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Abstract

Dense Mediterranean vegetation often conceals archaeological features in LiDAR data, posing a significant challenge for
archaeological analysis. This paper presents a novel machine learning pipeline for semi-automated vegetation classification in drone-
based archaeological LiDAR point clouds, which were captured to survey the Mediterranean landscape of Sicily, Italy. Our approach
integrates an extensive feature engineering stage with a multi-layer stacked ensemble classifier and a RandLA-Net deep learning
model. The pipeline was trained on a semantically annotated drone-based LiDAR dataset from the site of Kamarina. It achieved high
accuracy in distinguishing vegetation from ground points (0.99 overall accuracy, weighted macro F1 = 0.93). To evaluate
generalizability, we tested the model on a secondary site (Heloros) with different vegetation characteristics, obtaining an F1 of ~0.70.
Qualitative inspection of results confirms that our model effectively removes vegetation while preserving archaeological structures.
Our results demonstrate the potential of ensemble learning and 3D deep neural networks in archaeological remote sensing, enabling
more efficient visualization and mapping of hidden archaeological features.

1. Introduction
1.1 Archaeological LIDAR Challenges

In archaeological remote sensing, precisely identifying and
removing vegetation from airborne laser scanning (ALS),
commonly known as Light Detection and Ranging (LiDAR),
datasets is crucial for revealing archaeological features that are
obscured by vegetation. Despite its costs and logistical
complexity, =~ ALS has revolutionized archaeological
reconnaissance in heavily forested regions of Mesoamerica,
Northern and Central Europe, and Southeast Asia (Cifani,
Opitz, and Stoddart, 2007; Chase et al. 2011; Stular et al., 2012;
Evans et al., 2013; Risbel et al., 2020). However, its application
to Sicily’s Mediterranean landscape remains underexplored.
Mapping human-made structures in a ‘Mediterranean scrub’
environment using LiDAR is particularly challenging, as dense
vegetation comprising small trees, thorny shrubs, and bushes
obscures archaeological remains significantly impacted by
centuries of human activity.

Our previous work has demonstrated that drone-based ALS
offers a transformative solution. At the Greek settlement of
Kamarina in coastal Southern Sicily, we successfully used ALS
to penetrate dense vegetation along the Ippari River, capturing
high-density point clouds with a RIEGL VUX-1UAV?? sensor
equipped with an APPLANIX APX-20 IMU/GNSS system
(Fig. 1). With a measured point distance of approximately 5 cm
and a spatial resolution of 400 pts/m?, our ALS data surpass
publicly available LiDAR in detecting subtle archaeological

features (Brancato et al., 2024; Lercari et al., 2025). At Heloros,
another Greek settlement we scanned in Southeastern Sicily, we
utilized the same ALS instrument to successfully detect
archaeological features beneath the canopy (Calderone et al.
2025). However, distinguishing LiDAR vegetation returns from
other point classes (such as ground or building) has traditionally
relied on off-the-shelf classifiers (e.g., RIEGL’s “Off-Terrain”
filter, LAStools lasclassify, FUSION/LDV), which we found
performed inconsistently on Kamarina’s data, often

misclassifying the site’s dense shrubs and even labelling
archaeological structures as vegetation, thus complicating
manual filtering and further analysis.

=

Figure 1. The RIEGL VUX-1UAV?2 aerial laser scanner and
AceCore Noa drone platform we deployed to Kamarina and
Heloros to capture the ALS data used in this study.
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This underscores the need for a tailored solution. Therefore, the
primary objective of our research is to develop a customized
machine learning pipeline that integrates advanced feature
engineering with a stacked ensemble of classifiers and a 3D
deep learning model. We aim to train it on the unique vegetative
characteristics of the Mediterranean landscapes of Sicily, to
enhance vegetation classification accuracy and facilitate more
precise point filtering for visual archaeological analysis and
interpretation. In this paper, we present a semi-automated
classification framework trained on our Kamarina site’s drone-
based LiDAR data, which achieved good results in minimizing
occlusion and improving vegetation classification accuracy.
This ultimately allows us to filter out trees and shrubs,
enhancing the manual mapping of hidden archaeological
structures in a Geographic Information System (GIS). The
framework integrates advanced feature engineering with a
stacked ensemble of classifiers and a 3D deep learning model.

2. Methods
2.1 Data Collection and Annotation Workflow

Our study utilizes high spatial resolution drone-based ALS data
collected at Kamarina as the primary dataset for training and
evaluation. In September 2024, we scanned a 15-hectare area of
the ancient Kamarina urban core (Agora and surroundings)
using a RIEGL VUX-UAV22 laser scanner mounted on an
AceCore Noa uncrewed aerial vehicle (UAV), integrated with a
64 MP RGB camera. This UAV-based ALS survey produced a
dense point cloud (with an average point spacing of
approximately 5 cm) containing rich geometric and radiometric
information. To create ground-truth labels for model training,
we developed a structured manual annotation workflow in
CloudCompare v2.14 (CloudCompare, Development Team,
2025), following well-established processes (Mazzacca et al.
2022; Cirigliano et al., 2025) (Fig. 2). The raw point cloud was
initially segmented into smaller spatial units (by features and
clusters). These were then carefully labelled into the following
classes: Ground and Vegetation. Vegetation included grasses,
shrubs, bushes, and trees. Buildings, archaeological structures,
and other man-made objects were grouped as Ground (non-
vegetation) points. Labelling was conducted iteratively by
multiple human annotators, with cross-checks to ensure
consistency. We employed a hierarchical subset approach
during labelling—each vegetation patch was isolated into a
separate subset to ensure mutually exclusive categories and
complete coverage of the area. This strategy enhanced
annotation precision and allowed targeted quality control
adjustments. External reference data, including archaeological
maps, site plans, and satellite imagery, were utilized to guide
and validate the manual classifications. After labelling, the
Kamarina dataset contained approximately 116 million points,
of which about 18 million (15%) were labelled as vegetation
and 98 million as ground (including archaeological remains).

Beyond Kamarina, a second site, Heloros, was used to test the
model’s generalization. The dataset captured in the Marianelli
area, located along the rugged coast south of Heloros, is smaller
(approximately 0.03 km?, containing around 10 million points).
The labeled Heloros-Marianelli dataset exhibits a different class
balance, with approximately 6.5 million vegetation points
compared to 3.7 million ground points (Fig. 7b). The vegetation
in this dataset varies in both density and type, offering a
valuable contrast to Kamarina for evaluating the robustness of
our pipeline. Ground truth for Heloros was obtained through a
similar manual process (with the Ground class including
archaeological structures as before). No Heloros data were

employed in training; the Heloros/Marianelli dataset serves
purely as an independent test to assess how well a model trained
on Kamarina can transfer to new Mediterranean landscapes and
archaeological sites.

Figure 2. View of a portion of the Kamarina point cloud before
(top) and after (bottom) labelling. This figure illustrates how
dense vegetation (green points) can obscure the underlying
terrain and archaeological structures (yellow points).

2.2 A Semi-automated Pipeline for Semantic Segmentation
of Archaeological LIDAR Data using Machine Learning

We developed a semi-automated classification pipeline that
combines three key components: (a) extensive feature
preprocessing, (b) feature selection with mixed methods, and (c)
a multi-layer stacked ensemble model for the final semantic
segmentation.

In the first stage (a), the labeled point cloud is spatially
partitioned and downsampled to facilitate efficient feature
computation and reduce spatial autocorrelation. We divided the
dataset into 50m x 50m grid tiles and processed each tile
independently. Within each tile, we applied voxel grid filtering
to downsample the point density, utilizing a voxel size
optimized to balance detail and efficiency. To voxelize our
dataset, we employed cubic voxels with sides measuring 15
centimeters. This substantially reduced the total point count
while maintaining the overall geometry of vegetation clusters
and ground surfaces (Fig. 3). For each remaining point (voxel
centroid) in a tile, we computed a rich set of features that
capture local geometry and point attributes (Table 1). Following
the approach of Thomas et al. (2018), we defined an
approximately spherical neighborhood (using a BallTree
structure) to collect the 16 nearest neighboring points around
each point.

Figure 3: Bird’s-eye view of Partitioned Kamarina Grid
with 50m x 50m tiles: (Blue) Holdout Test Set and
(Pink) Training Set.

In stage (b) of our pipeline, from this neighborhood, we derived
various geometric descriptors: point density, local height above
ground, normal vector components, and eigenvalue-based shape
features such as planarity, sphericity, and verticality. These
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features quantify the 3D structure of the local neighborhood, for
instance, planar surfaces versus scattered points, which can help
distinguish vegetation (often more spatially dispersed or
canopy-like) from solid ground or structural surfaces.
Additionally, we utilized all available LiDAR return attributes
(ASPR Point Data Record Format 7 in LAS), including each
point’s intensity, RGB color values, return number, and number
of returns. We also created a few composite features that
combine geometric and spectral information (e.g., mean green
sphericity, indicating how strongly the points in a neighborhood
form a spherical shape and how green they are on average),
hypothesizing that these might be especially indicative of leafy
vegetation (Table 1).

Point Geometric Contextual
Attributes Properties Features
Return Nr. Sphericity/Planarity =~ Mean Green Value
RGB Values Verticality Mean Sphericity
Normals (z) Mean Green
Density Sphericity
Curvature Variance ~ Mean Local Height
Local Height
Omnivariance

Table 1: Selected features categorized by type

Given the large initial feature vector, a feature selection step
was performed to identify the most informative features and
reduce dimensionality. We employed both filter-based criteria
and wrapper methods to rank features based on their
importance. More specifically, we evaluated the correlation of
each feature with the target (vegetation vs. ground). We used
permutation-based importance measures (Breiman, 2001) from
ensemble tree models, specifically a Random Forest (Breiman,
2001) and an XGBoost model (Chen and Guestrin, 2016), to
assess their contribution to prediction accuracy. Features that
consistently ranked low were dropped, resulting in a subset of
top-performing features for the model. A final manual selection
ensured that only the most relevant geometric and radiometric
features were retained for classification (Table 1), thereby
improving learning efficiency and mitigating overfitting.

2.2.1 Classification Ensemble: In stage (c) of our pipeline,
we developed a two-layer stacked ensemble classifier, which
represent the core of our classification approach (Fig. 4). In the
first layer, we train a heterogeneous ensemble of three base
learners in parallel: (1) a shallow Multi-Layer Perceptron
(MLP) neural network with three hidden layers, (2) an XGBoost
gradient boosting decision tree model, which we used with a
default configuration and (3) a CatBoost gradient boosting
model (Dorogush et al., 2018), which we also used with a

default configuration.
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Figure 4. Workflow of Stacking Classifier.

Each base model in the ensemble is trained to predict a binary
label (Vegetation vs Ground) for each point using the selected
features. Rather than committing to a single model’s prediction,
we leveraged all three. The probability outputs from each of the
three models were fed into a meta-classifier, a logistic
regression that learns how to optimally combine them. This
stacking approach produces a more robust classification
decision for each point.

2.2.2  Integration of Deep Learning (RandLA-Net): A key
innovation of our pipeline is the incorporation of a point cloud
deep neural network in the second layer of the ensemble to
further refine classification. We used the Randomly Subsampled
Local Aggregation Network (RandLA-Net) model by Hu et al.
(2021), adapted by Gaydon (2022) for urban and terrain aerial
LiDAR pointwise semantic segmentation. RandLA-Net is a
spatially aware classifier that can learn local context directly
from point coordinates and features. While Gaydon (2022) used
RandLA-Net as a standalone model, our approach utilizes it as a
final classifier, incorporating additional input features from the
preprocessing stage and the class probabilities returned by our
stacking ensemble. By providing additional signals from our
feature engineering and the stacking ensemble, we enable a
lightweight RandLA-Net to accurately classify points despite
having limited training data (Fig. 5).

Original Feature
Vectors

X, Y, Z
Coordinates

‘ Ensemble Probability Vectors ‘ ‘

Refined
Probability Qutputs
b
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Figure 5. RandLA-Net uses all originally selected features, class
probabilities from the stacking ensemble, and coordinates for
each LiDAR point as input.

The RandLA-Net architecture comprises two main parts: an
encoder and a decoder. The encoder is tasked with
downsampling the point cloud to compute dense localized
feature representations. Meanwhile, the decoder manages the
upsampling process to return to the original resolution. The
ensemble predictions are included as additional input features
allowing RandLA-Net to leverage the signal from the ensemble
while still enabling it to learn complementary geometric
patterns from the point cloud. The architecture downsamples
and aggregates features through a series of set abstraction layers
to capture a broader context, and subsequently upsamples to
generate point-wise predictions (Hu et al., 2021). We trained
RandLA-NET on the Kamarina data for a limited number of
epochs due to the relatively small training area, leveraging the
ensemble predictions as additional features. RandLA-Net
produces the final output of the pipeline, classifying each
voxelized point as either vegetation or ground. After the
classification of the voxelized points, the results are projected
back onto the original full-resolution point cloud.
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2.2.3 Interpolator: Since voxelization removed some points
in phase (a) of our pipeline, we needed a method to assign
labels to all original points. Various approaches exist for this
task, ranging from simple clustering methods to more advanced
machine learning techniques. Given the limited redundancy
ensured by our voxelization approach, we employed an Inverse
Distance Weighted (IDW) nearest neighbor method. For each
point, we identified the three nearest neighbors and assigned a
label based on their class probabilities. This method was applied
to both, the voxelized points already labeled by the model and
unlabeled points.

2.24 Experimental Setup: For classification, we
represented ground or non-vegetation as class 0 and
vegetation as class 1. We evaluated performance using
accuracy, precision, recall, and F1 score, with particular
attention to correctly identifying vegetation. We analyzed the
performance of both the stacking ensemble alone and the full
pipeline (stacking ensemble plus RandLA-Net). We tested
our approach on two datasets: 1) A Kamarina holdout set
consisting of 10 random batches of partitioned data (using
only the voxelized points for performance metric
computation), which included 990,000 ground points and
19,000 vegetation points; 2) The Heloros-Marianelli dataset
to assess the model’s generalization capabilities to a different
site.

3. Results and Analysis
3.1 Performance on Training Site (Kamarina)

We first evaluated the performance of our model on the
holdout test set from Kamarina. Looking at the
performance on the voxelized points (i.e., not considering
the interpolated points), we observed the following results
(Table 2)

Ensemble Ensemble + RandLA-Net
Class  Prec. Recall Fl-score Prec. Recall Fl1-score
Ground 1.00 0.96 0.98 1.00  1.00 1.00
Veg. 034 096 0.51 0.79 094 0.86
Accuracy 0.96 0.99
Macro 0.74 0.93
Avg F1

Table 2. Classification performance on the Kamarina dataset
(hold-out test set). The model achieves very high accuracy and
F1-score on both classes, especially Ground (non-vegetation).

The heterogeneous ensemble achieved good overall accuracy
(0.96), however this metric is not a reliable indicator of true
performance due to the class imbalance in the labeled dataset.
The precision and F1 score for the vegetation class were poor
(0.34 and 0.51, respectively), indicating a high number of false
positives.

Figure 6. Train and Holdout predictions for Kamarina.

Adding the RandLA-Net significantly improved performance,
achieving a precision of 0.79 and an F1 score of 0.86 for
vegetation, while also improving overall accuracy to 0.99. The
macro-average F1 score improved from 0.74 with just the
stacking ensemble to 0.93 with the full pipeline. Thus, the
model successfully identified vegetation patterns, including
smaller shrubs that may have been missed in manual labeling.
Importantly, the model did not misclassify buildings or
archaeological structures as vegetation. A visualization of these
results shows a close match between our model’s predictions
and the ground truth labels (Fig. 6 and Fig. 2).

3.2 Generalization to a New Site (Heloros)

To assess the pipeline’s generalizability, we applied the trained
model (without retraining) to an ALS dataset captured at
Heloros in the Marianelli area. This dataset presents a more
challenging test due to its distinct vegetation profile and a
higher proportion of vegetation points. As shown in Table 3, the
results display minimal differences between the ensemble and
the full pipeline (with RandLA-Net), with both achieving an F1
score and accuracy of approximately 0.70. While these metrics
might initially suggest poor generalization quantitatively,
despite the similarity between sites, a visual inspection of the
Heloros-Marianelli results revealed a different story. When
examining their visualization, we observed that our model did a
good job of identifying the main vegetation clusters while
correctly ignoring the points underneath the vegetation (Fig. 7).

i T
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Figure 7. a) View of the Heloros-Marianelli RGB point
cloud; b) manual labels; c) predictions.
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Ensemble Ensemble + RandLA-Net

Class  Prec. Recall Fl-score Prec. Recall Fl-score

Ground 045 0.99 0.62 0.55 0.99 0.71
Veg. 0.99 0.61 0.76 0.99 0.53 0.69

Accuracy 0.70 0.70
Macro 0.69 0.70
Avg F1

Table 3. Classification performance comparison on the Heloros-
Marianelli dataset.

4. Limitations
4.1 Label Quality

The comparison between predicted labels and ground truth
for Heloros revealed significant issues with the quality of
manual labelling. The ground truth labels do not account for
ground points underneath vegetation or in transition areas,
leading to misleading performance metrics. More precise and
detailed labeling would be necessary for improving model
training, as it helps reduce the noise-to-signal ratio and
enables a more accurate evaluation of model performance.

4.2 Training Data Diversity

Although we scanned much larger areas of both Kamarina
and Heloros, due to time constraints, we decided to focus on
designing and developing the pipeline and models instead of
spending hundreds of additional hours labelling all the
available datasets. As a result, we had only one labelled
dataset from Kamarina for training our model. Including
additional training areas from Kamarina and Heloros, as well
as new sites with diverse vegetation patterns and
archaeological features, would likely enhance the model’s
generalization capabilities. This will be the focus of a new
paper that we plan to finalize after the CIPA 2025
Conference (more details are provided in the Conclusions).

4.3 Design Choices and Hyperparameters

Our implementation includes various design choices and
hierarchical implementations that would benefit from
systematic evaluation, such as combinations of
neighborhood sizes with different features and models.
The extensive hyperparameter space we utilized (but
omitted here due to the maximum paper length) creates
opportunities for further optimization but also poses
computational challenges.

4.4 Computational Requirements

The requirement for neighborhood information
calculations and the volume of point cloud data restrict the
feasibility of training on low-end machines. This
establishes a barrier to entry for those with limited
computational resources.

5. Conclusions

This study presented a novel semi-automated pipeline for
LiDAR vegetation classification, specifically designed for
Mediterranean archaeological landscapes. Our machine learning
framework effectively tackles the ongoing challenge of
segmenting and removing vegetation returns that obscure

ground surfaces in agricultural and rewilding areas, enabling
more precise identification of hidden archaeological structures
in the data. By integrating an ensemble of classical machine
learning models with a point-based deep neural network, our
approach capitalizes on the strengths of both: high precision
from engineered features and contextual spatial awareness from
the neural network. The pipeline’s preliminary results (Table 2
and Table 3) highlight the potential of specialized machine
learning in advancing archaeological remote sensing while also
facilitating the efficient processing of dense 3D data with
minimal manual intervention.

While our model generalized moderately well to a second site
(Heloros), the experiments also highlighted the challenges of
applying specialized classification models across sites. In
particular, differences in vegetation types and labeling quality
can impact performance. Nonetheless, the model’s ability to
detect vegetation at Heloros without retraining is an
encouraging step toward broader applicability. Moving forward,
our research will focus on further enhancing the pipeline’s
generalizability and capabilities. We plan to incorporate
additional sensor modalities, such as Long-Wave Infrared
(LWIR) imagery collected at both Kamarian and Heloros, to
provide the model with richer information for distinguishing
vegetation. We also plan to expand the training dataset with
more samples from diverse Mediterranean sites, including
additional areas of Kamarina and Heloros, to enhance the
model’s robustness across various terrains and vegetative
conditions. Another approach is to experiment with advanced
deep learning architectures or to fine-tune foundation models
pre-trained on large LiDAR datasets, such as IGNF’s open
RandLA-Net model for aerial LiDAR, to determine if they
provide gains in our context. In summary, our work
demonstrates a practical and accurate pipeline for automated
vegetation removal in archaeological LiDAR and sets the
foundation for increasingly general and powerful tools to
support digital archaeological exploration in vegetated
landscapes.
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