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Abstract 

Murals are invaluable treasures of human civilization, yet they face irreversible damage from salt migration and crystallization 

caused by environmental fluctuations. This study develops a hyperspectral approach to monitor common salts (anhydrous sodium 

sulfate (Na2SO4) and anhydrous calcium chloride (CaCl2)) on mural surfaces. Using an ASD-FieldSpec4 spectrometer, we analyze 

simulated mural samples with varying salt concentrations. For data correction, spectral preprocessing was conducted using 

Savitzky-Golay smoothing (SG), Standard Normal Variate (SNV), and Multiplicative Scatter Correction (MSC). Additionally, the 

natural logarithm (NL) transformation was introduced and combined with spectral preprocessing to enhance spectral features. The 

Competitive Adaptive Reweighted Sampling (CARS) algorithm selected characteristic wavelengths, and the Savitzky-Golay-Natural 

Logarithm-Multiple Linear Stepwise Regression model demonstrated the best predictive capability. For Na₂SO₄ prediction, the model 

achieved optimal performance with an R² of 0.934 and an RMSE of 0.0678% using characteristic bands at 550 nm, 560 nm, 817 nm, 

1318 nm, and 1911-2349 nm. For CaCl₂ detection, it showed excellent accuracy with an R² of 0.987 and an RMSE of 0.0162% at key 

bands of 404-448 nm, 812 nm, 1137 nm, 1314-1333 nm, and 1922-2465 nm. We predicted multiple salt concentrations on the 

simulated temple murals using a method based on the NL and the CARS algorithm. We demonstrate a technical approach for 

hyperspectral detection of mixed salts on the surfaces of typical temple murals in northern China. 

1. Introduction

Murals are one of the oldest forms of painting and have an 

extensive social impact both in China and other countries 

(Shang, 2009). Murals were prevalent in Chinese temples. 

However, due to the impact of environmental and 

anthropogenic factors, the preservation status of murals is far 

from optimistic. Among various mural diseases, disruption has 

always been one of the most common and severe problems. 

Extensive research has demonstrated that disruption is caused 

by the migration of soluble salts in the plaster layer to the mural 

surface along with capillary water movement (Wang and Yu, 

2010). These salts then repeatedly dissolve, crystallize, expand, 

and contract with changes in environmental temperature and 

humidity, which disrupts the structure of the plaster layer and 

leads to a loose state. Once salt damage occurs, it can cause 

permanent damage to murals (Xu, 2023). Therefore, developing 

rapid and effective methods for salt detection on mural surfaces, 

targeting the predominant salt types, is imperative for 

conservation efforts. 

Recent studies on mural conservation have revealed significant 

insights into salt-induced deterioration mechanisms. Research 

conducted at the Mogao Grottoes in Gansu Province, China, 

demonstrated that SO4
2--Cl--Ca2+-Na+ ionic compounds are 

primarily responsible for various deterioration patterns 

including blistering, flaking, and paint loss (Wang, 2010). 

Subsequent simulation tests further confirmed the particularly 

damaging effects of Na2SO4, showing its exceptional 

penetration, migration, and crystallization capacities that 

critically weaken the gritstone matrix (Jin, 2015). These studies 

established that mixed salt formations constitute the 

predominant threat to mural integrity (Wang, 2010; Jin et al., 

2015). 

Contemporary analytical approaches have significantly 

advanced our understanding of salt composition. Through ion 

chromatography analysis, predominant anions (SO₄²⁻, NO₃⁻, Cl⁻) 

and cations (K⁺, Mg²⁺) were identified in the murals of Fengguo 

Temple, Liaoning Province, China (Wei and Liu, 2018). 

Comprehensive characterization using SEM-EDS and X-ray 

Diffraction techniques in Mogao Cave 196 (Gansu Province, 

China) revealed that NaCl and Na₂SO₄ were the primary 

damaging salts (Zhang, 2021). However, these conventional 

methods present limitations including high costs, 

time-consuming procedures, and inability to provide precise 

concentration measurements for individual components in 

mixed salt systems (Wei and Liu, 2018; Zhang, 2021). 

Hyperspectral technology has emerged as a promising 

alternative, offering advantages in spectral information richness, 

sensitivity, and multi-component detection capability 

(Knyazikhin, 2013; Su, 2021; Gila, 2024; Thorat, 2023). 

Preliminary applications in mural conservation have shown 

potential through various modeling approaches. Spectral 

preprocessing and mathematical transformations enabled the 

development of regression models (linear, multiple, parabolic) 

and specialized indices for Na2SO4 concentration prediction 

(Guo, 2023b). Machine learning techniques including Support 

Vector Machine (SVM), Random Forest (RF), and Partial Least 

Squares Regression (PLSR) have been successfully 

implemented for salt content regression (Guo, 2023a). 

Advanced methodologies incorporating fractional-order 

differentiation with PLSR modeling demonstrated effectiveness 

in phosphate prediction (Ren, 2024a), while three-band 

detection methods based on photochemical reflectance indices 
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showed strong correlations with phosphate content (Ren, 

2024b). 

 

This study focused on producing high-fidelity simulated mural 

replicas that replicate the structural composition and salt 

typology characteristic of temple murals in northern China. By 

preparing simulation samples containing different 

concentrations of Na₂SO₄ and CaCl₂, we collected the spectral 

reflectance of the samples using an ASD-FieldSpec4HI-RES 

spectrometer. Then, Savitzky- Golay (SG), Standard Normal 

Variate (SNV), and Multiplicative Scatter Correction (MSC) 

were used for spectral preprocessing. We proposed a method of 

enhancing spectral features through natural logarithm (NL) 

operation and used Competitive Adaptive Reweighted Sampling 

(CARS) for feature band selection. Finally, a multiple linear 

stepwise regression (MLSR) model was established. The results 

demonstrate that the spectral data processed by SG and NL 

operation can better predict the content of mixed salts. The 

model has strong prediction ability and good stability. This 

study is of great significance for the detection of mixed salts on 

the surface of temple murals in northern China and provides a 

new technical idea for the salt detection on the surface of real 

murals. 

 

2. Data Acquisition and Preprocessing 

 

2.1 Sample Preparation and Data Collection 

 

Based on the production process of temple murals in northern 

China (Jin, 2023; Yao, 2023), we made mural simulation 

samples in the laboratory. The samples mainly consisted of a 

coarse plaster and a fine plaster. Since salt damage primarily 

results from salt crystallization on the mural surface, the soluble 

salt content was defined as the mass ratio of salts to dry fine 

plaster. Based on analysis of salt types and concentrations from 

real temple murals, simulation samples were prepared with 

varying concentrations of Na2SO4 (predominant) and CaCl2. 

Some of the prepared samples are shown in Figure 1. 

 

 
Figure 1. Simulated samples of mixed salts for the murals in 

temples in northern China 

 

After preparation, the samples were placed in the laboratory to 

dry in the shade, and then their surfaces were scraped flat. Then, 

the reflectance spectra of the samples were collected using an 

ASD-FieldSpec4HI-RES spectrometer. The specific parameters 

of this instrument are shown in Table 1. The data collection was 

carried out in a darkroom, with a halogen lamp as the only light 

source. The probe was perpendicular to the sample. Four curves 

were collected from different positions of each sample each 

time. After breakpoint correction, the average value of the 

reflectance spectra was recorded as the data result of this 

measurement. The spectral data were collected every 24 hours, 

and a total of 72 sample reflectance spectra were obtained. 

 

Parameter Name Specific values 

Product model FieldSpec4HI-Res 

Spectral range 350-2500nm 

Spectral resolution 
3nm @ 700nm 

8nm @ 1400/2100nm 

Sampling interval 
1.4nm @ 350-1000nm 

1.1nm @ 1001-2500nm 

Number of channels 2151 

Table 1. Technical specifications of the 

ASD-FieldSpec4HI-RES spectrometer used for reflectance 

measurements. 

 

2.2 Data Preprocessing 

 

During the data acquisition process, noise may be generated due 

to factors such as the instrument itself, human factors, and the 

environment. To effectively reduce the interference of noise on 

the research results, breakpoint correction was first carried out 

on the collected data to eliminate the systematic error caused by 

the differences in the characteristics of different optical 

components inside the instrument. In addition, to avoid errors 

caused by human factors during the measurement process, for 

each sample, four different positions were selected for 

measurement, and the obtained spectral data were averaged and 

used as the final measurement result. Secondly, spectral 

preprocessing was carried out using SG smoothing, SNV, and 

MSC. SG smoothing can effectively reduce the noise in the 

spectrum and improve the quality and stability of the signal by 

fitting the spectral data with a polynomial (Ochieng, 2023). 

SNV normalizes the spectrum by subtracting the mean value 

from each spectral data point and dividing it by the standard 

deviation. It can eliminate scattering effects such as baseline 

offset and slope change in the spectral data, making the spectra 

of different samples comparable in intensity and highlighting 

the characteristic differences of the spectra (Shi, 2021). MSC 

minimizes the wavelength-related multiplicative deviation 

caused by light scattering by fitting a linear model between the 

reference spectrum and other spectra in the dataset (Centner, 

2000).  

 

3. Methods 

 

To achieve the detection of mixed salts on the surface of typical 

temple murals in northern China, we established the technical 

process shown in Figure 2. 

 

 
Figure 2. Flow Chart of the Detection of the Content of Mixed 

Salts on the Surface of Murals in Northern China 
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First, after preparing the simulated mural samples, the spectral 

data of the samples were collected using an 

ASD-FieldSpec4HI-RES spectrometer. Then, we performed 

breakpoint correction and spectral averaging to form a model 

dataset. And three preprocessing operations, SG smoothing, 

SNV, and MSC, were carried out on the spectral data to reduce 

the deviation of the spectral data. Then, we calculated the NL to 

enhance the spectral features and used CARS to select the band 

combinations highly correlated with the concentrations of the 

two types of salts. Finally, a MLSR was used to establish a 

prediction model for mixed salts, and the accuracy of the model 

was comprehensively evaluated based on the coefficient of 

determination and the root mean square error. 

 

3.1 Spectral Feature Enhancement 

 

In order to highlight spectral differences, reflect subtle changes, 

eliminate interference such as noise and baseline drift, and thus 

improve the accuracy of information extraction and enhance 

data separability, we used mathematical operations for spectral 

feature enhancement (Louchard, 2002; Wang, 2020). Research 

has demonstrated that logarithmic transformation provides the 

optimal spectral transformation for predicting soil organic 

matter content using hyperspectral data (Guo et al., 2024). 

Logarithmic transformation can suppress background noise, 

highlight the absorption peaks of data, and enhance the 

differences between spectral data, thereby reducing errors in the 

data and enhancing the data. 

 

3.2 Feature Band Selection 

 

Due to the continuity of hyperspectral data, the enhanced 

spectral data still contain redundant information, which will 

affect the efficiency of the prediction model. Therefore, the 

competitive adaptive reweighted sampling algorithm was used 

to select the optimal band combination for model establishment. 

CARS is a band selection method based on Monte Carlo 

sampling. This algorithm screens out the bands highly 

correlated with the target variable through exponentially 

decaying weights. In this way, it can effectively reduce 

redundant information, improve the accuracy of the model, and 

increase the operation efficiency (Fan, 2012). The integration of 

PLSR with competitive adaptive reweighted sampling (CARS) 

has been shown to effectively select key variables containing 

the most significant information. Comparative results 

demonstrated that the CARS-PLSR method achieved 

significantly greater accuracy than conventional full-spectrum 

PLSR analysis. Following band selection, the predictive 

capability of spectral data for salt content determination was 

markedly enhanced while simultaneously reducing data 

redundancy (Vohland et al., 2014). We used the absolute value 

of PLSR coefficients to determine the importance of variables, 

and achieved a smooth transition through an exponential decay 

function to retain variables with high weights. 

 

3.3 Prediction Model and Accuracy Evaluation 

 

MLSR is a statistical method that screens independent variables 

according to specific rules during the establishment of a 

multiple regression equation. It ensures that the final model 

contains only the independent variables that have a significant 

impact on the dependent variable and have no serious 

multicollinearity. By gradually introducing and eliminating 

variables, it can obtain the optimal regression equation (Kabe, 

1963; Grossman, 1996). Several modeling approaches including 

MLSR, PLSR, and SVM have been successfully applied to 

estimate total nitrogen content in soil (Shi et al., 2013). The 

established models were comprehensively evaluated using the 

coefficient of determination (R2) and the root mean square error 

(RMSE). Among them, R2 is used to measure the goodness of 

fit of the model to the data. The value range of R2 is between 0 

and 1. The closer R2 is to 1, the stronger the explanatory power 

of the independent variables for the dependent variable (Ozer, 

1985). RMSE is mainly used to evaluate the average error 

degree between the predicted values and the true values of the 

model. The smaller the RMSE value, the closer the predicted 

values are to the true values, indicating a stronger prediction 

ability of the model (Hodson, 2022). 

 

4. Results and Analysis 

 

4.1 Spectral Feature Analysis of Mural Simulation Samples 

with Mixed Salts 

 

The original spectrum of the simulation sample is shown in 

Figure 3(a). The spectral curve is relatively smooth, lacking 

severe jumps or sharp peaks and valleys. This smoothness 

indicates that the light reflection characteristics of the 

simulation sample change continuously across the entire 

wavelength range, with no sudden changes in very narrow 

bands. In the wavelength range from 500nm to 2500nm, the 

reflectance of the simulation sample first increases, then tends 

to be stable, and then shows a small amplitude fluctuating 

decrease in specific bands. Near 500nm, the reflectance is low. 

As the wavelength increases, the reflectance gradually increases 

and tends to be stable between about 1000 - 1500nm. Then, 

there are some small peaks and valleys near 2000nm, and 

finally, the reflectance decreases near 2500nm. 

 

The data after preprocessing are presented in Figures 3 (b - d), 

demonstrating the results of different preprocessing methods. 

After SG smoothing, the curve becomes smoother, with small 

fluctuations weakened or eliminated, thereby highlighting the 

detailed features of the spectrum. After SNV processing, the 

differences among spectral curves become more pronounced, 

particularly in bands with relatively sharp peaks or valleys. 

After MSC processing, the spectral curve shows greater 

regularity compared to the original spectrum. Moreover, the 

degree of dispersion between the curves decreases, effectively 

eliminating the influence of the differences in the physical 

properties of the sample surface on the spectrum. As shown in 

Figure 3(e), after the NL transformation, the spectral curve 

changes more sensitively in the low reflectance region, while 

the changes in the high reflectance region are relatively gentle. 

Compared with the original spectrum, the overall dynamic 

range is compressed. 
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Figure 3. Mural simulated sample (a)Original spectrum (b)SG 

(c)SNV (d)MSC (e)NL 

 

We applied the CARS method to perform feature band selection 

on the original spectral data and the preprocessed spectral data, 

and respectively selected the band combinations highly 

correlated with the concentrations of the two types of salts. The 

selected band combinations are presented in Table 2. 

 

Data 

form 

Optimal Band Combination(nm) 

Na2SO4 CaCl2 

R 

377、387、409、423、

846、852、1309、2144、
2309 

366、409、834、1325、

1908、1947、1953、

2133、2417、2486 

SG 

387、867、1921、1927、

2080、2156  2257、

2309、2311 

436、810、1325、1912、

1974、2134、2453 

SN

V 

367、381、386、870、

878、1918、1928、

1946、1954、2092、
2364 

350、390、1279、1914、

1975、2423 

MS

C 

350、352、353、 371、 

392、443、2154、2158、

2162、2308、2366、
2372 

352、404、444、1914、

1975、1977、2151、2446 

NL 

392、423、430、436、

529、1161、1920、

1922、1952、2086、

2087、2308 

387、412、448、810、 

823、825、1139、1905、

1909、1963、1971、2422 

SG-

NL 

550、560、817、1318、

1911、1912、1924、

2044、2349 

404、428、444、448、

812、1137、1314、1333、

1922、1973、1975、

1976、2133、2144、2465 

Table 2. Optimal band combinations for different salt 

components 

 

4.2 Accuracy Analysis of MLSR 

 

We used the feature band combinations selected by CARS in 

Table 2 as independent variables and input them into the MLSR 

model. The accuracy of the established models and the 

regression equations is shown in Table 3 and Table 4. The 

selected bands provide more concise and useful information, 

effectively avoiding the presence of redundant information that 

could otherwise complicate the analysis. The accuracy of all 

models exceeds 0.865, meeting the requirement for 

high-accuracy salt prediction using fewer bands. In the 

prediction of Na2SO4, the R2 is mostly above 0.9, and the 

RMSE is mostly in the range of 0.0678% - 0.0803%. A higher 

R2 indicates that the model can explain most of the changes in 

the sodium sulfate content. Meanwhile, a lower RMSE indicates 

that the predicted values are relatively close to the true values, 

suggesting good overall prediction accuracy. The SG - NL 

model composed of bands of 550nm, 560nm, 817nm, 1318nm, 

1911nm, 1912nm, 1924nm, 2044nm, and 2349nm has the 

highest accuracy, with a R2 of 0.934 and a RMSE of 0.0678%. 

In the prediction of CaCl2, R2 is in the range of 0.865 - 0.987, 

and RMSE is in the range of 0.0162% - 0.0478%. The model 

composed of bands of 404nm, 428nm, 444nm, 448nm, 812nm, 

1137nm, 1314nm, 1333nm, 1922nm, 1973nm, 1975nm, 

1976nm, 2133nm, 2144nm, and 2465nm has the highest 

accuracy, with a R2 of 0.987 and a RMSE of 0.0162%. 

Considering the prediction results of the two types of salts, the 

SG - NL model has the highest accuracy. This result may be 

attributed to the combination of SG smoothing and NL 

transformation, which reduces the redundant information and 
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noise interference in the data to a certain extent. Among the 

established models, except for the CaCl2 model established by 

SNV, all models show relatively high prediction accuracy, 

providing a new way to solve the problem of predicting the 

content of mixed salts on the surface of murals. 

 

Figure 4 presents the scatter plots of the prediction results for 

Na2SO4 and CaCl2, illustrating the linear relationship between 

predicted and actual values. From the scatter point distribution, 

the points in each plot roughly follow the linear trend line. In 

the low concentration range, the scatter points of most models 

are comparatively closer to the prediction fitting line, the 

distribution of the scatter points is fairly uniform, and the scatter 

points are rather concentrated near the fitting line, indicating 

that the models have relatively accurate predictions in the low 

concentration range. However, at high concentration levels, 

some data points are quite scattered, and the vertical distance 

from the fitting line is considerably far, which implies that the 

prediction performance of the models is average at high 

concentrations. 

 

Nevertheless, despite some limitations at high concentrations, 

these models still provide significant reference value for 

relevant analysis and prediction. Overall, models with different 

processing methods have their own pros and cons in various 

concentration ranges, yet they can collectively offer valuable 

insights for the research. However, in the regression prediction 

of CaCl2, the scatter points of the model processed by SNV are 

relatively more scattered, and the prediction accuracy of this 

model is poor. 

 

Data 

form 

Variable 

number 
Fitting the model equation R2 

RMSE 

(%) 

R 9 
y=-6.63333R377-12.50975R387+26.77414R409+30.88221R423-752.19775R846+698.4999

4R852+48.82401R1309-115.80321R2144+111.35878R2309-1.15971 
0.907 0.0803 

SG 9 
y=37.04454R387-77.15374R867+71.34211R1921+22.64951R1927-14.88896R2080-91.2856

8R2156+62.31931R2257-54.69365R2309+71.31349R2311-3.09089 
0.924 0.0727 

SN

V 
11 

y=-0.71124R367-0.68592R381-0.80713R386+42.72285R870-46.67742R878-23.24119R1918

+41.88082R1928-12.42043R1946-7.86589R1954-7.40115R2092+3.22527R2364-0.742571 
0.916 0.0776 

MS

C 
11 

y=-4.01388R350+10.33110R352-4.17696R353+12.57339R371-15.24410R392+35.05127R44

3-515.38795R2154+668.09748R2158-321.01912R2162+110.03725R2308-168.59557R2366+1

71.06609R2372+24.2078 

0.928 0.0725 

NL 12 

y=-1.97544R392+4.48894R423+4.66277R430+5.71620R436-15.21777R529+5.34497R1161-

174.85140R1920+196.02883R1922-22.51131R1952-517.24834R2086+498.72359R2087+19.4

5448R2308+7.05601 

0.931 0.0709 

SG-

NL 
9 

y=125.80112R550-128.45399R560-20.90049R817+34.84576R1318-329.65981R1911+364.9

9146R1912-25.06175R1924-47.65002R2044+27.575882R2349+5.85827 
0.934 0.0678 

Table 3. Results of the model for the content of sodium sulfate in the simulated mural sample 

 

Data 

form 

Variable 

number 
Fitting the model equation R2 

RMSE 

(%) 

R 10 
y=-4.21595R366+16.74013R409-24.06319R834+23.538889R1325+19.42225R1908+51.637

794R1947-81.54476R1953-26.48231R2133+21.15948R2417+14.21843R2486-0.529364 
0.931 0.0353 

SG 7 
y=19.85252R436-39.88647R810+38.99704R1325+20.07128R1912-33.38406R1974-22.8423

9R2134+30.90901R2453-1.52188 
0.965 0.0246 

SN

V 
6 

y=-0.21346R350+0.424214R390+3.08578R1279+2.43760R1914-2.85930R1975+2.452096R2

423-0.891151 
0.865 0.0478 

MS

C 
8 

y=2.22820R352-12.87180R404+33.32963R444+20.18367R1914+138.01858R1975-178.878

71R1977-51.481209R2151+36.44494R2446+15.2191 
0.956 0.0277 

NL 12 

y=-0.50625R387-0.75472R412+4.52826R448-36.98169R810-134.85333R823+155.99834R8

25+14.97931R1139-27.107986R1905+32.52513R1909+24.56646R1963-38.21632R1971+7.14

051R2422+2.71918 

0.953 0.0297 

SG-

NL 
15 

y=-0.70466R404-4.15010R428+4.49554R444+3.57119R448-17.65851R812+16.03811R1137

-68.14684R1314+70.73591R1333+11.80946R1922+66.19807R1973-367.50506R1975+284.2

3203R1976-33.48425R2133+25.93225R2144+9.249565R2465+2.16246 

0.987 0.0162 

Table 4. Results of the model for the content of calcium chloride in the simulated mural sample 
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Figure 4. Scatter plot of the prediction model for sodium sulfate and calcium chloride in simulated mural 

 

 

5. Discussion 

 

MLSR can effectively predict the respective contents of mixed 

salts in mural simulation samples. A large amount of 

information in hyperspectral data well reflects the information 

of salt content. Through data preprocessing and NL operation, 

the capacity of spectral data to convey meaningful information 

can be effectively enhanced. The characteristic band 

combinations extracted by CARS can effectively represent the 

majority of information contained in hyperspectral data. By this 

way, it circumvents the issues associated with the vast quantity 

of hyperspectral data and the resulting slow modeling efficiency. 

However, a complex non-linear relationship may exist between 

salt concentration and spectral features, making it difficult for 

linear models to accurately describe this relationship. The 

models are extremely sensitive to minor changes in data and 

have poor generalization ability. Therefore, it is necessary to 

continue to explore the non - linear relationship between salt 

concentration and spectral features. 

 

6. Conclusion 

 

We took temple murals in northern China as the research object. 

We prepared simulated mural samples containing varying 

concentrations of Na₂SO₄ and CaCl₂. The spectral data of these 

samples were acquired using an ASD-FieldSpec4HI-RES 

spectrometer. Subsequently, we performed systematic data 

processing on the obtained spectral datasets. Finally, 

comprehensive analyses were conducted based on the processed 
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spectral data. Based on these efforts, the following conclusions 

were obtained: 

 

It is feasible to perform spectral preprocessing using SG 

smoothing, SNV, and MSC. Additionally, introducing the NL 

operation can enhance spectral features. By combining with the 

CARS algorithm to select characteristic bands, we can establish 

a MLSR model. This method can effectively extract spectral 

information related to salt concentration and achieve the 

prediction of mixed salt content. 

 

The SG - NL - MLSR model established based on the spectral 

data processed by SG and NL operation has the best prediction 

ability. When predicting the concentration of Na2SO4, the model 

using a combination of 9 strongly correlated bands (e.g., 550 

nm, 560 nm) achieves an R²  of 0.934 and an RMSE of 

0.0678%. When predicting the content of CaCl2, using a 

combination of 15 strongly correlated bands such as 404nm and 

428nm, R2 is 0.987, and RMSE is 0.0162%. Overall, most 

models exhibit an accuracy above 0.865, with RMSE mostly 

ranging from 0.0162% to 0.0803%, thus enabling 

high-precision salt prediction with fewer bands. 

 

This study provides a new technical idea for the detection of 

mixed salts on the surface of temple murals in northern China 

and is of great significance for the salt detection on the surface 

of real murals. 
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