the 

same full dataset yields slightly different results, even when the 

inversion model is the same. Some sample partitioning methods 

can better enhance model stability, suggesting that the choice of 

sample partitioning method does impact the modelling prediction 

results. 

 

3.3  Enhanced Dataset Modelling and Predictive Validation 

Results Analysis 

The correlation coefficient r between salt content and reflectance 

was calculated for each wavelength using PCC for the four 

datasets (R, SG, SG-FD, SG-SD). A two-tailed significance test 

was then performed to determine whether the correlation 

coefficient was statistically significant. A heat map was 

generated based on the results (Fig. 3), with the horizontal 

coordinates representing the corresponding wavebands and 

enhancement methods. The colours on the left indicate the 

correlation strength. Redder colours represent stronger positive 

correlations, while bluer colours indicate stronger negative 

correlations. From the figure, it can be seen that the raw 

reflectance dataset is predominantly yellow, indicating a weak 

positive correlation with salt content overall. The calculated 

results show that the highest correlation coefficient occurs at 425 

nm, with a value of 0.244, all of which are below 0.4. The 

correlation of the SG dataset slightly improves, with the highest 

correlation coefficient of 0.253 occurring at 499 nm, still 

indicating a weak correlation. From the figure, it can be seen that 

after first-order differentiation and second-order differentiation, 

red and blue colours appear in different bands, significantly 

enhancing both positive and negative correlations. The strongest 

negative correlation in the first-order differentiation occurs at 

2260 nm, with a correlation coefficient of -0.812, while the 

strongest positive correlation occurs at 1040 nm, with a 

coefficient of 0.653. In the second-order differentiation, the 

strongest positive correlation is at 2273 nm, with a correlation 

coefficient of 0.761, and the strongest negative correlation is at 

1857 nm, with a coefficient of -0.731. 

 

Overall, the correlations of the results for the enhancement 

methods are ranked as SG-FD > SG-SD > SG > R. The pre-

processing significantly enhances the correlations, with more 

bands showing positive and negative polar distributions. The 

spectral differentiation method was effective in identifying key 

bands highly correlated with salt content, and the effects of 

different pre-treatment methods on correlation enhancement 

varied significantly. 

 

 
Figure 3. Correlations between salt content and spectral 

reflectance data 

 

Combined with a comprehensive analysis of the regression 

models, Tables 4 and 5 present the statistical results of the PLSR 

and RF prediction models built under the five data partitioning 

methods for the spectrally enhanced dataset. Under the PLSR 

model for the differentiated dataset, the minimum training set 

coefficient of determination is 0.675, which occurs in KS-SG-FD. 

The results range from 0.5 to 0.7, indicating a certain level of 

predictive ability. The maximum training set root mean square 

error (0.158) was achieved with the same method. The PLSR 

model fit was stable, demonstrating good model correction 

capability. The minimum 𝑅𝑉
2  (0.726) appeared in the KS-SG-SD 

dataset. The 𝑅𝑀𝑆𝐸𝑉  ranged from 0.049 to 0.133, indicating 

strong overall generalization ability and model stability. The 𝑅𝑉
2  

and 𝑅𝑀𝑆𝐸𝑉 of the SG-FD and the SG-SD under the five sample 

partitioning methods are better than the statistical results of R. 

Therefore, it can be concluded that the PLSR model built using 

the spectrally enhanced dataset performs well in terms of 

accuracy and model stability. The model ranking based 

on 𝑅𝑀𝑆𝐸𝑉 is: RS<KSPXY<SPXY<SPXYE<KS. 

 

The results under PLSR show that RS-SG-SD has the highest 

evaluation, with the coefficient of determination values for the 

calibration set and training set at a high level (0.985 and 0.939). 

This indicates that random sampling combined with the SG-SD 

method has good potential for fitting and generalization of the 

data. The SG-FD method of the KSPXY technique shows 

outstanding performance with the highest 𝑅𝑉
2  (0.954), indicating 

that this method has significant advantages in data selection and 

preprocessing. SPXY-SG-SD shows more balanced results for 
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both the training and calibration sets. From the statistical results, 

the KS method has the worst model calibration results, the 

second-worst test results, and the poorest generalization ability. 

 

Methods 
 

𝑅𝑀𝑆𝐸𝐶 𝑅𝐶
2 𝑅𝑀𝑆𝐸𝑉 𝑅𝑉

2  

RS - 0.156 0.681 0.082 0.896 

SG 0.113 0.852 0.065 0.934 

SG-FD 0.095 0.904 0.049 0.945  
SG-SD 0.038 0.985 0.058 0.939 

KS - 0.201 0.518 0.124 0.832 

SG 0.124 0.789 0.171 0.726 

SG-FD 0.158 0.675 0.114 0.876 

SG-SD 0.137 0.765 0.117 0.852 

SPXY - 0.126 0.797 0.123 0.825 

SG 0.114 0.826 0.133 0.814 

SG-FD 0.091 0.891 0.077 0.930  
SG-SD 0.086 0.908 0.077 0.923 

KSPXY - 0.167 0.658 0.095 0.878  
SG 0.099 0.861 0.102 0.895  

SG-FD 0.082 0.912 0.068 0.954  
SG-SD 0.095 0.882 0.075 0.936 

SPXYE - 0.140 0.758 0.111 0.855 

SG 0.098 0.873 0.121 0.838 

SG-FD 0.115 0.819 0.101 0.906  
SG-SD 0.092 0.882 0.103 0.897 

Table 4. Statistics of accuracy parameters of PLSR model 

 

The 𝑅𝐶
2  values of the RF models built for the differentiated 

dataset are higher than 0.96, while the 𝑅𝑉
2  are all above 0.735. 

The overfitting issue has been improved, and the coefficients are 

also higher than the maximum 𝑅𝑉
2  of the original dataset (0.706). 

This indicates that improving the data relevance contributes to 

the stability of the RF models. Meanwhile, the model's 𝑅𝑀𝑆𝐸𝑉 

has decreased, demonstrating that spectral differentiation has an 

excellent effect under the RF model. Based on 𝑅𝑀𝑆𝐸𝑉  , the 

ranking is as follows: RS<KS<KSPXY<SPXY<SPXYE. 

 

Taken together, the RS-SG-FD model has the best prediction 

ability, with an 𝑅𝑀𝑆𝐸𝑉  of 0.081 and an 𝑅𝑉
2  of 0.921. The KS 

method improves its performance for the post-differential 

calibration set, while the KSPXY results are more stable when 

dealing with differentiated data, closely matching the 

performance of the RS optimal results. The SPXYE method 

shows balanced performance among all the partitioning methods, 

demonstrating better applicability. Overall, RS still yields the 

best results, followed by KS, while KSPXY exhibits high 

stability in partitioning complex data. For cases that require 

further optimization of data distribution, the KSPXY combined 

with the SG-FD method achieves the best results, and this 

combination is recommended for data preprocessing. 

 

Methods 𝑅𝑀𝑆𝐸𝐶 𝑅𝐶
2 𝑅𝑀𝑆𝐸𝑉 𝑅𝑉

2  

RS - 0.084 0.926 0.129 0.706  
SG 0.107 0.875 0.165 0.615  

SG-FD 0.053 0.968 0.081 0.921  
SG-SD 0.055 0.967 0.136 0.735 

KS - 0.079 0.927 0.246 0.341 

SG 0.096 0.873 0.253 0.404 

SG-FD 0.054 0.963 0.099 0.907 

SG-SD 0.054 0.963 0.132 0.813 

SPXY - 0.073 0.936 0.241 0.376  
SG 0.090 0.894 0.281 0.267  

SG-FD 0.052 0.966 0.125 0.847  
SG-SD 0.058 0.961 0.127 0.821 

KSPXY - 0.073 0.934 0.197 0.615  
SG 0.091 0.900 0.247 0.327  

SG-FD 0.054 0.965 0.114 0.861  
SG-SD 0.057 0.960 0.115 0.858 

SPXYE - 0.072 0.939 0.271 0.186  
SG 0.084 0.910 0.303 0.114  

SG-FD 0.046 0.973 0.164 0.758  
SG-SD 0.054 0.961 0.159 0.775 

Table 5 Statistics of accuracy parameters of RF model 

 

3.4 Analysis of RS Results 

Although the RS method demonstrated the best results under both 

the PLSR and RF models, which only indicates the potential of 

the RS method to achieve optimal results, it does not prove that 

RS is the best method for mural salinity inversion. Therefore, 

1,000 sets of data were collected under the RS method, as well as 

1,000 sets for each of the enhanced treatment datasets, with 

results evaluated in both the PLSR and RF models. These results 

include the mean (Average, Ave), median (Median, Med), 

minimum (Min), maximum (Max), and overall Confidence 

Interval (CI), Confidence Interval Upper bound r (CIU) and 

Confidence Interval Lower bound (CIL). The results are 

displayed in Table 6. 

   
Ave Med Min Max CIL CIU 

PLSR 𝑅𝐶
2 R 0.778 0.782 0.511 0.914 0.775 0.782 

SG 0.856 0.866 0.603 0.953 0.853 0.859 

SG-FD 0.936 0.928 0.770 0.999 0.933 0.938 

SG-SD 0.918 0.915 0.745 0.997 0.915 0.920 

𝑅𝑉
2  R 0.746 0.755 0.333 0.904 0.741 0.751 

SG 0.830 0.837 0.490 0.938 0.827 0.833 

SG-FD 0.891 0.896 0.694 0.961 0.889 0.893 

SG-SD 0.859 0.864 0.571 0.955 0.856 0.862 

𝑅𝑀𝑆𝐸𝐶 R 0.133 0.132 0.080 0.201 0.132 0.134 

SG 0.107 0.105 0.060 0.180 0.106 0.108 

SG-FD 0.067 0.077 0.010 0.138 0.065 0.069 

SG-SD 0.079 0.083 0.015 0.150 0.078 0.081 

𝑅𝑀𝑆𝐸𝑉 R 0.136 0.135 0.082 0.198 0.135 0.137 

SG 0.110 0.109 0.065 0.160 0.109 0.111 

SG-FD 0.089 0.087 0.049 0.138 0.088 0.090 

SG-SD 0.101 0.101 0.058 0.152 0.100 0.102 
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RF 𝑅𝐶
2 R 0.928 0.928 0.901 0.957 0.928 0.929 

SG 0.893 0.893 0.860 0.920 0.892 0.893 

SG-FD 0.971 0.971 0.957 0.985 0.971 0.971 

SG-SD 0.966 0.966 0.953 0.979 0.966 0.966 

𝑅𝑉
2 R 0.482 0.507 0.001 0.794 0.472 0.493 

SG 0.251 0.254 0.000 0.638 0.243 0.260 

SG-FD 0.783 0.797 0.237 0.921 0.778 0.788 

SG-SD 0.742 0.752 0.419 0.896 0.738 0.747 

𝑅𝑀𝑆𝐸𝐶 R 0.078 0.079 0.058 0.089 0.078 0.079 

SG 0.096 0.096 0.081 0.107 0.096 0.096 

SG-FD 0.050 0.050 0.037 0.057 0.049 0.050 

SG-SD 0.054 0.054 0.042 0.061 0.054 0.054 

𝑅𝑀𝑆𝐸𝑉 R 0.207 0.205 0.129 0.329 0.204 0.209 

SG 0.249 0.248 0.165 0.348 0.247 0.251 

SG-FD 0.133 0.130 0.081 0.229 0.131 0.134 

SG-SD 0.146 0.144 0.082 0.214 0.144 0.147 

Table 6. Statistics of accuracy parameters of PLSR and RF model in RS 

In the PLSR model, the performance difference of the RS 

methods can be observed based on the mean, median, and 

confidence interval results.  Overall, the models under various 

data processing methods show some accuracy and stability. From 

the results of the training set, the values of the mean and median 

are very close to each other, indicating that the distribution of the 

model's prediction results is more consistent, and the range of the 

confidence intervals is smaller (e.g., 0.775 to 0.782 for the 

unprocessed R data), which suggests that the model has good 

stability. Under different treatments, the mean value gradually 

increases from 0.778 to a maximum of 0.936, demonstrating the 

effect of spectral enhancement on model performance and the 

good suitability of the PLSR model. In the calibration set results, 

the decrease in the mean value is limited, and the ranges of the 

minimum and maximum values are relatively narrow, indicating 

that the model has good generalization ability. In addition, the 

narrow confidence intervals further indicate that the model has a 

certain degree of reliability in processing RS subset data. 

However, when comparing the same spectral enhancement 

methods, the RS sample partitioning method shows a 𝑅𝑉
2  higher 

than 0.6 and a smaller 𝑅𝑀𝑆𝐸𝑉 than the other four methods, with

improvements of 0.15%, 29.4%, 4.8%, and 4.9%, respectively. 

This suggests that the sample partitioning results of RS have 

some stability under the PLSR model, though most of the 

inversion results are not as good as those of the other four 

methods. 

Similarly, in the RF model, the minimum values of the training 

set are generally high, with all values above 0.859. This indicates 

that the model has a strong ability to fit different data processing 

methods on the training set. However, in the calibration set, the 

minimum value drops significantly. For example, the minimum 

value of the unprocessed R data is only 0.001, demonstrating the 

instability of the model in practical applications. This significant 

difference in performance between the training and calibration 

sets suggests that the RF model is overfitting on the RS subset 

data. The combination of the mean, minimum, and confidence 

interval metrics shows that the RF method has insufficient 

generalization ability. Statistics for the four calibration sets with 

a coefficient of determination higher than 0.6 and root-mean-

square error smaller than the other four methods are 25.9%, 

0.03%, 7%, and 5.5%, respectively. However, most of the sample 

results are still inferior to those of the other four methods. 

In summary, the RS method demonstrated high fitting accuracy 

and stability in the PLSR model, with the mean, median, and 

confidence intervals reflecting the robustness and usability of the 

model in the inversion task. However, in the RF model, 

overfitting was observed with the unenhanced data, and the 

model lacked sufficient generalization, leading to poor results. 

When comparing the other methods under the same conditions, 

fewer better results were achieved, especially for the enhanced 

data, where the number of successful inversions was less than 7%. 

4. Conclusion

This paper explores the impact of sample partitioning and 

spectral enhancement methods on the accuracy of reflectance 

data in predicting the salt content of mural surfaces. The dataset 

is somewhat discrete and difficult to predict. A comparative study 

was conducted using five sample partitioning methods (RS, KS, 

SPXY, KSPXY, and SPXYE) along with spectral differentiation, 

and the following findings were made: 

(1) In order to obtain a representative data subset, the KSPXY

method offers some advantages, while the SPXYE algorithm is

more stable in its performance. RS, on the other hand, is the least

stable one.

(2) The sample partitioning method has a significant impact on

model prediction. When combined with different prediction

algorithms, the KSPXY prediction model shows higher stability

and accuracy than the other three methods, except for the RS

method. While the RS method, when combined with two

prediction algorithms, achieves the best inversion results and

generalization ability in 1000 experiments. It is not more than 7%

better than the other four methods. This indicates that the RS

method has the potential for optimal results, but it requires

significant computational power and extensive data screening.

(3) The differentiation significantly improves the correlation

between spectra and salt content, while highlighting data features

and enhancing the inversion of full-band or multi-source data.

Among all methods, SG-FD and SG-SD further improve fitting

accuracy and generalization ability. Particularly in the RF model,

although this method has some advantages with small samples, it

is generally effective in noise reduction, and the overfitting

problem with the enhanced dataset is mitigated.

(4) Different modelling methods exhibit some variation in their

ability to handle the simulated mural data, particularly in the

inversion of full-band data. Comparing the PLSR and RF model

results, the models show some differences, especially with

overfitting in the RF model. The least squares PLSR, however,
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provides better results due to its integration with principal 

component analysis, which helps remove redundant noise and 

select key features more effectively. 

The KS method is ineffective for discrete data. The SPXY and 

SPXYE methods offer slight advantages in dataset partitioning, 

but their predictive results are average. The optimal method in 

this experiment is KSPXY combined with SG-FD data, which 

performs best under the PLSR model, with an 𝑅𝑀𝑆𝐸𝐶 of 0.082

and an 𝑅𝐶
2 of 0.912. The 𝑅𝑀𝑆𝐸𝑉 is 0.068, with an 𝑅𝑉

2  of 0.954,

demonstrating effective data selection and preprocessing. This 

experiment primarily investigates the impact of sample 

partitioning methods on salt content prediction for temple murals, 

with less focus on the regression modelling method, which 

requires further research. 
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