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Abstract 

Water vapor is a critical factor affecting the long-term durability of porous stone materials used in historic buildings and 
archaeological sites. To extend the service life of these materials, it is essential to investigate the mechanisms of water vapor 
migration within them. This study proposes a multi-domain physics-informed neural network (PINN) framework that integrates 
physical constraints and data-driven modeling to simulate water vapor diffusion and identify transient diffusion coefficients. The 
results demonstrate that the PINN model accurately predicts relative humidity distributions in stone samples under both laboratory-
controlled and in-situ conditions, achieving mean RMSE values of 1.39 and 3.05, respectively. The inferred diffusion coefficients are 
consistent with those experimentally determined for Yungang Grotto sandstone, both on the order of 10⁻⁷. The PINN framework 
exhibits improved applicability and computational efficiency. This work presents a robust analytical framework and workflow for 
characterizing water vapor diffusion behavior and extracting vapor diffusion parameters in porous stone materials. 

1. Introduction

The preservation of valuable cultural heritage is essential for 
reinforcing collective identity and promoting social cohesion, 
while also serving as a foundation for sustainable development 
in both present and future societies (Ma et al., 2024). However, 
many immovable heritage sites located in natural environments 
are subject to ongoing degradation driven by moisture-related 
processes under hygrothermal conditions. Empirical studies 
indicate that these deterioration mechanisms are closely 
associated with complex environmental dynamics, including 
fluctuations in temperature and humidity, wind-driven rain, 
water infiltration, capillary rise, and condensation. Sustained 
high humidity and water ingress facilitate microbial growth, 
leading to fungal and moss colonization on mural surfaces. 
Cyclic hygrothermal stresses caused by alternating temperature 
and humidity accelerate granular exfoliation of stone surfaces 
(Hu et al., 2024). The combined effects of these physical, 
chemical, and biological processes can ultimately lead to the 
irreversible loss of culturally significant surface features. Given 
that vapor diffusion is a key mechanism of moisture transport in 
humid environments, a comprehensive understanding of vapor 
transport dynamics is essential (Zhang et al., 2022). 
Investigating moisture diffusion mechanisms provides a 
scientific basis for developing sustainable conservation 
practices. 

The determination of parameters for both steady-state and 
transient vapor diffusion models primarily depends on 
laboratory experiments (e.g., wet-dry cup tests) and field 
monitoring (e.g., hygrothermal sensors). However, these 
approaches are often prohibitively time-consuming (Zhang et al., 
2022). Although numerical simulations serve as valuable 
alternatives, their predictions frequently deviate from 
experimental results due to inherent model approximations, 
uncertainties in boundary and initial conditions, inaccuracies in 
parameterization, and computational limitations (Hu et al., 
2024). Moreover, the spatiotemporal variability of moisture 

distribution within porous stone driven by complex 
environmental interactions necessitates high-resolution physical 
parameter measurements, which are not adequately captured by 
conventional laboratory testing under controlled conditions. 
While environmental monitoring remains a key component of 
heritage conservation, current practices typically restricted to 
non-invasive or minimally intrusive techniques primarily target 
ambient temperature and humidity. These methods fail to 
resolve critical subsurface processes such as internal moisture 
content fluctuations, condensation-evaporation cycles, and 
thermally driven vapor transport (Qaddah et al., 2023). The 
inability to quantify essential parameters, such as moisture 
diffusion coefficients, hampers the development of accurate, 
long-term preventive conservation strategies based on 
mechanistic models of moisture transport. 

Machine learning presents promising opportunities for 
elucidating moisture diffusion mechanisms and developing 
surrogate models based on long-term dynamic environmental 
monitoring data, while simultaneously capturing transient vapor 
transport behavior. However, data-driven models are inherently 
limited by their black-box nature, which poses challenges such 
as data incompleteness, measurement noise, suboptimal training 
procedures, and risks of underfitting or overfitting. Moreover, 
these models lack physical interpretability, as they are 
constructed independently of fundamental conservation laws. 
To overcome these limitations while leveraging the 
complementary strengths of data-driven and physics-based 
approaches, physics-informed neural networks (PINNs) have 
emerged as a transformative modeling framework (Wang et al., 
2023). Physics-informed neural networks (PINNs) enhance 
model interpretability by incorporating governing partial 
differential equations (PDEs) directly into the neural network 
architecture. These models are trained by minimizing a 
composite loss function that enforces two constraints: 
consistency with physical laws through PDE residuals and 
agreement with empirical data. This hybrid approach also 
facilitates inverse parameter estimation by enabling the 
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identification of vapor diffusion coefficients from indirect 
environmental monitoring data, thereby overcoming the 
limitations of direct measurement techniques in heritage 
conservation applications. 
 
This study introduces a novel physics-informed data-driven 
framework to establish surrogate models for moisture diffusion 
in sandstone heritage artifacts, enabling concurrent resolution of 
forward (relative humidity prediction) and inverse (diffusion 
coefficient estimation) problems. The methodology initiates 
with laboratory-based monitoring of vapor diffusion dynamics 
using a custom-designed apparatus comprising calibrated 
relative humidity sensors, a signal acquisition module, an 
environmental chamber, and a data-logging platform. 
Cylindrical sandstone samples from the Yungang Grottoes (120 
mm edge-length cubes, epoxy-sealed on four surfaces with two 
opposing diffusion interfaces) were instrumented to record 
humidity variations at five depth intervals (20, 40, 60, 80, and 
100 mm from the diffusion surface), generating experimental 
datasets for training deep neural networks. A Physics-Informed 
Neural Network (PINN) architecture was developed by 
integrating Fick’s second law through a dual residual 
formulation simultaneously minimizing data-driven prediction 
errors and physical law violations. This hybrid loss function 
ensures consistency with fundamental diffusion principles while 
solving the governing PDE numerically. The model’s key 
innovation lies in its dual-problem resolution capability, where 
spatiotemporal features are processed to simultaneously predict 
humidity distributions (forward problem) and infer moisture 
diffusion coefficients (inverse problem), effectively bridging 
theoretical predictions with empirical observations.  
 
Subsequent sections are organized as follows: Section 2 details 
the mathematical framework for forward modeling of humidity 
distributions and the implementation of the physics-constrained 
deep learning architecture for inverse parameter identification. 
Section 3 presents quantitative validation of the PINN’s 
predictive accuracy, discusses performance metrics, and 
evaluates the model’s generalization capacity. Finally, Section 4 
concludes with methodological implications, proposes 
refinements for multi-physics coupling scenarios, and outlines 
future applications of physics-guided machine learning 
paradigms in hygrothermal conservation science. 
 

2. Data Acquisition 

The Yungang Grottoes, recognized as the earliest Buddhist cave 
temple complex commissioned by imperial authority in China 
and a masterpiece of global Buddhist rock-cut architecture, 
were inscribed as a UNESCO World Heritage Site in 2001. 
Sandstone specimens used in the laboratory experiments were 
collected from the rear hills of the Yungang Grottoes, 
specifically from fresh rock strata corresponding to the same 
stratigraphic layer as the stone carvings within the caves. 
Sampling was conducted at depths of no less than 20 cm below 
the surface to ensure material consistency and minimize 
weathering effects. The sandstone in the Yungang Grottoes is 
characterized as a porous medium with interconnected channel 
structures that facilitate water vapor diffusion. The complex 
microclimatic conditions within the grottoes, combined with 
recurring freeze–thaw cycles, have progressively contributed to 
the weathering of these invaluable stone carvings, with surface 
deterioration manifesting as exfoliation, detachment, and other 
forms of material loss. Accordingly, freeze–thaw cycle 
experiments were conducted on sandstone specimens, and 
ultrasonic pulse velocity measurements were employed to 
evaluate the extent of weathering. 

 
The sandstone was cut into cubic specimens with dimensions of 
120 × 120 × 120 mm³ using a rock-cutting machine. Five holes, 
each 7 mm in diameter and 60 mm in depth, were drilled along 
the central axis of each specimen at 20 mm intervals, 
corresponding to depths of 20, 40, 60, 80, and 100 mm from the 
diffusion surface, to accommodate humidity sensors under 
controlled environmental conditions (relative humidity: 80%; 
temperature: 15 °C). 
 

 
Figure 1. Moisture diffusion Monitoring System for Sandstone 

Heritage. 
 

3. Methodology  

Previous researchers have derived physical laws through 
experimental observation and theoretical deduction. However, 
experimental data often implicitly contains inherent physical 
relationships. When dealing with large-scale datasets, machine 
learning methods provide an efficient and economical approach 
to building surrogate models. However, traditional machine 
learning methods generally lack physical interpretability. 
Therefore, it is necessary to combine existing physical laws 
with neural network approaches by incorporating physical laws 
as constraint conditions for unknown functions, guiding the 
neural network to converge towards surrogate models that have 
physical interpretability. This section begins by presenting the 
partial differential equations (PDEs) that govern the 
fundamental physical principles of water vapor diffusion. These 
equations are subsequently embedded as physical constraints 
within the data-driven neural network framework. The 
following subsections detail the architecture of the neural 
network and the implementation strategy for incorporating the 
physical constraints. 
 
3.1 Governing Equation  

This transport behavior follows Fick’s law of diffusion, which 
theoretically characterizes the mass transfer of moisture in 
porous media under the combined influence of concentration 
gradients and the diffusion coefficient (Cuomo et al., 2022).  

  (1) 

Where t represents the diffusion time of water vapor in seconds,	
D(x, t) is the nonlinear diffusion coefficient, a function of depth 
and time, measured in mm2/s. Here, x is the depth within the 
rock in mm, and C is the water vapor concentration in mol/m3. 

•

•• • •C CD x t
t x

¶ ¶
=

¶ ¶

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-595-2025 | © Author(s) 2025. CC BY 4.0 License.

 
596



 

 
3.2 Physics-informed Neural Networks Model  

In previous studies, deep neural networks (DNNs) were 
primarily employed as purely data-driven approaches to 
approximate the physical process. However, these models 
depend solely on empirical training data and are devoid of 
constraints imposed by underlying physical principles 
(Goswami et al., 2020). While DNNs may achieve high 
predictive accuracy when trained on large, high-quality datasets, 
their performance typically deteriorates in data-limited 
scenarios  (Li et al., 2024). To improve adherence to physical 
laws, the present study incorporates partial differential equation 
(PDE) constraints into the model’s loss function, thereby 
embedding governing physical principles directly into the 
learning process. The subsequent sections provide a detailed 
description of the implementation strategy adopted for the 
physics-informed neural network (PINN) framework. 
 
This section introduces the Physics-Informed Neural Network 
(PINN) framework developed to simulate water vapor diffusion 
behavior in porous rock materials. The framework integrates 
physical laws into a data-driven neural network surrogate model, 
ensuring that the predicted results are not only consistent with 
observed data but also adhere to the governing physical 
principles of vapor diffusion. Furthermore, the PINN 
framework facilitates the identification of diffusion parameters 
from indirect measurements.  
 
Figure 2 illustrates the architecture of the PINN model 
employed to estimate water vapor diffusion behavior in 
sandstone. A defining feature of the framework is its explicit 
incorporation of physical constraints into a conventional deep 
neural network structure. The network comprises an input layer, 
multiple hidden layers with residual connections, fully 
connected layers, and an output layer(Hornik et al., 1989). This 
mapping relationship can be formally expressed as: 
  (2) 
Where 𝑁 is the neural network mapping, and 𝜃 denotes the 
trainable parameters of the network, including weights 𝑤 and 
biases 𝑏. The network optimizes its parameters 𝜃 using the 
backpropagation algorithm to minimize the loss function, 
typically quantified by the mean squared error (MSE) between 
predicted and observed values(Cuomo et al., 2022).  
 

 
Figure 2. Hybrid Physics-Informed and Data-Driven Neural 

Network Framework 
 
The proposed model integrates finite difference schemes with 
physics-informed neural networks (PINNs). Specifically, a 
forward difference scheme is applied for temporal derivatives, 
while a central difference scheme is utilized for spatial 
derivatives(Abdar et al., 2021). Simultaneously, automatic 
differentiation is employed to compute the gradients of the total 
loss with respect to neural network parameters, facilitating 
efficient optimization during training.  
 

The loss function of the physics-informed neural network 
(PINN) comprises multiple components. The data loss term, 
LData, measures the discrepancy between the model’s 
predictions and the observed experimental data. In addition, 
physical constraints derived from the governing diffusion 
equation are incorporated as regularization terms, forming the 
physical loss component, LEqn, which quantifies the deviation 
between the model-estimated diffusion behaviour and the 
expected physical behavior. A boundary condition loss term,	
LBC, is also included to enforce compliance with prescribed 
boundary conditions. The physical loss term employs the Huber 
loss function, proposed by the statistician Peter Huber(“Robust 
learning of Huber loss under weak conditional moment,” 2022).. 
  (3) 

 and  represent the weighting coefficients for the data 

loss and physical constraint loss, respectively. These 
coefficients are optimized via hyperparameter tuning during the 
initial phase of training. The network weights and biases are 
iteratively updated using the AdamW optimization algorithm to 
minimize the total loss and obtain the optimal network 
parameters  (Lu et al., 2021; Raissi et al., 2019; Wang et al., 
2024). 

  (4) 
In this study, The diffusion coefficient is modeled as a nonlinear 
function of both space and time, denoted as 𝐷(𝑥,𝑡), rather than 
assumed to be spatially and temporally constant. 
Hyperparameter tuning is conducted using Bayesian 
optimization implemented via Optuna’s Tree-structured Parzen 
Estimator (TPE) sampler (“Optuna | Proceedings of the 25th 
ACM SIGKDD International Conference on Knowledge 
Discovery & Data Mining,” n.d.). This dynamic adjustment 
helps the optimizer escape local minima and promotes better 
generalization performance (Raissi et al., 2019). Upon 
completion of training, the PINN model’s predictions are 
quantitatively compared with experimental observations to 
assess its ability to accurately reproduce real-world water vapor 
diffusion behavior in porous materials 
 
3.3 Model Evaluation 

To evaluate the model’s performance in capturing the dynamics 
of water vapor diffusion in porous stone materials, two cross-
validation strategies are employed during training: depth-wise 
cross-validation and temporal window cross-validation. These 
strategies are specifically designed to assess the spatiotemporal 
generalization capabilities of the physics-informed neural 
network (PINN) model. The depth-wise cross-validation 
approach follows a leave-one-depth-out scheme, where each 
spatial layer (i.e., measurement depth) is sequentially held out 
as the test set while the remaining depths are used for training. 
This setup evaluates the model’s ability to generalize across 
different spatial positions within the material. The temporal 
window cross-validation divides the data into overlapping time 
intervals using a sliding window mechanism. At each step, a 
portion of the time-series data is reserved for validation, 
allowing assessment of the model’s performance across time 
and its extrapolation capability beyond the training horizon.  
 
Model accuracy is quantitatively assessed using three standard 
error metrics: Mean Absolute Error (MAE), Mean Squared 
Error (MSE), and Root Mean Squared Error (RMSE) (Waheed 
et al., 2021). These metrics provide complementary insights into 
prediction accuracy and robustness. Lower values of MAE, 
MSE, and RMSE indicate superior predictive performance and 

• • • • • • • • • • • •C x t N x t w b N x t q= =

total data data Eqn Eqn BC BCL L L Ll l l= + +

datal Eqnl

q *

••• • •• • • ••Lq q* =
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better alignment between the model outputs and experimental 
measurements.  

  (9) 

  (10) 

  (11) 

𝑦𝑖 denotes the observed value,  the corresponding predicted 
value, and 𝑛 the number of data points.  
 

4. Results and Discussion 

In this section, a physics-informed and data-driven PINN 
framework is utilized to simulate water vapor diffusion 
behavior in rock samples collected from laboratory experiments. 
The model simultaneously predicts the spatiotemporal 
distribution of vapor concentration and estimates the 
corresponding non-stationary diffusion coefficient, thereby 
capturing the dynamic transport characteristics of porous stone 
materials under varying environmental conditions. 
 
4.1 Results of PINN in Forward Problem and Parameter 
Identification 

As illustrated in Figure 3, fluctuations in ambient relative 
humidity initiate a quasi-one-dimensional vapor diffusion 
process within the rock matrix, resulting in the formation of a 
humidity gradient across the 20 mm to 100 mm depth range. 
The sharp increase in relative humidity observed during the 
initial stages is primarily attributed to the definition of relative 
humidity as the ratio of vapor pressure to saturation pressure. 
Under this formulation, a steeper water concentration gradient 
yields a larger vapor pressure differential, which in turn 
accelerates the diffusion process. With increasing depth, both 
the magnitude of the humidity gradient and its temporal rate of 
change progressively diminish. As vapor diffusion continues, 
the relative humidity profiles gradually level off, and the inter-
point gradients decrease, reflecting a reduction in transport 
intensity.  
 
Following the training phase, the PINN model is employed to 
predict the spatiotemporal distribution of relative humidity 
across various depths, as illustrated in Figure 3(f). The results 
demonstrate that the model successfully captures the essential 
characteristics of water vapor diffusion within the sandstone 
medium and enables reliable prediction of relative humidity at 
arbitrary locations within the defined spatial–temporal domain. 
The predicted values exhibit strong agreement with 
experimental measurements across five monitoring depths (20 
mm, 40 mm, 60 mm, 80 mm, and 100 mm), with corresponding 
average RMSE values of approximately 1.90, 1.15, 0.90, 0.97, 
and 2.01, respectively. Among these, the prediction at the 60 
mm depth achieves the highest accuracy, which is likely 
attributable to the relatively stable humidity profile at this 
depth—resulting in lower modeling complexity and reduced 
prediction error. Although the model exhibits slightly reduced 
performance at the 20 mm depth, primarily due to more 
pronounced and transient humidity fluctuations near the surface, 
it still maintains a high level of predictive accuracy. These 
findings underscore the model’s robustness and effectiveness in 
capturing complex vapor transport behaviors in porous stone 
materials. 

 

 
Figure 3. Comparison between PINN predictions and 

measured data in laboratory; (a) 20mm; (b) 40mm; (c) 60mm; 
(d) 80mm; (e) 100mm; (f) Heatmap of predicted RH in 

Sandstone 
 
To achieve a more accurate quantification of water vapor 
diffusion rates, the PINN framework is designed to 
simultaneously infer the spatial–temporal distribution of the 
water vapor diffusion coefficient during the training process. As 
illustrated in Figure 4, the model successfully estimates the 
transient diffusion coefficients at multiple depths within the 
sandstone medium. This inversion process is particularly critical 
because the physical parameters that govern vapor diffusion—
especially at internal and boundary locations—are typically 
unmeasurable through direct experimental methods and may 
exhibit substantial spatial or temporal variability. Therefore, 
incorporating parameter inference within the PINN training not 
only enhances model fidelity but also provides valuable insight 
into the underlying transport mechanisms. Previous studies have 

•

• •n
i ii

MAE y y
n =

= -å

( )••

• •n
i ii

RMSE y y
n =

= -å

( )••

• •n
i ii

MSE y y
n =

= -å
•iy

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025 
30th CIPA Symposium “Heritage Conservation from Bits: 

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-595-2025 | © Author(s) 2025. CC BY 4.0 License.

 
598



 

reported that the water vapor diffusion coefficient in Yungang 
Grotto sandstone ranges from 2.16×10-7m2/s to 13.99×10-

7m2/s(Zhang et al., 2022)，which is consistent in order of 
magnitude with the inferred values obtained from our model 
( approximately 10-7m2/s), This agreement not only validates the 
accuracy of the PINN-based inversion but also underscores its 
reliability in characterizing vapor transport properties in porous 
sandstone materials.  
 

 
Figure 4. Water vapor diffusion coefficient identification 

using PINN in laboratory; (a) 20mm; (b) 40mm; (c) 60mm; 
(d) 80mm; (e) 100mm. 

 
Although slight deviations are observed between the inferred 
and theoretical values, these discrepancies may be attributed to 
several factors, including limited boundary condition data, 
sparse humidity measurements, and inherent uncertainties in 
estimating spatially heterogeneous diffusion coefficients. To 
enhance the accuracy of PINN-based parameter inversion, 
additional high-resolution experimental data are required to 
better capture spatial variability and reduce estimation bias 
(Wang et al., 2021). 
 
4.2  Accuracy 

To further validate the effectiveness and superiority of the 
proposed PINN model in simulating water vapor diffusion 
within porous stone materials. The performance of PINN 
summarized in Table 1. As Table 1 illustrated, the PDNN model 
achieves lower RMSE, MAE, and MSE values on laboratory 

datasets. The PINN model demonstrates robust performance in 
predicting internal relative humidity distributions within porous 
stone under controlled laboratory conditions. Laboratory 
experiments yielded average RMSE values for relative humidity 
predictions at depths of 20 mm, 40 mm, 60 mm, 80 mm, and 
100 mm of approximately 1.90, 1.15, 0.90, 0.97, and 2.01, 
respectively. 
 

Table 1 Performance of PINN. 
Models Depth(mm) RMSE MSE MAE 

PINN 

20 1.90 5.01 1.35 

40 1.15 2.21 0.90 

60 0.90 1.31 0.67 

80 0.97 1.27 0.68 

100 2.01 6.22 1.39 

 
5. Conclusion 

This study presents a physics-informed and data-driven hybrid 
framework, referred to as PINN, designed to predict internal 
relative humidity distributions and infer water vapor diffusion 
coefficients within porous stone materials. By embedding the 
diffusion equation as an explicit physical constraint, the PINN 
framework effectively integrates fundamental physical laws 
with observational data. This integration enables the accurate 
reproduction of water vapor transport dynamics in porous stone 
and facilitates the quantitative estimation of diffusion 
coefficients that vary across spatial and temporal dimensions. 
The key conclusions derived from this work are summarized as 
follows: 
(1) The PINN model demonstrates robust performance in 
predicting internal relative humidity distributions within porous 
stone under controlled laboratory conditions. Laboratory 
experiments yielded average RMSE values for relative humidity 
predictions at depths of 20 mm, 40 mm, 60 mm, 80 mm, and 
100 mm of approximately 1.90, 1.15, 0.90, 0.97, and 2.01, 
respectively. These results validate the model’s capability to 
serve as an efficient and reliable tool for real-time prediction of 
moisture diffusion processes in porous stone materials. 
(2) The PINN model successfully identifies spatiotemporally 
dependent, non-stationary water vapor diffusion coefficients. 
The inferred coefficients are on the order of magnitude of 
approximately 10⁻⁷ m²/s, consistent with experimentally 
measured values reported for sandstone from the Yungang 
Grottoes. These results demonstrate the model’s accuracy and 
effectiveness in capturing the moisture transport characteristics 
of porous materials in cultural heritage contexts. 
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