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Abstract 
 
Dense Mediterranean vegetation often conceals archaeological features in LiDAR data, posing a significant challenge for 
archaeological analysis. This paper presents a novel machine learning pipeline for semi-automated vegetation classification in drone-
based archaeological LiDAR point clouds, which were captured to survey the Mediterranean landscape of Sicily, Italy. Our approach 
integrates an extensive feature engineering stage with a multi-layer stacked ensemble classifier and a RandLA-Net deep learning 
model. The pipeline was trained on a semantically annotated drone-based LiDAR dataset from the site of Kamarina. It achieved high 
accuracy in distinguishing vegetation from ground points (0.99 overall accuracy, weighted macro F1 ≈ 0.93). To evaluate 
generalizability, we tested the model on a secondary site (Heloros) with different vegetation characteristics, obtaining an F1 of ~0.70. 
Qualitative inspection of results confirms that our model effectively removes vegetation while preserving archaeological structures. 
Our results demonstrate the potential of ensemble learning and 3D deep neural networks in archaeological remote sensing, enabling 
more efficient visualization and mapping of hidden archaeological features. 
 
 

1. Introduction  

1.1 Archaeological LiDAR Challenges  

In archaeological remote sensing, precisely identifying and  
removing vegetation from airborne laser scanning (ALS),  
commonly known as Light Detection and Ranging (LiDAR),  
datasets is crucial for revealing archaeological features that are  
obscured by vegetation. Despite its costs and logistical  
complexity, ALS has revolutionized archaeological  
reconnaissance in heavily forested regions of Mesoamerica,  
Northern and Central Europe, and Southeast Asia (Cifani,  
Opitz, and Stoddart, 2007; Chase et al. 2011; Štular et al., 2012;  
Evans et al., 2013; Risbøl et al., 2020). However, its application  
to Sicily’s Mediterranean landscape remains underexplored.  
Mapping human-made structures in a ‘Mediterranean scrub’  
environment using LiDAR is particularly challenging, as dense  
vegetation comprising small trees, thorny shrubs, and bushes  
obscures archaeological remains significantly impacted by  
centuries of human activity.  
  
Our previous work has demonstrated that drone-based ALS  
offers a transformative solution. At the Greek settlement of  
Kamarina in coastal Southern Sicily, we successfully used ALS  
to penetrate dense vegetation along the Ippari River, capturing  
high-density point clouds with a RIEGL VUX-1UAV22 sensor  
equipped with an APPLANIX APX-20 IMU/GNSS system  
(Fig. 1). With a measured point distance of approximately 5 cm  
and a spatial resolution of 400 pts/m², our ALS data surpass  
publicly available LiDAR in detecting subtle archaeological  

features (Brancato et al., 2024; Lercari et al., 2025). At Heloros,  
another Greek settlement we scanned in Southeastern Sicily, we   
utilized the same ALS instrument to successfully detect  
archaeological features beneath the canopy (Calderone et al.  
2025). However, distinguishing LiDAR vegetation returns from  
other point classes (such as ground or building) has traditionally  
relied on off-the-shelf classifiers (e.g., RIEGL’s “Off-Terrain”  
filter, LAStools lasclassify, FUSION/LDV), which we found  
performed inconsistently on Kamarina’s data, often  
misclassifying the site’s dense shrubs and even labelling  
archaeological structures as vegetation, thus complicating  
manual filtering and further analysis.  
  

  
Figure 1. The RIEGL VUX-1UAV22 aerial laser scanner and  
AceCore Noa drone platform we deployed to Kamarina and  

Heloros to capture the ALS data used in this study.  
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This underscores the need for a tailored solution. Therefore, the  
primary objective of our research is to develop a customized  
machine learning pipeline that integrates advanced feature  
engineering with a stacked ensemble of classifiers and a 3D  
deep learning model. We aim to train it on the unique vegetative  
characteristics of the Mediterranean landscapes of Sicily, to  
enhance vegetation classification accuracy and facilitate more  
precise point filtering for visual archaeological analysis and  
interpretation. In this paper, we present a semi-automated  
classification framework trained on our Kamarina site’s drone-  
based LiDAR data, which achieved good results in minimizing  
occlusion and improving vegetation classification accuracy.  
This ultimately allows us to filter out trees and shrubs,  
enhancing the manual mapping of hidden archaeological  
structures in a Geographic Information System (GIS). The  
framework integrates advanced feature engineering with a  
stacked ensemble of classifiers and a 3D deep learning model.  
  

2. Methods  

2.1 Data Collection and Annotation Workflow  

Our study utilizes high spatial resolution drone-based ALS data  
collected at Kamarina as the primary dataset for training and  
evaluation. In September 2024, we scanned a 15-hectare area of  
the ancient Kamarina urban core (Agora and surroundings)  
using a RIEGL VUX-UAV22 laser scanner mounted on an  
AceCore Noa uncrewed aerial vehicle (UAV), integrated with a  
64 MP RGB camera. This UAV-based ALS survey produced a  
dense point cloud (with an average point spacing of  
approximately 5 cm) containing rich geometric and radiometric  
information. To create ground-truth labels for model training,  
we developed a structured manual annotation workflow in  
CloudCompare v2.14 (CloudCompare, Development Team,  
2025), following well-established processes (Mazzacca et al.  
2022; Cirigliano et al., 2025) (Fig. 2). The raw point cloud was  
initially segmented into smaller spatial units (by features and  
clusters). These were then carefully labelled into the following  
classes: Ground and Vegetation. Vegetation included grasses,  
shrubs, bushes, and trees. Buildings, archaeological structures,  
and other man-made objects were grouped as Ground (non-  
vegetation) points. Labelling was conducted iteratively by  
multiple human annotators, with cross-checks to ensure  
consistency. We employed a hierarchical subset approach  
during labelling—each vegetation patch was isolated into a  
separate subset to ensure mutually exclusive categories and  
complete coverage of the area. This strategy enhanced  
annotation precision and allowed targeted quality control  
adjustments. External reference data, including archaeological  
maps, site plans, and satellite imagery, were utilized to guide  
and validate the manual classifications. After labelling, the  
Kamarina dataset contained approximately 116 million points,  
of which about 18 million (15%) were labelled as vegetation  
and 98 million as ground (including archaeological remains).   
  
Beyond Kamarina, a second site, Heloros, was used to test the  
model’s generalization. The dataset captured in the Marianelli  
area, located along the rugged coast south of Heloros, is smaller  
(approximately 0.03 km², containing around 10 million points).  
The labeled Heloros-Marianelli dataset exhibits a different class  
balance, with approximately 6.5 million vegetation points  
compared to 3.7 million ground points (Fig. 7b). The vegetation  
in this dataset varies in both density and type, offering a  
valuable contrast to Kamarina for evaluating the robustness of  
our pipeline. Ground truth for Heloros was obtained through a  
similar manual process (with the Ground class including  
archaeological structures as before). No Heloros data were  

employed in training; the Heloros/Marianelli dataset serves  
purely as an independent test to assess how well a model trained  
on Kamarina can transfer to new Mediterranean landscapes and  
archaeological sites.  
  

  
Figure 2. View of a portion of the Kamarina point cloud before  

(top) and after (bottom) labelling. This figure illustrates how  
dense vegetation (green points) can obscure the underlying  

terrain and archaeological structures (yellow points).  
  
2.2 A Semi-automated Pipeline for Semantic Segmentation  
of Archaeological LiDAR Data using Machine Learning  

We developed a semi-automated classification pipeline that  
combines three key components: (a) extensive feature  
preprocessing, (b) feature selection with mixed methods, and (c)  
a multi-layer stacked ensemble model for the final semantic  
segmentation.   
  
In the first stage (a), the labeled point cloud is spatially  
partitioned and downsampled to facilitate efficient feature  
computation and reduce spatial autocorrelation. We divided the  
dataset into 50m × 50m grid tiles and processed each tile  
independently. Within each tile, we applied voxel grid filtering  
to downsample the point density, utilizing a voxel size  
optimized to balance detail and efficiency. To voxelize our  
dataset, we employed cubic voxels with sides measuring 15  
centimeters. This substantially reduced the total point count  
while maintaining the overall geometry of vegetation clusters  
and ground surfaces (Fig. 3). For each remaining point (voxel  
centroid) in a tile, we computed a rich set of features that  
capture local geometry and point attributes (Table 1). Following  
the approach of Thomas et al. (2018), we defined an  
approximately spherical neighborhood (using a BallTree  
structure) to collect the 16 nearest neighboring points around  
each point.  
  

  
Figure 3: Bird’s-eye view of Partitioned Kamarina Grid  

with 50m x 50m tiles: (Blue) Holdout Test Set and  
(Pink) Training Set.  

  
In  stage (b) of our pipeline, from this neighborhood, we derived  
various geometric descriptors: point density, local height above  
ground, normal vector components, and eigenvalue-based shape  
features such as planarity, sphericity, and verticality. These  
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features quantify the 3D structure of the local neighborhood, for  
instance, planar surfaces versus scattered points, which can help  
distinguish vegetation (often more spatially dispersed or  
canopy-like) from solid ground or structural surfaces.  
Additionally, we utilized all available LiDAR return attributes  
(ASPR Point Data Record Format 7 in LAS), including each  
point’s intensity, RGB color values, return number, and number  
of returns. We also created a few composite features that  
combine geometric and spectral information (e.g., mean green  
sphericity, indicating how strongly the points in a neighborhood  
form a spherical shape and how green they are on average),  
hypothesizing that these might be especially indicative of leafy  
vegetation (Table 1).   
  

Table 1: Selected features categorized by type  
  
Given the large initial feature vector, a feature selection step  
was performed to identify the most informative features and  
reduce dimensionality. We employed both filter-based criteria  
and wrapper methods to rank features based on their  
importance. More specifically, we evaluated the correlation of  
each feature with the target (vegetation vs. ground). We used  
permutation-based importance measures (Breiman, 2001)  from  
ensemble tree models, specifically a Random Forest (Breiman,  
2001) and an XGBoost model (Chen and Guestrin, 2016), to  
assess their contribution to prediction accuracy. Features that  
consistently ranked low were dropped, resulting in a subset of  
top-performing features for the model. A final manual selection  
ensured that only the most relevant geometric and radiometric  
features were retained for classification (Table 1), thereby  
improving learning efficiency and mitigating overfitting.  
  
2.2.1 Classification Ensemble: In stage (c) of our pipeline,  
we developed a two-layer stacked ensemble classifier, which  
represent the core of our classification approach (Fig. 4). In the  
first layer, we train a heterogeneous ensemble of three base  
learners in parallel: (1) a shallow Multi-Layer Perceptron  
(MLP) neural network with three hidden layers, (2) an XGBoost  
gradient boosting decision tree model, which we used with a  
default configuration and (3) a CatBoost gradient boosting  
model (Dorogush et al., 2018), which we also used with a  
default configuration.   
  

  
Figure 4. Workflow of Stacking Classifier.  

  
Each base model in the ensemble is trained to predict a binary  
label (Vegetation vs Ground) for each point using the selected  
features. Rather than committing to a single model’s prediction,  
we leveraged all three. The probability outputs from each of the  
three models were fed into a meta-classifier,  a logistic  
regression that learns how to optimally combine them. This  
stacking approach produces a more robust classification  
decision for each point.  
  
2.2.2 Integration of Deep Learning (RandLA-Net): A key  
innovation of our pipeline is the incorporation of a point cloud  
deep neural network in the second layer of the ensemble to  
further refine classification. We used the Randomly Subsampled  
Local Aggregation Network (RandLA-Net) model by Hu et al.  
(2021), adapted by Gaydon (2022) for urban and terrain aerial  
LiDAR pointwise semantic segmentation. RandLA-Net is a  
spatially aware classifier that can learn local context directly  
from point coordinates and features. While Gaydon (2022) used  
RandLA-Net as a standalone model, our approach utilizes it as a  
final classifier, incorporating additional input features from the  
preprocessing stage and the class probabilities returned by our  
stacking ensemble. By providing additional signals from our  
feature engineering and the stacking ensemble, we enable a  
lightweight RandLA-Net to accurately classify points despite  
having limited training data (Fig. 5).   
  

  
Figure 5. RandLA-Net uses all originally selected features, class  

probabilities from the stacking ensemble, and coordinates for  
each LiDAR point as input.  

  
The RandLA-Net architecture comprises two main parts: an  
encoder and a decoder. The encoder is tasked with  
downsampling the point cloud to compute dense localized  
feature representations. Meanwhile, the decoder manages the  
upsampling process to return to the original resolution. The  
ensemble predictions are included as additional input features  
allowing RandLA-Net to leverage the signal from the ensemble   
while still enabling it to learn complementary geometric  
patterns from the point cloud. The architecture downsamples  
and aggregates features through a series of set abstraction layers  
to capture a broader context, and subsequently upsamples to  
generate point-wise predictions (Hu et al., 2021). We trained  
RandLA-NET on the Kamarina data for a limited number of  
epochs due to the relatively small training area, leveraging the  
ensemble predictions as additional features. RandLA-Net  
produces the final output of the pipeline, classifying each  
voxelized point as either vegetation or ground. After the  
classification of the voxelized points, the results are projected  
back onto the original full-resolution point cloud.  
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2.2.3 Interpolator: Since voxelization removed some points  
in phase (a) of our pipeline, we needed a method to assign  
labels to all original points. Various approaches exist for this  
task, ranging from simple clustering methods to more advanced  
machine learning techniques. Given the limited redundancy  
ensured by our voxelization approach, we employed an Inverse  
Distance Weighted (IDW) nearest neighbor method. For each  
point, we identified the three nearest neighbors and assigned a  
label based on their class probabilities. This method was applied  
to both, the voxelized points already labeled by the model and  
unlabeled points.  
  
2.2.4 Experimental Setup: For classification, we  
represented ground or non-vegetation as class 0 and  
vegetation as class 1. We evaluated performance using  
accuracy, precision, recall, and F1 score, with particular  
attention to correctly identifying vegetation. We analyzed the  
performance of both the stacking ensemble alone and the full  
pipeline (stacking ensemble plus RandLA-Net). We tested  
our approach on two datasets: 1) A Kamarina holdout set  
consisting of 10 random batches of partitioned data (using  
only the voxelized points for performance metric  
computation), which included 990,000 ground points and  
19,000 vegetation points; 2) The Heloros-Marianelli dataset  
to assess the model’s generalization capabilities to a different  
site.  
  

3. Results and Analysis  

3.1 Performance on Training Site (Kamarina)  

We first evaluated the performance of our model on the  
holdout test set from Kamarina. Looking at the  
performance on the voxelized points (i.e., not considering  
the interpolated points), we observed the following results  
(Table 2)   
  

 Ensemble Ensemble + RandLA-Net  

Class Prec. Recall F1-score  Prec. Recall F1-score  

Ground 1.00 0.96 0.98  1.00 1.00 1.00  
Veg. 0.34 0.96 0.51  0.79 0.94 0.86  
Accuracy  0.96    0.99   
Macro 
Avg F1 

 0.74    0.93   

Table 2. Classification performance on the Kamarina dataset  
(hold-out test set). The model achieves very high accuracy and  
F1-score on both classes, especially Ground (non-vegetation).  

  
The heterogeneous ensemble achieved good overall accuracy  
(0.96), however this metric is not a reliable indicator of true  
performance due to the class imbalance in the labeled dataset.  
The precision and F1 score for the vegetation class were poor  
(0.34 and 0.51, respectively), indicating a high number of false  
positives.   
  

  
Figure 6. Train and Holdout predictions for Kamarina.  

Adding the RandLA-Net significantly improved performance,  
achieving a precision of 0.79 and an F1 score of 0.86 for  
vegetation, while also improving overall accuracy to 0.99. The  
macro-average F1 score improved from 0.74 with just the  
stacking ensemble to 0.93 with the full pipeline. Thus, the  
model successfully identified vegetation patterns, including  
smaller shrubs that may have been missed in manual labeling.  
Importantly, the model did not misclassify buildings or  
archaeological structures as vegetation. A visualization of these  
results shows a close match between our model’s predictions  
and the ground truth labels (Fig. 6 and Fig. 2).  
  
3.2 Generalization to a New Site (Heloros)  

To assess the pipeline’s generalizability, we applied the trained  
model (without retraining) to an ALS dataset captured at  
Heloros in the Marianelli area. This dataset presents a more  
challenging test due to its distinct vegetation profile and a  
higher proportion of vegetation points. As shown in Table 3, the  
results display minimal differences between the ensemble and  
the full pipeline (with RandLA-Net), with both achieving an F1  
score and accuracy of approximately 0.70. While these metrics  
might initially suggest poor generalization quantitatively,  
despite the similarity between sites, a visual inspection of the  
Heloros-Marianelli results revealed a different story. When  
examining their visualization, we observed that our model did a  
good job of identifying the main vegetation clusters while  
correctly ignoring the points underneath the vegetation (Fig. 7).  
  

  
Figure 7. a) View of the Heloros-Marianelli RGB point  

cloud; b) manual labels; c) predictions.  
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 Ensemble Ensemble + RandLA-Net  

Class Prec. Recall F1-score  Prec. Recall F1-score  

Ground 0.45 0.99 0.62  0.55 0.99 0.71  
Veg. 0.99 0.61 0.76  0.99 0.53 0.69  
Accuracy  0.70    0.70   
Macro 
Avg F1 

 0.69    0.70   

Table 3. Classification performance comparison on the Heloros-  
Marianelli dataset.    

  
4. Limitations  

4.1 Label Quality   

The comparison between predicted labels and ground truth  
for Heloros revealed significant issues with the quality of  
manual labelling. The ground truth labels do not account for  
ground points underneath vegetation or in transition areas,  
leading to misleading performance metrics. More precise and  
detailed labeling would be necessary for improving model  
training, as it helps reduce the noise-to-signal ratio and  
enables a more accurate evaluation of model performance.  
  
4.2 Training Data Diversity  

Although we scanned much larger areas of both Kamarina  
and Heloros, due to time constraints, we decided to focus on  
designing and developing the pipeline and models instead of  
spending hundreds of additional hours labelling all the  
available datasets. As a result, we had only one labelled  
dataset from Kamarina for training our model. Including  
additional training areas from Kamarina and Heloros, as well  
as new sites with diverse vegetation patterns and  
archaeological features, would likely enhance the model’s  
generalization capabilities. This will be the focus of a new  
paper that we plan to finalize after the CIPA 2025  
Conference (more details are provided in the Conclusions).  
  
4.3 Design Choices and Hyperparameters  

Our implementation includes various design choices and  
hierarchical implementations that would benefit from  
systematic evaluation, such as combinations of  
neighborhood sizes with different features and models.  
The extensive hyperparameter space we utilized (but  
omitted here due to the maximum paper length) creates  
opportunities for further optimization but also poses  
computational challenges.  
  
4.4 Computational Requirements  

The requirement for neighborhood information  
calculations and the volume of point cloud data restrict the  
feasibility of training on low-end machines. This  
establishes a barrier to entry for those with limited  
computational resources.  
  

5. Conclusions  

This study presented a novel semi-automated pipeline for  
LiDAR vegetation classification, specifically designed for  
Mediterranean archaeological landscapes. Our machine learning  
framework effectively tackles the ongoing challenge of  
segmenting and removing vegetation returns that obscure  

ground surfaces in agricultural and rewilding areas, enabling  
more precise identification of hidden archaeological structures  
in the data. By integrating an ensemble of classical machine  
learning models with a point-based deep neural network, our  
approach capitalizes on the strengths of both: high precision  
from engineered features and contextual spatial awareness from  
the neural network. The pipeline’s preliminary results (Table 2  
and Table 3) highlight the potential of specialized machine  
learning in advancing archaeological remote sensing while also  
facilitating the efficient processing of dense 3D data with  
minimal manual intervention.  
  
While our model generalized moderately well to a second site  
(Heloros), the experiments also highlighted the challenges of  
applying specialized classification models across sites. In  
particular, differences in vegetation types and labeling quality  
can impact performance. Nonetheless, the model’s ability to  
detect vegetation at Heloros without retraining is an  
encouraging step toward broader applicability. Moving forward,  
our research will focus on further enhancing the pipeline’s  
generalizability and capabilities. We plan to incorporate  
additional sensor modalities, such as Long-Wave Infrared  
(LWIR) imagery collected at both Kamarian and Heloros, to  
provide the model with richer information for distinguishing  
vegetation. We also plan to expand the training dataset with  
more samples from diverse Mediterranean sites, including  
additional areas of Kamarina and Heloros, to enhance the  
model’s robustness across various terrains and vegetative  
conditions. Another approach is to experiment with advanced  
deep learning architectures or to fine-tune foundation models  
pre-trained on large LiDAR datasets, such as IGNF’s open  
RandLA-Net model for aerial LiDAR, to determine if they  
provide gains in our context. In summary, our work  
demonstrates a practical and accurate pipeline for automated  
vegetation removal in archaeological LiDAR and sets the  
foundation for increasingly general and powerful tools to  
support digital archaeological exploration in vegetated  
landscapes.  
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