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Abstract

Ancient buildings are in urgent need of protection due to multiple diseases such as structural crack expansion and painted fading.
Multi-view 3D reconstruction of crowdsource images has been widely used due to its high flexibility and low cost. This study
proposes a multimodal global optimization framework for the protection of ancient buildings to address the low accuracy of
crowdsource image screening and the problems of paired view cumulative error and detail sparsity of the MASt3R method. First, the
EfficientNet is improved based on the CBAM mechanism to improve its screening robustness in low-quality crowdsource images.
Secondly, a cross-reference view block is designed to achieve cross-view geometric prior fusion through a multi-view attention
mechanism. A semantic-guided matching enhancement strategy is further introduced to segment key areas of the building based on
the SAM model to focus on detail reconstruction. Experiments show that this method improves the number of point clouds and
surface density by 23.4% and 25.9% respectively, effectively solving the problems of geometric distortion and weak texture details in

the reconstruction of typical architectural details such as brackets and plaques in traditional methods.

1. Introduction

As a material witness of historical civilization, the digital
protection of ancient buildings has long faced technical
adaptability challenges. Among traditional 3D reconstruction
technologies, although laser scanning can achieve sub-
millimeter accuracy, it is difficult to popularize due to
equipment cost and operation complexity; aerial images are
limited by airspace control and low-altitude resolution, making
it difficult to capture detailed structures such as brackets and
mortise and tenon joints; professional sequence image
reconstruction methods are highly dependent on lighting
conditions and shooting trajectories, and cannot meet the
flexibility requirements of on-site inspections of heritage sites.
In this context, crowd-source imaging technology has gradually
become a research hotspot for the digitization of cultural
heritage with its multi-source heterogeneous data acquisition
capabilities and low-cost advantages, but the inherent quality
heterogeneity and lack of perspective of unstructured data have
led to significant accuracy bottlenecks in existing methods in
the reconstruction of architectural details.

The current research mainly focuses on two dimensions: data
acquisition  optimization and reconstruction algorithm
innovation. At the data level, the dynamic retrieval technology
based on geo-fences achieves accurate recall of building main
body images by fusing multi-source APIs (Cui,2019); the
intelligent screening algorithm builds a quality assessment
system for ancient building images by fusion modeling of deep
features and classic descriptors, such as the improved
YOLOv4(Bochkovskiy, A,2020) model that increases the recall
rate of occluded samples to 81.2% through the DenseNet169
backbone network (Wang,2021). At the reconstruction
algorithm level, in traditional explicit methods, the motion
restoration structure (SfM) realizes disordered image
reconstruction through feature matching and bundling
adjustment, but is limited by repeated texture mismatching, and
topological breaks often occur in high-frequency detail areas

such as glazed tiles; although passive stereo vision methods
(such as SGM-Nets) can handle radiation differences, they place
strict requirements on image resolution and lighting consistency.
The intervention of deep learning technology has opened up a
new path for three-dimensional reconstruction. The PSGN
network based on point cloud generation achieves single-view
coarse-grained reconstruction through an encoder-decoder
architecture, but there are blurred details on complex
components such as brackets; voxel reconstruction methods
(such as 3D-R2N2) use recurrent neural networks to process
multi-view inputs, and their voxel representation method causes
the memory overhead and computational complexity to grow
cubically(Choy,C.B.,2016).Neural radiance ficld (NeRF) breaks
through the geometric constraints of explicit reconstruction
through implicit neural representation(Mildenhall,B.,2021).
Mip-NeRF uses cone projection and integrated position
encoding technology to improve the peak signal-to-noise ratio
of repeated texture areas, but its dependence on dense view
input and the sensor compatibility defects of hash coding make
it difficult to adapt to the heterogeneous characteristics of
Crowd-sourced images (Barron,J.T.,2021) .The recently
proposed DUSt3R method abandons the traditional pose
estimation process and directly constructs a dense three-
dimensional correspondence field between image pairs(Wang,
S.,2024). Its improved version MASt3R achieves sub-pixel
matching  through a  local feature  enhancement
strategy(Duisterhof, B.,2024), but when extended to large-scale
images, it exposes the problem of pairwise matching error
accumulation, resulting in overall structural distortion.

In summary, existing methods face three contradictions in the
reconstruction of ancient buildings: first, although explicit
reconstruction methods (such as COLMAP) are physically
interpretable, they are not adaptable enough to weak texture
areas; second, although implicit neural expressions can depict
complex surfaces, they are difficult to implement in engineering
due to excessive computing resource requirements; third,
although emerging unsupervised methods (such as MASt3R)
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reduce the dependence on camera parameters, the paired
matching paradigm has inherent defects in maintaining
geometric consistency across perspectives. These contradictions
are particularly prominent in ancient building scenes - the
weathering cracks of wooden components require high-
precision reconstruction, and painted patterns also require high
color reproduction. Traditional methods are difficult to meet the
needs of high-precision repair and monitoring. How to break
through the dual bottlenecks of Crowd-sourced image data
optimization and detail reconstruction accuracy has become a
difficult problem that needs to be overcome in the field of
digital heritage protection.

2. Data and Methods
2.1 Introduction to the research area and dataset

This study selected the Temple of Heaven in Beijing as the
research object. This building complex is the largest and most
complete imperial worship building complex in China during
the Ming and Qing dynasties. Its unique circular plane layout,
three-layer eaves and pointed roof structure, and complex
wooden structure system pose challenges to the spatial analysis
and shape restoration capabilities of the three-dimensional
reconstruction algorithm. As a world cultural heritage, the
digital protection of the Temple of Heaven has the dual
significance of cultural inheritance and technological innovation.
The natural aging of its wooden components, the changes in the
microenvironment caused by tourist activities, and the
maintenance of the integrity of the historical style all require
high-precision three-dimensional models to support monitoring
and restoration decisions. Based on text query, this study
obtained a total of 5,000 images of the Temple of Heaven from
Baidu Images and other open network platforms in batches to
form the initial crowd-source image set. The optimal crowd-
source image set after screening and processing by the method
proposed in this paper contains 42 optimal crowd-source images,
covering upward, horizontal and downward perspectives, and
completing the presentation of the geometric shapes around the
Hall of Prayer for Good Harvests, complex structural details,
of tourist perspectives.

Figure 1. Study area (The Temple of Heaven is located in the

Temple of Heaven Park in Dongcheng District, Beijing, China.

Its architectural complex and landscape design have influenced
the sacrificial group paradigm in East Asia. It carries the
comprehensive expression of ancient Chinese philosophy,
astronomy and ritual culture. The digital protection of the

Temple of Heaven has the dual significance of cultural
inheritance and technological innovation).

Figure 2. Schematic diagram of the main body and structural
details of the Temple of Heaven.

2.2 Research methods

2.2.1 Crowd-source image screening method based on
improved EfficientNet

In order to solve the problems of occlusion, blur and fine-
grained feature recognition in the Crowd-sourced image
screening task, this study proposes an EfficientNet model based
on the improved CBAM (Convolutional Block Attention
Module) attention mechanism. The SE module built into the
traditional EfficientNet series model only adjusts the feature
weights through channel attention, which is difficult to deal
with the complex spatial occlusion problem in Crowd-sourced
images. The CBAM module can dynamically enhance the
feature response of key areas by combining channel and spatial
attention mechanisms. This paper proposes to embed CBAM
into the EfficientNet backbone network, and replace the original
SE (Squeeze-and-Excitation) module in EfficientNet with the
CBAM dual attention module to improve the model's ability to
focus on the features of key areas of ancient buildings and the
model's screening robustness in low-quality Crowd-sourced
images.
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Figure 3. Overview of CBAM,The module has two sequential
sub-modules: channel and spatial attention mechanism
modules,,through CBAM to adaptively refine the intermediate
feature maps at each,convolutional block of the deep network.

Channel Attention Module
MaxPool

g i
N o W N 5@ @ Channel Attention
Input feature F

Shared MLP

c

Figure 4. Channel attention module: the channel dimension
remains unchanged and the spatial dimension is compressed.
This module focuses on the meaningful information in the input
image.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-873-2025 | © Author(s) 2025. CC BY 4.0 License. 874



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025
30th CIPA Symposium “Heritage Conservation from Bits:
From Digital Documentation to Data-driven Heritage Conservation”, 25-29 August 2025, Seoul, Republic of Korea

Spatial Attention Module

conv
layer

—>@—>

Channel-refined [MaxPool, AvgPool] Spatial Attention
feature F Mg

Figure 5. Spatial attention module: the spatial dimension
remains unchanged and the channel dimension is compressed.
This module focuses on the location information of the target.

This study firstly used the text query method and the Python
Scrapy framework to crawl 5000 images containing the
keyword "Temple of Heaven" from Baidu Images, Flickr and
other open network platforms (resolution = 1920 X 1080).
Secondly, the images outside the Beijing area were filtered out
by geo-tag filtering, and the data with latitude and longitude

Crowd Source Imaging Preprocessing

380%380
zoom

| Initial Image
Pool (n=5000)

> normalization
process

Sigmoid
activation,
binary
probabilistic
outputs

Two types Global

of fully & average
connected pooling

layers

Output
images

Classification results Image Classification

decision-making projective L&l compression | 8% -«

within the range of (116.413° E, 39.884° N) £ 0.02° were
retained to ensure spatial correlation. Then, the quality of the
above-mentioned retained data was initially screened, and the
image blur index (Laplacian variance < 100) and illumination
uniformity index (standard deviation after histogram
equalization > 50) were calculated using OpenCV, and 2406
low-quality images were eliminated. Finally, the main position
of the Hall of Prayer for Good Harvests in the image was
identified based on the YOLOV9 target detection model, and the
shooting angle was calculated by the perspective projection
matrix. The upward angle was used to capture the details of the
glazed tile brackets; the horizontal angle showed the proportion
of the building facade; the downward angle showed the roof
caisson structure, and the Crowd-sourced images that met the
reconstruction perspective requirements were retained.

In this study, CBAM-EfficientNet is used to screen target
images after removing low-quality images. The specific
implementation process and network structure of this method
are shown in Figure 6.
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Figure 6. EfficientNet ancient building crowd-sourced images screening architecture based on CBAM dual attention mechanism.

Specifically, first, in the channel attention generation stage,
global average pooling and global maximum pooling are

RH}-CW}CE'

performed on the input feature map FE to

1x1xE
generate channel descriptors and Dpax ER . The

channel attention weight M{‘(F) is generated by a two-layer
MLP with shared weights (the hidden layer dimension is

(:‘;"]_5 ), and the formula is:

M(F) = 0 (MLP(Doyy) + MLP (D))
Among them, 7 is the Sigmoid activation function, and the
MLP structure is implemented with reference to the CBAM
standard.

Secondly, in the spatial attention enhancement stage, the

channel-weighted feature map F = M:-(F} Ej' F is
average pooled and max pooled along the channel axis to

Fu.z:g e RH)CWXI

generate two-channel feature maps and

Hx W1
F max € R . After splicing, a 7 X 7 convolution is
o M (F)
performed to generate the spatial attention weight = © .

This design draws on the classic structure of the CBAM spatial
attention module.

M, (F)) = o (Convyr([Faugi Fmasl))

Then, in the feature fusion stage, the channels are multiplied
clement-wise with the spatial attention weights to output the
final enhanced features:
F.r.r: MS {F.-) E}F

(3
Finally, in the residual connection optimization stage, the
original depthwise separable convolution and dilation-
contraction structure of MBConv is retained, and the CBAM
module is inserted after the deep convolution layer and before
the residual connection to ensure that the attention mechanism
acts on the high-order semantic information after feature
extraction.
This study uses EfficientNet-BO as the baseline model and
optimizes the feature extraction capability by embedding the
CBAM dual attention mechanism. The experimental data uses
the Temple of Heaven Crowd-sourced images dataset (5000
images, including 30% occluded samples), and the training set
and test set are divided into 8:2. In the data preprocessing stage,
the geometric distortion of the image is first corrected by the
affine transformation of OpenCV to eliminate the perspective
deformation caused by the difference in shooting angles;
secondly, CLAHE (Contrast-Limited Adaptive Histogram
Equalization) is used to normalize the image illumination to
alleviate the interference of low-light or over-exposed areas on
model training; finally, random horizontal flipping, £ 15°

rotation and Gaussian noise injection (‘& =0.05) are used to
enhance data diversity.

The specific configuration of the experimental environment is
shown in Table 1.The optimizer selects AdamW (initial
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learning rate 3 X 10, weight decay 1X 10#), and the batch size

is set to 32. The loss function uses Focal Loss (¥=2, 7=0.25)
to alleviate the category imbalance problem caused by
occluded samples, and cooperates with cosine annealing
learning rate scheduling and early stopping strategy (patience
value=15) to prevent overfitting. To verify the effectiveness of
this research method, three groups of comparative experiments
were designed, including the baseline model: the original
EfficientNet-BO (only SE module); SE module retention group:

only using channel attention mechanism; spatial attention group:

only using spatial attention mechanism; CBAM group:
embedding channel and spatial attention at the same time. The
ablation experiment results are shown in Table 2.

Configuration .
Ttem Configuration Item
Operating ) ) )
Windows11Home 64-bit (10.0,version 22631)
System
CPU 13th Gen Intel® Cor™ i9-13900HX
Graphics
NVIDIA GeForce RTX 4070 Desktop GPU
Card
RAM 32GB (5600MHz)
Development Python 3.10 + PyTorch 2.1.0
Framework y ’ y o

Table 1.Specific configuration of the experimental environment

Model Accuracy (%) F1 force Parameter quantity (M)  Inference speed (FPS)
EfficientNet-BO (baseline) 92.8 0.908 53 48
EfficientNet + SE 94.3 0.929 5.5 45
EfficientNet + Spatial Att 93.5 0.918 5.6 44
EfficientNet + CBAM 95.1 0.938 5.8 42

Table 2. Ablation experiment results

Some images from the initial crowd-source image set
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Figure 7. Schematic diagram of the crowd-source image optimization process: The initial image set contains original data of ancient
buildings taken from multiple angles, with problems such as perspective distortion, occlusion, uneven lighting, and irrelevant images;
the optimal image set processed by the method proposed in this study has significantly improved resolution and color consistency,
and key components such as brackets and caissons are completely preserved. CBAM-EfficientNet effectively screens out target
images and suppresses problems such as low quality and occlusion interference.

2.2.2 Crowd-source image screening method based on
improved EfficientNet

In order to solve the problem of perspective accumulation error
in traditional multi-view reconstruction methods, this study
constructed a dual-branch feature extraction network. The main
branch uses the improved CBAM-EfficientNet-BO as the
backbone network, and extracts local texture and global
structural features of Crowd-sourced images through multi-

scale feature pyramids (1/4, 1/2, original image resolution); the
auxiliary branch generates geometric prior features based on
polar coordinate transformation, and models the correlation
betweer} ’Ferspectives through the dynamic weight matrix
w e R . The Softmax weight calculation formula is as
follows, where the 1/4 resolution feature map refers to the one
generated by the convolution layer or pooling operation with a
stride of 4, with a large receptive field (covering approximately
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16 X 16 area of the original image), which is used to capture the
overall outline of the ancient building and large-scale
geometric features (such as roof structure); the 1/2 resolution
feature map refers to the one generated by the convolution with
a stride of 2, which balances local details and semantic
information, and is more suitable for the 3D reconstruction of
medium-scale components (such as brackets); the original
image resolution feature map: retains complete spatial details,
focuses on the reconstruction of microscopic features such as
painted textures and cracks, and expands the receptive field
through the dilation convolution (dilation=2) to avoid local
overfitting. The multi-level structure of the feature pyramid
transfers low-level details through a bottom-up path and fuses
high-level semantics through a top-down path, solving the
problem of sparse details caused by single-scale features in the
traditional MASt3R method.

. exp(Wy;)

T Yo (W) 4)
This mechanism can automatically identify high-confidence
perspectives and suppress error propagation from occluded or
low-quality perspectives. In the sparse voxelization stage
(voxel size 0.5m*), hash acceleration retrieval technology is
used to reduce computational complexity, and cross-
perspective features are aggregated through a multi-head
attention mechanism:

T

Attention(Q,K,V) = Softmax

V

Q
Jai) )

Among them, the query vector is generated by the main branch

features, and the key-value vector K,V is derived from the
geometric prior branch, realizing the deep fusion of geometric
and texture features.

2.2.3 Semantic-guided matching enhancement strategy
Based on the segmentation capability of the SAM model, the
key components of the ancient building (dougong, plaque) are
first segmented to generate mask M € 0.1} I . An adaptive
hint generation strategy is adopted: candidate regions are
extracted through SLIC superpixel segmentation, and
positive/negative hint points are screened in combination with
K-means clustering to ensure that the segmentation boundary is
aligned with the building structure. A multi-scale feature
pyramid (void rate 2/4/6) is constructed in the weak texture
area, the receptive field is expanded to 3 times the original
image through dilated convolution, and the channel attention
module is introduced to dynamically adjust the feature weight.
Among them, the dilated convolution parameters are set as
follows: dilated rate 2: sampling at intervals of 1 pixel in the
feature map, the receptive field is expanded to a 3 X 3 area,
which is used for detail enhancement of medium-complexity
areas such as eaves carvings; dilated rate 4: sampling at
intervals of 3 pixels, the receptive field is expanded to 5 X5,
which is suitable for geometric continuity modeling of weak
texture areas such as dougong joints; dilated rate 6: sampling at
intervals of 5 pixels, covering a 7 X 7 area, focusing on solving
the recognition problem of long-range dependent features such
as plaque text, and reducing local noise interference.

H w
! )
* TH xwzzxf b1

i=1 j=1
f::f=cr|[wg '5(W1"'f}]'xf 6)

Among them, gl ) represents the pixel value of position €

on channel {irj } of the input feature map, which is part of the

H 50
DIDIEAT)
foﬂxﬂ';

original feature map ¥ € i=1 j=1 : sum all

spatial positions of channel € to calculate the global feature
sum of the channel; ¥¢ is the global average pooling result of

channel ©, which represents the overall activation strength of
the channel and is used to describe the importance of the

channel. For example, if channel € corresponds to the bracket
area, the larger ¢ is, the more significant the channel is in

representing the bracket feature. Wi € R P is the weight
matrix of the first fully connected layer, where € s the total
number of channels and ¥ is the dimensionality reduction ratio.
This study uses T = 48 to balance computational efficiency and

feature expression capabilities, compresses S¢  from c

dimension to = dimension, and extracts nonlinear relationships
between channels. For example, the brackets and plaques in the
ancient building of the Hall of Prayer for Good Harvests share

some underlying features, and ¥ will learn these associations.

& is a nonlinear activation function that enhances the nonlinear
expression capabilities of the model and helps distinguish the
C

- ildi w, e R™F
features of different building components. ¥z € is the
weight matrix of the second fully connected layer, which

c
restores the feature dimension from * to C, reconstructs the
dependency between channels, and enhances the weight of

detail channels in weak texture areas. & is a sigmoid function
that normalizes the weights to the [0,1] interval to indicate the

e

relative importance of each channel. Xe is the feature map after

channel € weighting. The original feature map K¢ is weighted
channel by channel through the attention weight to strengthen
the important channel features and suppress the noise channel.

2.2.4 3D reconstruction optimization and multimodal fusion
Based on the SAM segmentation results, the vertex confidence

map Veonf and the boundary map Esdgs are generated. After the

candidate vertices are screened by non-maximum suppression,
the Delaunay triangulation is used to generate the topological
connection. In the design of the multimodal loss function, the
geometric accuracy is constrained by the Chamfer distance, and
the sum of the nearest neighbor distances in two directions is
included to avoid unidirectional deviation, where P and Q
. min || x — ylI*
represent two sets of point clouds, and ¥E& is

the square of the Euclidean distance from the calculated point %
to the nearest point in the point set Q. This method minimizes
the sum of the squares of the nearest neighbor distances of the
two sets of point clouds, forcing the predicted point cloud to
align with the real point cloud in spatial distribution, thereby
solving the geometric distortion problem (such as bracket
deformation) in the three-dimensional reconstruction of ancient
buildings.
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£ =Zmin x— 2-I—Zmin x —ylI?
chamfer veQ |I }’|| P |I }’||

XEP yeQ D
And the Dice coefficient enhances semantic consistency:
oMo
T M M
pred gt (8
M

Among them, * pred and ME‘: are the predicted mask and the
real mask, both of which are binary matrices (0/1), indicating
whether the pixel belongs to the target area (such as brackets,

plaques and other detailed components). |I."'IP1'~‘H=1 n Mgt is
the number of intersection pixels between the predicted and

Z Mpcred (Lj) - Mgt{_i,j ))

real masks. i is calculated by

element-by-element multiplication and summation. |MP1'Ed|

and |M.Et| are the pixel overviews of the predicted and real
masks (i.e., the number of foreground pixels). This part first
adopts semantic consistency constraints to maximize the
overlap ratio of the predicted and real masks to ensure that the
segmentation results are consistent with the true values in
shape and position. Then, class balance optimization is
performed to alleviate the class imbalance problem caused by
the small proportion of the target area in the ancient building
image through normalization. In summary, the Chamfer
distance focuses on geometric accuracy and constrains the
distribution of point clouds in three-dimensional space; the
Dice coefficient emphasizes semantic consistency and ensures
the correctness of the local structure of the segmentation mask.

The two complement each other to improve the reconstruction
effect of the model on the details of complex ancient buildings.

3. Results and Analysis

To verify the effectiveness of this method, this study used
Python 3.10 programming language to verify it. The specific
experimental environment configuration is shown in Table 1
above. The point cloud model quality evaluation system is
constructed based on the number of point clouds, surface
density, volume density and SOR outlier rejection rate. The
point cloud number index verifies the improvement of the
structural coverage integrity of the cross-reference view block,
the surface density index quantifies the reconstruction accuracy
of the semantic guided matching strategy for weak texture
details such as brackets, and the volume density index verifies
the optimization effect of sparse voxelization on three-
dimensional space continuity. The SOR outlier rejection rate
index enhances the reconstruction credibility by inverting the
SAM segmentation mask through the noise suppression rate.
The four indicators work together to verify the comprehensive
performance improvement of the global optimization
mechanism in the reconstruction of complex structures of
ancient buildings. In addition, this study also quantitatively
verified the effectiveness of the method through ablation
experiments. Experimental group A uses the MASt3R standard
model as the benchmark and relies only on paired view
matching; experimental group B is group A + cross-reference
view blocks (cross-view geometric prior fusion); experimental
group C is group B + SAM semantic enhancement (key area
segmentation and matching focus); experimental group D is
group C + multimodal loss function (Chamfer distance and
Dice coefficient joint optimization). The quantitative
comparison of experimental results is shown in Table 3.

Experimental groups Number of point

Surface density

Volume density SOR outlier removal rate

clouds (x10°) (Points/m?) (Points/m?)
Experimental Group A 2.01 17,971 199,375 9.85%
Experimental Group B 2.19 18,996 214,651 9.11%
Experimental Group C 232 20,114 229,893 8.76%
2.48 22,632 241,096 8.14%

Experimental Group D

Table 3. Quantitative comparison of experimental results

Experimental data show that the multimodal global
optimization framework proposed in this paper significantly
improves the efficiency and accuracy of 3D reconstruction of
ancient buildings. Compared with the MASt3R benchmark
model, the introduction of cross-reference view blocks
increases the number of point clouds by 8.9%, verifying that
multi-view geometric prior fusion significantly enhances the
coverage integrity of large-scale structures by reducing
cumulative matching errors. Further superimposing the SAM
semantic enhancement module, the surface density is increased
from 17,971 points/m > to 20,114 points/m > (+11.9%),
verifying the dual role of the semantic-guided matching
strategy: focusing computing resources through the
segmentation masks of ancient building components (such as
brackets and plaques) generated by SAM, breaking through the
matching bottleneck of traditional SIFT features in weak

texture areas, while suppressing redundant sampling in non-
critical areas. Finally, a multimodal loss function was used to
achieve global optimization, and the volume density reached
241,096 points/m* (an increase of 20.9% over experimental
group A), proving that the joint optimization of Chamfer
distance and Dice coefficient effectively balances geometric
accuracy and semantic consistency: the former constrains the
global point cloud distribution pattern, and the latter optimizes
the topological continuity of complex structures such as
brackets through semantic category intersection and union
optimization. At the same time, the SOR outlier rejection rate
gradually decreased from 9.85% in experimental group A to
8.14% in experimental group D, indicating that semantic
segmentation masks and multimodal constraints effectively
suppressed occlusion and noise. The overall model and detailed
reconstruction of the plaque of experimental groups A, B, C,
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and D are shown in Figure 8. The comparison of detailed Gaussian distribution of surface density and volume density is
components and painted patterns with the real objects before shown in Figure 10.
and after this research method is shown in Figure 9, and the

(e) Reconstruction effect (f) Reconstruction effect (g) Reconstruction effect (h) Reconstruction effect
of detailed components of of detailed components of of detailed components of of detailed components of
model plaque in group A model plaque in group B model plaque in group C model plaque in group D

Figure 8. (a)-(d) are the overall reconstruction effects of the A-D models of the experimental groups, and (e)-(h) are the locally

enlarged views of the reconstruction effects of the key components of the corresponding experimental groups, which intuitively

present the progressive improvement effect of optimization strategies such as cross-perspective geometric fusion and semantic
enhancement on the reconstruction quality of the detailed features of ancient buildings.

(a) The overall effect of (b) The reconstruction (d) The reconstruction (e) The overall effect of

the model before this effect of detailed (c) Real-life images effect of detailed the model after this
research method components before this components after this research method
(experimental group A) method was used method (experimental group D)

Figure 9. (a) Overall effect of the model A in the experimental group, (b) corresponding reconstruction effect of the detailed
components; (c) real scene image reference; (e) Overall effect of the model D in the experimental group, (d) Reconstruction effect of
the optimized detailed components. The overall comparison of (a)/(¢) and the local comparison of (b)/(d) verify the effect of this
method on improving the geometric integrity and detailed features of the ancient building model.

Comparison of Gaussian distribution of surface density and volume density of the point cloud model reconstructed before and after the
improved method proposed in this paper

Gauss:mean =17971.396152 / std.dev = 5218.241523 Gaussimean =22632.441985 / std.dev = 7919.468357 Gauss:mean =199375.299637 / std.dev = 51268498374 Gauss:mean =241096.315983 / std.dev = 59763441687
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Figure 10. Comparison of Gaussian distribution of surface density and volume density of point cloud model before and after the
implementation of the improved method.
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4. Conclusion

In this study, a global optimization framework integrating
cross-view geometric prior and semantic enhancement is
proposed to solve the problems of view error accumulation and
weak texture detail loss in the 3D reconstruction of ancient
buildings from Crowd-sourced images. Through the
collaborative optimization of the improved CBAM-
EfficientNet screening model, the multi-view attention
mechanism and the SAM semantic guidance strategy, the
experimental results show that the proposed method
significantly improves the reconstruction integrity and detail
restoration ability of the 3D model in the reconstruction task of
the Hall of Prayer for Good Harvests in the Temple of Heaven.
The experimental results show that the cross-reference view
block effectively suppresses the error propagation of pairwise
matching in the MASt3R method by integrating polar
coordinate geometric prior and multi-scale feature pyramid,
which increases the number of point clouds of the
reconstruction model of the Hall of Prayer for Good Harvests
in the Temple of Heaven by 23.4% compared with the baseline
method, verifying its core role in cross-view geometric
consistency modeling. The SAM semantic enhancement
strategy focuses on key areas such as brackets and plaques by
segmenting the mask to guide the matching algorithm,
achieving a 25.9% increase in surface density in the
reconstruction of weak texture details, solving the failure
problem of traditional SIFT features in matching repetitive
wooden components. The joint optimization mechanism of the
multimodal loss function balances the constraints of geometric
accuracy and semantic consistency, significantly reducing the
interference of outliers while ensuring the integrity of the
spatial distribution of the point cloud. This method provides a
high-precision, low-cost solution for the health monitoring and
repair of ancient architectural heritage. The limitations of the
current research are mainly concentrated on the optimization of
computational efficiency during the reconstruction of large-
scale building complexes and the maintenance of color
consistency under dynamic lighting conditions. Future work
will focus on exploring lightweight network architecture design
and incremental optimization strategies to further improve the
practicality and generalization ability of the method in complex
scenarios, and provide more efficient technical solutions for the
sustainable protection of cultural heritage.
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