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Abstract 

 
3D digitization has become an essential tool in cultural heritage documentation, offering unprecedented opportunities for preservation, 
analysis, and dissemination. Beyond only capturing 3D spatial geometry, the semantic enrichment of 3D models is rapidly evolving 
offering a more efficient interpretation and usage of 3D data. Traditionally, 3D semantic enrichment has relied on point cloud-based 
segmentation. However, 3D point cloud-based segmentation approaches can struggle with the efficient identification of small-scale, 
geometric elements, or visually ambiguous classes, limiting their applicability in such contexts. This study leverages the rich contextual 
and textural information of 2D imagery to detect challenging semantic categories, such as fine architectural elements (e.g., individual 
stone blocks) and material decay (e.g., material detachment and material loss), using deep learning-based 2D semantic segmentation 
techniques. These detections are then projected into 3D space through a 2D-to-3D semantic segmentation framework that couples V-
SLAM and 3D results with the 2D predictions. The framework is evaluated on data acquired using the fish-eye multi-camera mobile 
mapping system ATOM-ANT3D in two challenging case study environments. Achieved results demonstrate a reliable level of accu-
racy given the inherent complexity of targeted classes, enhancing the interpretability of 3D models by providing meaningful and met-
rically interpreted objects classifications in 3D models. (Demonstration video) 
 

1. Introduction 

The demand for accurate and intuitively interpretable 3D spatial 
data models has significantly increased in the Cultural Heritage 
(CH) field for documentation and monitoring purposes. Although 
Terrestrial Laser Scanning (TLS) and conventional 
photogrammetry (Luhmann et al., 2007; Remondino, 2011; Fassi 
et al., 2011; Pritchard et al., 2017) can achieve accurate 3D 
reconstructions, their limited mobility and workflows reduce 
their effectiveness in complex environments (Berra and Peppa, 
2020; Muralikrishnan, 2021). In particular, narrow spaces like 
staircases and corridors restrict instrument setup and limit 
unobstructed observation points, while irregular structure 
geometry often causes occlusions and incomplete data capture. 
Mobile Mapping Systems (MMS), leveraging Simultaneous 
Localization and Mapping (SLAM) processing methods, have 
gained traction due to their flexibility, speed, and real-time 
mapping capabilities (Elhashash et al., 2022; Elalailyi et al., 
2024b). Specifically, Visual SLAM (V-SLAM) uses sequences 
of images to estimate the position of a sensor within an 
environment (Davison et al., 2007). As a result, visual-based 
MMSs have recently become popular for rapid 3D data 
acquisition and efficient 3D reconstruction (Ortiz-Coder and 
Sánchez-Ríos, 2019; Kuo et al., 2020; Torresani et al., 2021), and 
in particular, the use of systems utilizing multi-camera fish-eye 
setups for narrow and complex surveying applications (Elalailyi 
et al., 2024a; Perfetti et al., 2024a). 
At the same time, Artificial Intelligence (AI) is playing a crucial 
role in enhancing 3D spatial data understanding. Previous 
applications of AI in CH have mainly focused on 3D point cloud-
based classification (Grilli and Remondino, 2019; Teruggi et al., 
2020). Simultaneously, AI-driven 2D image data processing has 
played an important role in improving visual-based 3D spatial 
data applications. Convolutional Neural Networks (CNNs) have 
improved feature detection and matching, with notable methods 
including SuperPoint (DeTone et al., 2017) and D2-Net 
(Dusmanu et al., 2019). Conventional frameworks such as YOLO 
(You Only Look Once) (Redmon et al., 2015) have enabled fast 
2D image object detection. AI-driven approaches have also been 

integrated for 2D semantic segmentation (Chen et al., 2016) or 
scene understanding (Murez et al., 2020), enabling a more 
automated and intelligent interpretation of visual data. Recent 
developments in multi-modal AI have introduced advanced 
object detection, semantic segmentation and visual grounding 
techniques (i.e., models that link natural language phrases to 
specific objects in an image). These models are capable of 
performing prompt-driven segmentation, and zero-shot detection 
that enable automated segmentation and identification without 
the need for training or manual labelling. Segment Anything 
Model (SAM) (Kirillov et al., 2023), have boosted the analysis 
and understanding of images utilizing vision transformers and 
prompt encoders to predict object masks. Grounding DINO (Liu 
et al., 2023b) is an open-set object detector that integrates vision 
and language through a transformer-based architecture. It 
extends the DINO detection framework, a DETR-style 
transformer model that uses object queries, by incorporating text 
prompts from a language encoder, such as CLIP's text model. In 
this context, CLIP (Contrastive Language–Image Pretraining) 
(Radford et al., 2021) plays a foundational role by aligning visual 
and textual representations, enabling models like Grounding 
DINO to interpret visual scenes through natural language. 
Building on these capabilities, Galanakis et al., (2024) 
investigated SAM's potential for stone-level structural analysis 
and segmentation.  SAM, in combination with detection models 
such as Grounding DINO, has enabled effective object detection 
and semantic labelling (Réby et al., 2023). El-Alailyi et al., 
(2025a) presented an approach for 2D-to-3D semantic 
segmentation utilizing Sa2VA (Yuan et al., 2025), a unified 
architecture for dense grounded knowledge of images combining 
SAM2 and LLaVa (Large Language and Vision Assistant) (Liu 
et al., 2023a), enabling architectural features detection, and 
conventional object detection YOLOv8 (Jocher et al., 2023) to 
identify cracks. 
Despite the growing interest in AI-driven CH 3D analyses, 
significant practical challenges remain. Complex CH 
environments, characterized by intricate spatial configurations 
(e.g., tight corridors and irregular geometries), variable 
illumination conditions, and challenging surface texture, can 
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hinder the efficiency of 2D semantic segmentation and object 
detection, as well as compromise the completeness of 3D 
reconstructions. These limitations are especially critical when 
dealing with subtle or non-standard element detections, which are 
rarely addressed in conventional detection and 3D data 
enrichment frameworks but are essential for CH documentation. 
 
1.1 Paper’s Aim 

To address the need for semantically enriched 3D models that 
include challenging and underrepresented object detection 
scenarios, this study proposes a framework that couples V-
SLAM and 3D results with 2D image-based semantic 
segmentation and object detection using zero-shot detectors, 
foundational models and conventional supervised detectors. The 
method specifically targets stone blocks as key architectural 
elements, along with material degradation features such as 
material detachment and material loss. The pipeline is tested and 
validated using on-site acquired data with the fish-eye multi-
camera system ATOM-ANT3D (Figure 1) (Elalailyi et al., 
2024a; Perfetti et al., 2024b) in two challenging and historical 
CH sites.  
This work intends to shed light on semantically enriched 3D 
representations of surveyed heritage scenes to support enhanced 
3D architectural documentation, feature recognition, and 
improved conservation planning with metric information.  
 

 
Figure 1. The ATOM-ANT3D fish-eye multi-camera portable 
mobile mapping system. 

 

2. Methodology 

2.1 V-SLAM and 3D Reconstruction 

The acquired multi-camera image datasets are processed using a 
V-SLAM and 3D reconstruction pipeline (El-Alailyi et al., 
2025b). Depending on the mapped environment settings, the 
synchronized multi-camera configuration can generate up-to four 
independent V-SLAM trajectories, each corresponding to a 

distinct stereo camera pair. A post-processing multi-camera pose 
graph optimization fuses available trajectory estimates into a 
single, consistent solution leveraging redundancy in camera 
observations and pose estimations. First, it initializes a nonlinear 
factor graph, with nodes representing full keyframe poses and 
edges encoding relative pose constraints between consecutive 
keyframes. To account for pose uncertainty, a noise model 
coupled with a loss function is adopted to increase robustness 
against outliers. Then the optimization is performed via a Gauss-
Newton optimizer, minimizing nonlinear residuals to achieve a 
globally consistent trajectory. Subsequently, a multi-view 
feature-based optimization performed in Metashape (Agisoft 
Metashape, 2024) refines single stereo V-SLAM estimates or the 
unified trajectory obtained by the previous optimization, which 
serves as the initial pose estimate for the five-camera rig. The 
initial trajectory helps identify spatially proximate cameras for 
matching and detects possible candidate loop closures. Multi-
view triangulation is later performed to generate a sparse 3D tie 
points cloud, which is further refined through a constrained 
bundle adjustment (BA) using the pre-calibrated rigid relative 
orientation of the multi-camera system. Points with high 
reprojection errors are iteratively filtered, and optimization 
proceeds until the RMSE converges below a one-pixel threshold, 
ensuring geometric consistency and accurate camera poses 
estimation across the datasets (Figure 2).  
 
2.2 AI-based 2D Segmentation  

While 3D reconstruction provides a spatial and geometric 
representation, it lacks semantic information that can be 
important for architectural documentation, object understanding, 
and CH conservation efforts. The use of AI-driven tools can help 
to speed up the interpretation process, efficiently analysing the 
acquired datasets without requiring additional instruments or 
long manual operations (Zhang et al., 2024). Many architectural 
surfaces feature repeated patterns and materials, making them 
ideal for “zero-shot” AI models (e.g., SAM2). In this study, we 
test three methods for object detection: (i) SAM2 to generate 
zero-shot masks, (ii) Grounding DINO, through text-based 
prompts, for automated detection of architectural elements, and 
(iii) the Yolo-v5 as a close-set detection model. While zero-shot 
foundational models offer significant flexibility and automation, 
they may fall short when dealing with highly specific or less-
represented features, such as challenging architectural 
components and material decay. In such cases, conventional 
supervised models like YOLO remain necessary, as they allow 
for targeted detection of well-defined object classes when trained 
with a carefully curated, annotated dataset. 

 

 
Figure 2. The multi-camera poses graph optimization (left) and the multi-view feature-based optimization (right) schemes. 
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2.3 Coupling of 2D Semantics and 3D Reconstruction 

The coupling of 2D semantic information extracted from the fish-
eye images with the 3D reconstruction is applied by adapting the 
method proposed by Alami and Remondino, (2024) and El-
Alailyi et al., (2025a). Dense point clouds are initially derived by 
densifying the 3D reconstruction and subsampled at 1 cm space 
between adjacent points to reduce the computational overhead of 
the projection algorithm, and later, after the projection process is 
finalized, the results are interpolated back onto the full high-
resolution dense cloud. First, the subsampled point clouds are 
converted to a voxel grid at a user-specified resolution, and a ray 
tracing environment is constructed. Using intrinsic calibration, 
2D labels are corrected to remove lens distortion and projected 
into 3D using the known optimized V-SLAM camera poses 
(Section 2.1). The rays intersect visible voxels encapsulating the 
corresponding 3D points, and the semantic labels from the 2D 
masks are assigned to the corresponding 3D voxels enhanced 
through local neighbourhood search to increase spatial coverage 
and label completeness (Figure 3). In the proposed case study 1, 
the Minguzzi staircase (Section 3.1), SAM2 generated semantic 
masks of stone blocks detections are randomly labeled, meaning 
that the same stone may receive different label IDs across images, 
or conversely, different stones may be assigned the same label ID. 
This inconsistency, combined with the challenging geometry of 
the site, characterized by a narrow, spiraling staircase and the use 
of wide-angle fish-eye cameras, introduces further complexity. 

The viewpoint of each stone block varies significantly from one 
image to another, and in many cases, stones are only partially 
visible in some views due to occlusions or limited field of view, 
while being fully visible in others. To address these challenges, a 
joint 2D-3D integration strategy is adopted. First, all mask IDs 
across the image set are reassigned to unique labels. During the 
projection stage, 2D masks are sequentially projected onto the 3D 
point cloud. When a 3D point is first intersected by a projected 
mask, the semantic label is stored. As the process continues, if 
the same 3D point is intersected by a different mask (i.e., 
representing a candidate for the same stone block), a 3D voting 
mechanism is triggered which compares the total number of 3D 
points currently labelled by each competing 2D mask and assigns 
the 3D points to the label with the greater overall spatial coverage 
in 3D, favouring the label that corresponds to a more complete 
view of the object in 2D (e.g., fully visible masked stone block). 
Through this iterative process, overlapping and redundant 2D 
masks are merged based on geometric evidence in 3D space, 
resulting in a more coherent semantic segmentation of stone 
blocks directly on the 3D model. The accuracy of the proposed 
method is influenced by several factors, including the voxel grid 
resolution, the quality of the input segmentation masks, and the 
accuracy of camera calibration. Inaccurate calibration, 
segmentation errors, or overly coarse voxelization may lead to 
mislabelling, incomplete coverage, or the introduction of outliers 
in the final 3D semantic model.

 

 
Figure 3. The proposed 2D-to-3D semantic segmentation projection and coupling pipeline of the 2D semantic masks with the 3D 
reconstruction results (images and point clouds). 

3. Case Studies, Data Processing, and Validation  

3.1 Case Study One: Minguzzi Spiral Staircase in the Milan 
Cathedral, Italy 

Within the main façade of the Milan Cathedral (Italy), the 
Minguzzi spiral staircase is located inside the front-right pylon 
situated at the southwest corner of the cathedral, extending 
approximately 25 meters in height. The staircase features a 
central marble column with a diameter of about 40 cm, and a 
narrow passage that measures, transversally, just 70 cm in width, 
making movement inside highly constrained (Figure 4). The 
challenging environmental conditions within the staircase further 
complicate documentation efforts. The interior is characterized 
by extremely low luminance, with poor-quality artificial lighting 
and limited natural illumination from a few exterior window 
openings. These constraints necessitate specialized 3D mapping 
approaches to effectively capture and analyse the structure. 

 
Figure 4. Example fish-eye images from the Minguzzi survey 
showing stone blocks with atypical geometry and surface 
conditions due to white material build-up. 

 
Research on Milan Cathedral has been extensive, with several 
studies focusing on architectural documentation, structural 
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analysis, and digital surveying (Achille et al., 2020; Perfetti et al., 
2024a).  

3.2 Case Study Two: The Pozzi Cells Area of the Doge’s 
Palace in Venice, Italy 

The Pozzi cells and passageways (Figure 5) within the Doge’s 
palace in Venice exhibit centuries-old stone and brick 
construction, showing signs of deterioration, peeling, and 
discoloration. These confined spaces, characterized by narrow 
corridors and small cells, highlight the restrictive nature of the 
historical detention areas. The limited manoeuvring space and 
uneven lighting conditions create exposure inconsistencies. 
 

 
Figure 5. Example images from the Pozzi cells area survey. 

3.3 Data Acquisition, Processing and Validation 

The Minguzzi dataset utilized in this study is collected in a 
previous survey (Elalailyi et al., 2024a) through an ascending 
spiral trajectory field acquisition, which starts from the lower 
entrance and ends at the upper exit of the staircase. Over a span 
of approximately 8 minutes, a total of 7,905 images are captured 
(1,581 images/camera) and processed (El-Alailyi et al., 2025b). 
In the second case study, the Doge’s Palace acquisition is part of 
a bigger survey covering three floors of the structure, capturing 
the architectural details and spatial layout of each level. In this 
work, only the first floor of the surveyed area is considered, with 
ca. 25 m long trajectory along the ca. 1.2 m wide passage where 
4,700 images (940 images/camera) are captured and processed 
using the V-SLAM and 3D reconstruction framework (Section 
2.1). 3D dense clouds are later generated for both the Minguzzi 
and Pozzi cells area with ca. 34 and 20 million points, 
respectively (Figure 6). 
The AI-based 2D semantic segmentation for both case studies is 
detailed as follows. In the Minguzzi case study, and given the 
large data volume, a fine-tuned SAM2 foundational model is 
applied to generate zero-shot segmentation masks to extract stone 
blocks, which constitute the key elements of the staircase, 
essential for maintenance and documentation. The central camera 
image dataset of ATOM-ANT3D, sampled every 5 frames per 
second given the high image overlap, is chosen due to its 
unobstructed viewing point of the stone blocks. To address the 
challenge of recognizing stone blocks that are highly uniform in 
color and separated by only shallow gaps and surface build-up 
material, it is necessary to adjust the brightness and contrast of 
the images. These enhancements are needed to maintain overall 
image readability, so an adaptive approach is required. Instead of 
applying fixed values, CLAHE (Contrast Limited Adaptive 
Histogram Equalization) (Zuiderveld, 1994) is used. This 
technique improves local contrast, helping the segmentation 
model better identify the edges of individual stones while 
preserving fine details. To isolate stone blocks from other 
architectural elements, Grounding DINO was employed to detect 

and label non-target objects (e.g., central marble column, 
windows, and stair steps) using text prompts, generating 
bounding boxes with associated confidence scores. These were 
then used to guide the SAM2 model in an attempt to produce 
refined masks, which were subsequently combined with 
automatically generated masks to subtract the unwanted 
elements. 
In the Pozzi cells area, the used data covers an area including  
guardian room and prison cells, and a narrow corridor. This area 
is mostly built with stones and bricks, with some areas covered 
with mortar. The building material of the prison cells 
demonstrates different degrees of deterioration. The material 
surfaces indicate typical material (1) detachment and (2) loss 
issues, due to human intervention and humidity factors. The 
detection of the decay phenomenon in cultural heritage remains 
challenging. In this application, YOLOv5 detection model is 
utilized for the object detection task using a dataset comprised of 
184 images. The model is trained with compressed images 
(640*640 pixels) reaching convergence at around 40 epochs. The 
detection is further used to guide the segmentation of SAM2, 
generating masks of decay by each category. The results of the 
3D reconstruction camera's trajectory, dense clouds and the 2D 
AI-based detection are later coupled using our proposed 2D-to-
3D semantic segmentation framework (Section 2.3). To validate 
the effectiveness of the coupling approach in producing 
semantically enriched 3D models, both qualitative and 
quantitative evaluations are conducted on representative sections 
of each case study. Given the sensitivity and complexity of the 
targeted classes, particularly small-scale or degraded features 
prone to visual ambiguity, ground truth is carefully defined by 
selecting the most visually clear and geometrically distinct 3D 
instances. This selective strategy ensured a reliable reference for 
validating the 2D-to-3D projection pipeline, allowing us to 
confidently assess potential errors introduced by the 2D object 
detection and semantic segmentation masks and the projection 
process into the 3D model, minimizing subjectivity. For the 
Minguzzi staircase, a set of 9 well-preserved stone blocks with 
clearly visible boundaries are manually traced on the 3D model, 
excluding those affected by deterioration, occlusion, or surface 
build-up (Section 4). In the Doge’s Palace dataset, 25 instances 
of material detachment and 11 instances of material loss are 
similarly delineated on the dense 3D cloud, selected based on 
their visual and geometric clarity (Section 4). In both cases, 
precision, recall, F1-score, and Intersection over Union (IoU) are 
computed to assess the accuracy and completeness of the 2D-to-
3D semantic projection relative to the manually defined ground 
truth. 

4. Results, Evaluations and Discussion 

Figure 6 demonstrates the results of the 3D reconstruction 
trajectories and tie point clouds, and their corresponding 3D 
dense clouds used as the input 3D models to the 2D-to-3D 
semantic enrichment. In the context of 2D-to-3D semantic 
segmentation, the accuracy of object detection and the quality of 
2D masks are critical, as the projected semantic information 
directly influences the reliability and completeness of the 3D 
labelling and semantic enrichment. The quality of the 2D 
semantic segmentation is a limiting factor, and the presence of 
inaccurate 2D masks can lead to mislabeling, ambiguity, or loss 
of detail in the 3D representation, particularly in complex 
environments. Given the unique texture and geometric 
characteristics of the Minguzzi staircase, the use of wide-angle 
fish-eye imagery, and domain discrepancies between the training 
data of the model, usually based on commonly found objects, the 
attempts to automatically distinguish stone blocks using 
Grounding DINO and the SAM2 generated masks from the 
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central marble column, windows, and stair steps are ineffective. 
As a result, a fully automatic classification approach couldn’t 

reliably differentiate between stone blocks and other elements, 
consequently requiring manual intervention.  
 

 

Figure 6. Results (trajectory and 3D tie points) and their corresponding 3D dense point clouds for Minguzzi (left) and Pozzi cells 
area (right) case studies. 

 
Figure 7. Examples of the detected and segmented classes from the two case studies: stone block segmentation in the Minguzzi 
staircase (left); material detachment (top) and material loss (bottom) detected in the Pozzi cells area (right). 

Figure 7 reports the results from the SAM2 2D stone block 
segmentation in the Minguzzi case study and the 
YOLOv5/SAM2 coupling for decay detection at the level of 
material detachment and material loss for the Pozzi cells area. 
Figure 8 presents the qualitative visual assessment of selected 
results from each case study, reporting the overlap (green), false 
positives (red) and false negatives (blue) of the 3D detection with 
respect to their corresponding ground truth. The results of the 
Minguzzi staircase (Figure 8a) demonstrate that the projected 
masks align well with their respective ground truth locations. 
However, the segmentation boundaries at the stone blocks' edges 
exhibit limited accuracy. This is attributed to a combination of 
factors such as: (i) the presence of the white surface build-up 
between stone blocks, which visually obscures the true 
boundaries and misleading SAM2 segmentation, (ii) the use of 
wide-angle fish-eye images adding a warping effect to the stone 
blocks and (iii) limitations inherent to the projection process 
itself, such as slight inaccuracies in camera intrinsic and extrinsic 
parameters or voxel resolution constraints. Figures 8b & 8c 
illustrate selected results for detachment and material loss, 
respectively, in the Pozzi cells area. In both cases, multiple 
segmentation challenges are evident. Several regions show clear 
instances of false positive and false negative detections, 
reflecting the difficulty in accurately delineating degradation 
boundaries. Additionally, certain well-defined masks exhibit 
slight spatial offsets from the ground truth, likely due to minor 
projection inaccuracies, challenging viewpoints, or limitations in 
the ray projection and voxel intersection mechanisms used during 
the 2D-to-3D semantic segmentation framework. Notably, some 

detected masks are located near the edges of the fisheye images 
(Figure 7), where high optical distortion further complicates both 
segmentation and projection accuracy. These results underscore 
the sensitivity of the pipeline to environmental complexity, 
surface irregularities, and image-based distortions. Table 1 
reports on the results of the metric evaluation of the proposed 2D-
to-3D semantic segmentation pipeline across three targeted 
classes. Each class is assessed using four standard segmentation 
metrics: Precision, Recall, F1 Score, and Intersection over Union 
(IoU). The stone blocks segmentation in the Minguzzi dataset 
achieved a precision of 94.81% and recall of 88.41%, indicating 
that the majority of predicted blocks are correct, and most actual 
blocks are successfully identified. This balance is reflected in a 
strong F1 Score of 91.50% and an acceptable IoU of 84.33%, 
confirming accurate and consistent alignment between the 
projected 2D semantic labels and the 3D ground truth. 
 

(%) 

2D-to-3D Semantic Segmentation 

Minguzzi Pozzi cells area 

Stone blocks Material 
detachment 

Material 
loss 

Precision 94.81 73.53 81.21 
Recall 88.41 88.36 85.91 

F1 Score 91.50 80.26 83.49 
IoU 84.33 67.03 71.66 

Table 1. Metrics for the presented 2D-to-3D semantic segmenta-
tion. 
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Figure 8. Qualitative evaluation of 2D-to-3D semantic segmentation results across both case studies: stone block segmentation in 
the Minguzzi staircase (top row); material detachment detection (middle row); and material loss detection (bottom row) in the Pozzi 
cells area. Green: overlap with ground truth; red: false positives; blue: false negatives. Units in meters. 

In contrast, the material detachment class, which represents more 
irregular and visually ambiguous features, shows lower precision 
(73.53%) but a high recall (88.36%). This suggests that the 
method effectively identifies most detachment, instances but also 
includes a higher rate of false positives, likely due to the subtle 
and complex textures of degraded surfaces and the over 
segmented masks. Consequently, the F1 Score drops to 80.26%, 
with an IoU of 67.03%, reflecting the increased difficulty in 
accurately delineating these features. The material loss class 
reports a precision and recall at 81.21% and 85.91%, 
respectively. This results in an F1 Score of 83.49% and an IoU 
of 71.66%, indicating relatively consistent performance, in both 
detecting and projecting these localized areas of material loss. 
Figure 9 presents the results from the 2D-to-3D semantic 
segmentation of both case studies, highlighting the ability of our 
proposed pipeline to create semantically enriched 3D models 
with metric information. 
 

5. Conclusions 

This study presented a framework for enriching 3D 
reconstructions with 2D semantic segmentation on fish-eye 
images collected with the multi-camera mobile mapping system 
ATOM-ANT3D to produce semantically meaningful 3D models 
for Cultural Heritage (CH) documentation. Two complex case 
studies are used to evaluate the proposed framework targeting 
challenging key architectural elements (i.e., stone blocks) and 
material decay (i.e., material detachment and material loss). 

Qualitative and quantitative analyses are performed highlighting 
the strengths and limitations of the approach. Although a fully 
automatic grounding technique for the isolation of SAM2-
generated stone block masks from other architectural elements is 
difficult due to a combination of factors such as the use of wide-
angle fish-eye imagery, complex environment geometry, and 
non-uniform object surface conditions, requiring expert 
intervention, the 2D-to-3D projection framework nonetheless 
achieved robust stone blocks 3D segmentation on the Minguzzi 
staircase. This confirms that given reliable 2D segmentations, the 
proposed framework produces 3D labels that align well with the 
ground truth. In contrast, the coupling of YOLOv5 and SAM2 
proved effective in detecting more ambiguous and irregular 
features, such as material detachment and material loss. While 
this approach achieved high recall and acceptable overall 
performance, it faced certain challenges, resulting in slightly 
lower precision and IoU scores. These challenges include 
distortions near image borders (caused by fish-eye lenses), 
surface irregularities, and obstructed object boundaries due to the 
difficulty of detecting less visually distinct features. Nonetheless, 
the pipeline demonstrates a viable and efficient method for 
enriching cultural heritage (CH) 3D models with semantic data. 
By enhancing the interpretation of 3D models, this study 
contributes to improved documentation, monitoring, and 
preservation of CH. Future work will focus on improving the 
quality of 2D detection masks, increasing projection accuracy, 
and developing robust automated object detection methods 
tailored specifically for CH applications. 
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Figure 9. Results of the 2D-to-3D semantic segmentation: stone-block detection and unique label assignment with metric 
information in the Minguzzi staircase (left); material detachment (purple) and material loss (red) in the Pozzi cells area before and 
after (right). (point clouds and mesh models) 
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