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Abstract 

Heritage Building Information Modeling (HBIM) is the methodology that addresses the growing needs in the management 

and preservation of Cultural Heritage, by integrating three-dimensional digital models with spatial, temporal, organizational, 

operational, and other types of information. The digital model, derived from a 3D survey, requires significant time and training 

efforts when transitioning to the HBIM methodology. Moreover, this process often leads to substantial geometric approximations, 

due to the limited flexibility of converting point clouds into BIM during manual modeling. 

In this context, artificial intelligence plays a fundamental role through the development of algorithms specifically designed to 

transform project documentation or point clouds into semantic three-dimensional models exportable in IFC format. The proposed 

case study explores this experimentation applied to an ancient bridge, where infrastructure and culture converge in a perfect 

dialectical and formal expression of heritage. 

The three main phases of the proposed workflow, photogrammetric acquisition via drone, semantic segmentation of the point cloud 

using AI models (RandLA-Net), and generation of the parametric model in a BIM environment through tools such as AtlasNet, 

Rhino, and Revit, have led to a significant reduction in BIM modeling time without compromising the final geometric quality. 

1. Introduction

The management and preservation of cultural heritage require the 

adoption of advanced digital tools capable of integrating 

geometric precision, operational efficiency, and long-term 

sustainability. This study stems from the need to optimize and 

accelerate the process of creating semantic BIM digital models. 

Previous experiments conducted on other case studies with the 

same goal have revealed challenges that are not always easy to 

overcome and have produced results that were not entirely 

satisfactory. 

The proposed case study, a bridge from the early 20th century 

originally built to serve a railway connection, proved particularly 

suitable for repeated experimentation, due to its geometric 

characteristics, accessible location (easily reachable and isolated 

from other structures), and its clear semantic structure. 

Furthermore, the choice was driven by the uniqueness of an 

infrastructure that is also a historical artifact, part of the Cultural 

Heritage. In this case, engineering and culture converge in a 

single structure, offering visitors both historical and technical 

insights. 

Lastly, the superficial deterioration of the stone structure often 

leads to rapid aging of the artifact, presenting local 

administrations with significant challenges in terms of its 

preservation and management. 

A well-constructed BIM digital model, understood here as a 

model that meets specific quality standards in terms of geometry, 

metrics, and material definition—enables the development of a 

BIM platform in which routine and predictive maintenance, cost 

management, inventory control, inspection data mapping, and 

integrated dashboards are effective and sustainable (Inzerillo et 

al., 2023). This, in turn, ensures the long-term preservation of an 

asset that belongs to the collective heritage (Blake, 2000; Jeon et 

al., 2023).  

In the field of Cultural Heritage (CH), artificial intelligence 

algorithms are becoming increasingly widespread, significantly 

reducing the steep learning curves typically associated with BIM 

software for the creation of three-dimensional models. However, 

the coding of the algorithms that drive this implementation has 

been applied primarily to the representation of relatively simple 

residential buildings and, to date, has not been extended to CH 

applications involving infrastructures such as ancient bridges. In 

this study, models generated through a traditional BIM 

methodological process will be compared with those produced by 

artificial intelligence, in order to assess the reliability of the latter 

(Kutlu, 2025). 

2. State of the art

The application of advanced semantic segmentation and 

automatic classification techniques has proven extremely useful 

in overcoming the main limitations of traditional manual 

modeling, drastically reducing the time required to generate 

detailed digital models and improving the accuracy of 

documentation (Pan et al., 2024). 

Recent developments in machine learning have enabled new 

possibilities for automating the Scan-to-BIM process. For 

instance, rule-based logic and supervised learning approaches 

have been used to extract architectural elements from point 

clouds and generate corresponding BIM families (Patil and 

Kalantari, 2025). 

In the domain of cultural heritage, Croce et al. (2021) proposed a 

semi-automatic pipeline based on supervised classification to 
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derive H-BIM models from heritage buildings, demonstrating the 

effectiveness of machine learning methods in reducing manual 

modeling efforts. Similarly, Banfi and Mandelli (2021) showed 

how UAV-based photogrammetry can be integrated into HBIM 

workflows to capture inaccessible or complex heritage structures. 

 

Another notable contribution is GeoTransformer by Qin et al. 

(2023) which uses geometric inpainting and transformer-based 

networks to infer missing parts of objects in large-scale scenes. 

Building on these advancements, Hu et al. (2019) introduced 

RandLA-Net, a lightweight yet powerful model for real-time 

semantic segmentation of large-scale point clouds. This 

architecture, which combines random sampling and local feature 

aggregation, has proven particularly effective in scenarios such 

as heritage masonry structures, where high-density geometry and 

complex morphology are common. 

 

In terms of mesh reconstruction and surface completion, 

AtlasNet (Aubry et al., 2018) has emerged as a benchmark 

solution, using patch-based learning to reconstruct detailed 3D 

surfaces from sparse or incomplete point clouds. Its generative 

capabilities make it suitable for modeling irregular or degraded 

structures, such as historic stone bridges. 

 

3. Methodology 

The adoption of Heritage Building Information Modeling (H-

BIM) in cultural heritage management offers significant 

advantages in terms of operational efficiency and process 

optimization. One of the fundamental principles of H-BIM, 

interoperability, facilitates multidisciplinary collaboration 

through advanced and interactive digital platforms. It improves 

data sharing and integration, ensuring a more coordinated 

approach to documentation, restoration, and maintenance of 

historical architecture. H-BIM also assists in monitoring 

restoration activities and organizing operational phases, creating 

a structured and accessible archive (Baik, 2024). 

However, challenges remain, particularly in adapting H-BIM for 

historical heritage conservation. A key issue is defining the level 

of detail (LOD), as achieving the required "as-built" model is 

difficult due to constraints in data acquisition and modeling. The 

transition from LOD to Level of Information Need, introduced 

by ISO 19650 (International Organization for Standardization, 

2018a, 2018b), offers better compatibility with conservation 

requirements. Depending on specific project needs, various 

approaches are employed, including conventional BIM tools and 

customized solutions. The workflow shown in Figure 1 illustrates 

the traditional process of building an H-BIM model (Lovell et al., 

2023). 

 

 
 

Figure 1. Traditional H-BIM workflow. 

 

The most widespread technique for creating Heritage Building 

Information Modeling (H-BIM) models still involves manual 

modeling from point clouds generated through laser scanning 

(and more generally, point clouds from 3D surveys), a process 

known as Scan-to-BIM. This methodology is effective but has 

significant limitations related to the time required for modeling 

and the potential introduction of human errors during the process. 

In recent years, however, the development and introduction of 

advanced software and specific digital tools have substantially 

simplified the BIM modeling process, facilitating a transition 

from a predominantly manual process to a partially automated 

one. 

 

Simultaneously, the rapid evolution of machine learning (ML) 

techniques has opened new opportunities to significantly enhance 

efficiency and accuracy in BIM modeling. For example, applying 

semantic segmentation algorithms allows for automatic 

classification of architectural elements within point clouds, 

greatly accelerating the overall process. 

 

Although fully autonomous systems capable of self-learning and 

continuous improvement without human intervention do not yet 

exist, it is possible to develop "AI-powered" workflows where 

artificial intelligence (AI) plays a central role. In these 

workflows, AI is not merely supportive but acts as a driving force 

that guides, optimizes, and adaptively automates modeling, 

significantly reducing errors and increasing operational 

efficiency. 

 

 
 

Figure 2. AI-powered BIM workflow. 

 

4. Case study 

A stone bridge located along a historic railway line in Sicily, 

Italy, was selected as a case study. Specifically, the bridge is 

situated on the Castelvetrano–San Carlo–Sciacca railway line, 

near the municipality of Sambuca di Sicilia (Figure 3). The 

railway network was decommissioned between 1959 and 1968, 

partly due to the seismic event in the Belice Valley, which caused 

severe damage to the infrastructure. The bridge structure is 

currently intact, with all its components in generally good 

condition, as shown in Figure 4 (F. Agnello, 1912).  

 

The decommissioning of this railway network occurred between 

1959 and 1968, coinciding with the catastrophic earthquake that 

struck the Belice Valley, causing significant damage to the 

railway infrastructure. Along the route, several important 

engineering structures are still present, including bridges, 

viaducts, tunnels, and minor civil works, as well as various 

railway workers’ houses. Today, the railway line has been 

converted into a cycling path, and most of the engineering 

structures remain in relatively good condition. The application of 

advanced digital methodologies for the management and 

preservation of this historic infrastructure could provide 

substantial support to the responsible authorities, enhancing 

decision-making processes related to maintenance and 
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restoration activities. Such strategies are essential to ensure the 

long-term preservation of a heritage of significant historical and 

engineering value. 

 

 

Figure 3. Location of the bridge within the historic railway 

infrastructure (F. Agnello, 1912). 

 

 

Figure 4. Aerial photo of the stone bridge under study. 

 

The survey of the infrastructure was carried out using aerial 

photogrammetry with a DJI Mavic 2 Pro drone. The use of UAVs 

enables the acquisition of high-resolution photogrammetric data 

even in areas that are difficult to access from the ground. The 

collected images were processed with Agisoft Metashape 

software using the Structure from Motion (SfM) method, which 

allows the reconstruction of dense three-dimensional point 

clouds from two-dimensional images (Figure 5). This technique, 

already well-established in the geomatics field, enables effective 

3D modeling of complex structures, reducing both time and costs 

compared to traditional laser scanning surveys. 

 

 

 
 

Figure 5. Dense point cloud obtained from the UAV survey 

after post-processing with Metashape. 

 

5. Results and discussion 

The generated point cloud was exported in *.ply format and 

subsequently processed with Open3D using a dedicated Python 

script. The main operations included translating the point cloud 

to its centroid to facilitate geometric operations, removing outlier 

points using the Statistical Outlier Removal (SOR) algorithm, 

and reducing point density through voxel downsampling (Hackel 

et al., 2017). These operations significantly reduce the 

computational load in subsequent processing stages. Artificial 

intelligence further enhanced the preprocessing phase. The 

PointCleanNet model was able to learn the characteristics of 

point clouds, intelligently removing noise and outliers. 

 

In addition to the use of software tools and the application of an 

AI solution such as PointCleanNet (Guerrero et al., 2019), which 

significantly simplified the process, manual intervention was still 

necessary at certain stages, particularly for cleaning unwanted 

portions of the point cloud, such as the ground, and for 

performing selective cropping (Figure 6). 

 

 
 

 

Figure 6. Cleaned point cloud obtained through SOR filtering 

and the application of PointCleanNet. 

 

Point cloud segmentation is a critical phase for identifying the 

structural components of the bridge. In this study, segmentation 

was carried out by identifying the types of elements based on the 

guidelines provided by the Bridge Management System (BMS) 

methodology (Tyvoniuk et al., 2024) (Table 1). 
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Element Description 

Piers Vertical supports between arches 

Impost blocks Elements between arch and support 

Arch Main load-bearing structure 

Vault Underside of the arch seen from below 

Tympanum Lateral closure of the fill 

Deck Traffic-bearing surface 

Coping Uppermost part of abutments/piers 

Parapet Lateral protective barrier 

Fill Infilling material under the Deck 

Table 1. Types of elements for masonry bridges in accordance 

with the Bridge Management System (BMS). 

 

Due to persistent inaccuracies in the results produced by the 

adopted algorithms, an initial manual segmentation was carried 

out to distinguish the terrain from the infrastructure (Figure 7). 

 

 

 

Figure 7. Manual terrain-infrastructure segmentation. 

 

At this stage of the study, a semi-automatic segmentation 

technique was initially adopted. It is based on clustering by 

elevation levels (Z-level), integrated with the DBSCAN 

algorithm (Escudero et al., 2024). This approach was chosen not 

only to divide the point cloud into horizontal bands (Figure 8), 

but also to facilitate the automatic identification of distinct 

objects within each band (Figure 9). 

 

 

Figure 8. Stratified analysis of the point cloud using elevation-

based clustering (Z-axis). 

 

Figure 9. Initial point cloud segmentation obtained using level-

based clustering algorithms (Z-level + DBSCAN). 

The adoption of elevation-based clustering segmentation (Z-axis) 

integrated with the DBSCAN algorithm resulted in a 

classification error, due to the misinterpretation of the parapet as 

part of the roadway, since both belong to the same elevation band 

(Figure 10a). This ambiguity was corrected (Figure 10b) by 

integrating a three-dimensional segmentation algorithm into the 

workflow, extending the clustering analysis to include 

longitudinal, X-axis (Figure 11a) and transverse bands, Y-axis 

(Figure 11b). 

 

 a) 

 

 b) 

Figure 10. Semantic classification: a) error resulting from semi-

automatic segmentation based on elevation clustering (Z-axis) 

integrated with DBSCAN; b) bug fix with added clustering 

along X and Y directions. 

 

a) 

b) 

 

Figure 11. Stratified analysis for segmentation through 

clustering: a) in the longitudinal direction (X-axis); b) in the 

transverse direction (Y-axis). 

 

The introduction of transverse bands enabled the segmentation of 

the bridge into individual spans, allowing for consideration of the 

infrastructure's planimetric curvature. The automatic 

identification of spans allowed for the implementation, via code, 

of the initial segmentation of the structural elements "arch" and 

"vault," using the arch width, measured on the two lateral 

elevations, as a reference parameter. 

 

This preliminary segmentation into coarse regions served as the 

basis for generating an annotated dataset required for the model 

training phase. Each identified portion was assigned a semantic 

class corresponding to the main structural components. 

 

In parallel, an artificial intelligence–based approach was 

developed by integrating the RandLA-Net model (Hu et al., 

2019), designed for real-time semantic classification of point 
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clouds. Similar to PointNet++ (Cai and Pan, 2022) and KPConv 

(Thomas et al., 2019), RandLA-Net enables point-wise semantic 

labeling by leveraging the local geometry of the point cloud, 

ensuring high performance even in complex scenarios, such as 

that of a historic masonry bridge. Following the creation of the 

annotated dataset, subsequent iterations of the segmentation 

process were carried out almost automatically, thanks to the 

direct application of the RandLA-Net model. 

 

At the end of this semi-automatic process, an accurate 

segmentation of the point cloud was achieved, enabling the 

partially automated identification of the bridge’s various 

structural components (Figure 12). 

 

a)  

b)  

c)  

d)  

e)  

f)  

 

Figure 12. Bridge segmentation obtained through a semi-

automatic clustering process (X+Y+Z + DBSCAN) and an AI-

based approach (integration of the RandLA-Net model): a) 

parapet; b) deck; c) tympanums; d) impost blocks; e) piers; f) 

arches and vaults. 

The proposed workflow, although advanced, is not yet fully 

automated and presents certain limitations, particularly in the 

removal of vegetation interfering with structural elements and in 

the accurate segmentation of the terrain. 

 

Figure 13 shows the semi-automated segmentation, with AI-

based classification, applied to the main span under study. The 

same view also includes the segmentation of additional 

secondary bridge elements, obtained using the same approach 

described in the previous sections. 

 

In the context of point cloud analysis acquired through 

architectural surveys, one possible strategy for segmentation 

consists in decomposing the cloud into elementary surfaces, such 

as planes or other geometric primitives. 

 

 

Figure 13. Final segmentation of a bridge span using the 

(X+Y+Z + DBSCAN) algorithm and an AI-based approach 

(integration of the RandLA-Net model). 

 

Among the methods that can be adopted, the RANSAC algorithm 

has proven effective in robustly and parametrically identifying 

the main geometrically regular components of the structure, such 

as flat surfaces and simple curvature arches (Croce et al., 2021) 

(Figure 14a). 

This procedure was implemented using the Open3D library in a 

Python environment, with the aim of isolating dominant surfaces 

and subsequently generating more accurate 3D meshes 

associated with each segmented element (Zhou et al., 2018). 

Mesh generation was carried out using the Alpha Shapes method 

(Edelsbrunner and Miicke, 1992), which proved particularly 

suitable for reconstructing the complex geometry of historical 

masonry structures. 

 

To support this traditional geometric approach, an artificial 

intelligence component was integrated. Specifically, the 

AtlasNet (Aubry et al., 2018) model was adopted, a deep learning 

architecture designed for 3D surface generation from partial point 

clouds. The use of AtlasNet significantly improved 

reconstruction quality, particularly in the presence of incomplete 

or deformed geometries, thanks to its ability to learn coherent 

shapes from local morphology (Figure 14b). 

This integration between deterministic approaches and AI 

models represents a significant methodological advancement in 

the processing and digital reconstruction of complex architectural 

artifacts. 
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a) b) 

Figure 14. a) Segmentation of the point cloud into planar 

surfaces using the RANSAC algorithm implemented in Python; 

b) mesh generation using the Alpha Shapes and AtlasNet 

methods, followed by the reassembly of elements through a 

Python script. 

 

The approach based on the Alpha Shapes method proved 

particularly effective in reconstructing the geometry of complex 

architectural masonry, thanks to its ability to adapt to the 

irregular conformation of historic structures. The integration of 

artificial intelligence techniques, specifically through generative 

neural networks such as AtlasNet, further refined the modeling 

process, improving both accuracy and the level of detail in 

surface generation, even in the presence of discontinuities or 

missing portions in the point cloud. 

 

The segmented surfaces were subsequently converted into 

triangular meshes, forming the basis for generating regular three-

dimensional geometries compatible with information modeling 

environments such as BIM. Since Dynamo, in its standard 

configuration, does not directly support mesh formats, external 

tools were used to facilitate the import process. In particular, 

Rhino software, integrated with Grasshopper, was adopted to 

transfer the meshes into Dynamo. 

 

Integration with Dynamo made it possible to automate the 

organization and parameterization of the imported objects, 

simplifying the management and documentation of the bridge's 

construction elements within the Revit environment. The 

transition from freeform geometry to parametric objects was 

achieved through the Rhino.Inside.Revit platform, which enables 

direct communication between Rhino and Autodesk Revit. To 

ensure a true informational level and full manipulability of the 

model, a custom Dynamo script was developed to automate the 

assignment of Revit adaptive families to the geometries imported 

from the meshes (Figure 15). 

 

a) b) 

c) d) 

 e) f) 

 g) h) 

i) 

 

Figure 15. Adaptive parametric families created in Revit for the 

conversion of meshes into BIM components: a) pier; b) impost 

block; c) vault; d) parapet wall; e) tympanum wall; f) arch; g) 

coping profile; h) Deck floor; i) fill. 

 

The process initially involved importing the three-dimensional 

mesh into the Revit environment as a geometric reference, using 

the creation of a DirectShape object. From this reference 

geometry, points belonging to cross-sections were extracted and 

used as control nodes for adapting the adaptive parametric 

families. 

 

By using the AdaptiveComponent.ByPoints and 

FamilyInstance.ByPoint nodes available in Dynamo, it was 

possible to automatically associate appropriately parameterized 

Revit families with the actual scanned geometry, locally adapting 

them to the captured shapes (Figure 16). 

 

 
 

Figure 16. Illustrative visualization of the transition from mesh 

to parametric element. 

 

As an alternative to this procedure, adaptive surfaces can be 

generated directly using interpolation features offered by 

Dynamo, such as Loft.ByCrossSections and Surface.ByPatch. In 

this case, cross-sections are connected to generate continuous 

surfaces, allowing a more faithful representation of the complex 

morphology of the historical infrastructure. 

The decision to associate predefined adaptive families was aimed 

at geometrically regularizing the elements and achieving a more 

coherent and manageable model within the BIM context. The 

final assembly of the bridge was ensured through the definition 

of relational constraints between individual components, 

implemented via generative scripts in the Dynamo environment 

(Figure 17). 
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Figure 17. Dynamo node sequence for the generation of 

adaptive components in the BIM model. 

 

Each parametric family was assigned specific informational 

attributes, including construction type, material, and structural 

identifier, in accordance with the modeling standards. Once the 

semi-automatic generation of the bridge structure was completed, 

achieved through the integration of artificial intelligence 

techniques and Python and Dynamo scripts (Figure 18). 

Adaptation issues with parametric families occurred in cases 

where the reference mesh did not provide sufficiently complete 

or accurate geometry. This was particularly evident for 

components that were partially occluded or interrupted by the 

presence of terrain, such as the lateral piers and impost blocks. In 

such cases, manual adjustment of the geometries within the 

modeling environment was necessary. 

 

 

Figure 18. Digital information model obtained through 

segmentation algorithms and AI techniques. 

 

The terrain modeling was carried out manually within the BIM 

environment, starting from the acquired point cloud (Figure 19). 

However, once the portion of the point cloud corresponding to 

the ground had been isolated, it would have been possible to 

apply an automated modeling procedure similar to the one used 

for the bridge structure. In that case, the process would have 

involved converting the mesh into a parametric surface, adapting 

the Dynamo script for direct topographic generation based on 

control points, without the use of predefined families. 

 

 
 

Figure 19. BIM model of the bridge including terrain 

morphology. 

 

The use of the described workflow, although not yet fully 

automated, offers numerous advantages in both geometric and 

informational terms. It allows for accurate modeling that closely 

reflects the actual geometry captured during the survey (Figure 

20), while also ensuring the necessary parameterization for 

consistent data management and proper export in IFC format, in 

accordance with BIM interoperability standards. 

It is important to note that the development and initial 

configuration of the workflow require a certain investment in 

terms of time and expertise, particularly in defining segmentation 

logic, creating adaptive families, and optimizing scripts. 

However, once implemented, the system enables a significant 

reduction in operational time for future applications, thanks to the 

reusability of components and the partial automation of modeling 

phases. This approach is therefore particularly advantageous in 

scenarios where multiple similar structures need to be modeled 

or when periodic updates of the information model are required. 

 

 

Figure 20. Overlay between the BIM model and the point cloud 

for geometric consistency verification. 

 

6. Conclusion 

The adoption of HBIM enhanced by artificial intelligence 

techniques represents an innovative and highly effective solution 

for the management and preservation of historical and CH. The 

development of the algorithm has undoubtedly led to the 

expected results, although there is still room for improvement. 

Numerous technical and methodological challenges remain. In 

particular, the adaptability of AI systems to the specific 

characteristics of historical infrastructures.  

 

The validation of models produced by AI algorithms often 

requires accurate and specialized human intervention, which is 

essential to ensure precision and reliability. Moreover, full 

autonomy and continuous self-improvement of AI systems have 

not yet been achieved, making it necessary to integrate AI 

techniques with well-established traditional workflows. 

Despite the promising results obtained, full automation of the 

process remains an open challenge, requiring further studies to 

ensure the reliability and autonomy of AI systems applied to 

cultural heritage conservation 

 

The results highlight the potential of this approach in the 

digitization of cultural heritage, while also acknowledging 

certain technical limitations, such as the automatic management 

of vegetation and the segmentation of morphologically similar 

elements. The methodology represents a concrete step toward a 

smarter, more adaptable, and scalable HBIM system for future 

applications in the conservation of collective heritage. 

To overcome these difficulties, it is essential to intensify research 

and development efforts in the field of machine learning, 

promoting the creation of more sophisticated and flexible 

algorithms capable of better adapting to the specific nature of 

cultural heritage. Such developments can ensure greater 

management and conservation efficiency, significantly 

contributing to the long-term preservation of the historical, 

architectural, and cultural integrity of global heritage 

infrastructures. 
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