The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-9-2025
30th CIPA Symposium “Heritage Conservation from Bits:
From Digital Documentation to Data-driven Heritage Conservation”, 25—29 August 2025, Seoul, Republic of Korea

Nation Scale NeRF Reconstruction

Alexander Mail, Scott McAv0y1’3, Jonathan Klingsponl, Davide Forcellini2, Falko Kuester!

! Cultural Heritage Engineering Initiative, University of California San Diego - (atm008, smcavoy, jklingspo, fkuester) @ucsd.edu
2 University of the Republic of San Marino — davide.forcellini @ unirsm.sm
3 OpenHeritage3D.org - (smcavoy @oh3d.org)

Keywords: NeRF, Al Reconstruction, Multi-Cam Photogrammetry, Data-fusion

Abstract

Neural Radiance Field (NeRF) rendering methodologies provide 3D reconstructions which better represent features and character-
istics common to built heritage, which are otherwise poorly represented by traditional structure from motion reconstruction and
rendering techniques. It is currently limited in its ability to scale to large projects. This paper, through a case study involving large
scale seismic vulnerability surveys in San Marino, investigates and proposes systems which can extend NERF rendering to large

multiscalar datasets linked by geographic coordinates.

1. Introduction

The creation of photorealistic, navigable digital replicas of the
real world is a long-standing goal in computer graphics and vis-
ion. Such digital twins have profound applications, ranging from
cultural heritage preservation and urban planning to providing
training grounds for autonomous systems and creating immers-
ive content for virtual and augmented reality. Achieving this
level of realism has historically been challenging, often requir-
ing complex manual modeling to account for the shortcomings
of traditional photogrammetric reconstruction. The introduc-
tion of Neural Radiance Fields (NeRFs) marked a paradigm
shift in this domain, offering a new method for synthesizing
photorealistic novel views from a collection of input images.

A NeRF represents a continuous, three-dimensional scene as
a lightweight neural network. This network acts as a function
that maps a 3D spatial coordinate (x,y,z) and a 2D viewing
direction (0, ¢) to the color and volume density at that point.
By querying this network along camera rays and using classical
volume rendering techniques, NeRF can generate highly realistic
images from previously unseen viewpoints. This approach ex-
cels at capturing complex geometric details and view-dependent
effects like reflections and translucency with unprecedented fi-
delity. Practically speaking, within in the built environment,
features like windows, wires, pipes, flat mono-color walls, and
thin metal structures are better represented through NeRF.

Despite their quality, the original NeRF models were hindered
by slow training and rendering times, limiting their practical
use. This spurred a wave of research aimed at accelerating the
paradigm, leading to a new class of methods that combine neural
representations with explicit geometric primitives. These tech-
niques, which can render scenes in real-time, have become the
new state-of-the-art. This paper rigorously evaluates these ad-
vanced methodologies through a comprehensive digital recon-
struction of the entire nation-state of San Marino. Unlike previ-
ous studies that often focused on smaller, object-centric scenes,
our evaluation leverages a massive, high-quality dataset to test
the limits of these methods on a national scale (Martin-Brualla et
al., 2021). Specifically, we investigate cutting-edge techniques
including 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), its
Markov Chain Monte Carlo variant (3DGS-MCMC) (Kherad-

mand et al., 2024), EVER (Mai et al., 2024), Deformable Beta
Splatting (DBS) (Liu et al., 2025), and SVRaster (Sun et al.,
2024). The goal is to identify the scalability, robustness, and
failure points of these reconstruction methods, thereby con-
tributing valuable insights into the future of large-scale digital
twinning and heritage preservation.

The Republic of San Marino is a 61 square kilometer nation-
state, and the fifth smallest country in the world. Though relat-
ively small, it represents a sufficient scale, density, and variety
of topographies and urban plans upon which we can plan sys-
tems of unlimited scalability. San Marino’s entire city center
and market town of Borgo are designated as UNESCO world
heritage sites, and are “at risk” due to seismological threats
(Forcellini 2016). This nation presents unique challenges and
opportunities for 3D documentation and visualization due to its
densely packed vertical architecture and complex topography.
Medieval buildings are stacked up on a steep slope, with some
of the most important heritage sites perched precariously on a
sheer cliffside (figures 1 and 2). Tight streets, in the city cen-
ter, create challenging subjects for mapping, as the upper floors
of buildings must be viewed from steep upwards angles (figure
3). Though currently limited in metrological applications, Nerf
rendering offers an attractive means to visualize heritage struc-
tures. Both built and natural heritage contains features which
do not reconstruct accurately within traditional mesh, point, and
depth-map based structure from motion (SFM) pipelines. Re-
flective features like windows and water surfaces, featureless
surfaces like clean plaster walls, and thin features like iron rods,
power lines, vegetation etc. . . are often represented as globular
deformed masses.

2. Relevant Work

The digital documentation of cultural heritage has traditionally
relied on well-established photogrammetry pipelines, such as
Structure-from-Motion (SfM) combined with Multi-View Ste-
reo (MVS). These methods are valued for their high geometric
accuracy (Schonberger and Frahm, 2016). However, they often
struggle to produce faithful reconstructions of sites with chal-
lenging materials, such as reflective, translucent, or texture-less
surfaces, which are common in heritage artifacts and architec-
ture (Remondino et al., 2023).
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The introduction of Neural Radiance Fields (NeRF) marked a
significant shift, offering a new paradigm for creating photoreal-
istic visualizations from image collections. A growing body of
research has conducted direct comparisons between NeRF and
traditional photogrammetry for heritage documentation (Clini
et al., 2024). Previous studies have found that NeRF-based
methods excel at capturing the visual appearance of challenging
materials and can often produce more complete and visually
coherent models, especially when dealing with a limited num-
ber of input images or lower-resolution data. However, this
visual fidelity often comes at the cost of geometric precision,
with NeRF-derived models typically exhibiting more noise and
lower accuracy compared to the outputs of mature photogram-
metric pipelines (Clini et al., 2024).

As research progressed beyond single objects to large-scale
environments, methods were developed to handle expansive
scenes, such as dividing a large area into manageable sections
for reconstruction (Tancik et al., 2022). However, the most
significant recent development for the heritage field has been
the introduction of 3D Gaussian Splatting (3DGS) (Kerbl et
al., 2023). 3DGS was the first rasterization based NeRF to
achieve high quality. Rather than iterating over pixels, tra-
cing through the 3D scene, 3DGS iterates over the 3D splats,
projecting them onto the screen. Several recent comparative
studies focusing specifically on heritage sites have evaluated
NeRF against 3DGS. A clear consensus from this research is
that 3DGS offers a dramatic advantage in efficiency, with sig-
nificantly faster training and real-time rendering speeds (Atik,
2025). Furthermore, studies show that 3DGS often produces
reconstructions with less noise, sharper details, and superior
texture quality compared to NeRF (Clini et al., 2024).

While both NeRF and 3DGS represent a major leap forward
for the visualization of cultural heritage, a critical conclusion
from the comparative literature is that neither technology has
yet achieved the level of geometric accuracy required for met-
rological documentation (Clini et al., 2024). For applications
demanding precise measurements, traditional photogrammetry
remains the more reliable method. Therefore, current research
suggests that neural rendering techniques like NeRF and 3DGS
are best seen as powerful complementary tools for visualiza-
tion, virtual tourism, and capturing the aesthetic qualities of
a site, rather than as a complete replacement for established
high-accuracy survey methods (Mazzacca et al., 2023).

3. The Data

Our datasets, collected by expert operators for the purpose of
multi-scale seismological studies, includes objects sourced from
a comprehensive 9 year survey project (Lo et al., 2023). The
multi-modal dataset incorporates satellite stereo imagery, drone
surveys, over 1000 terrestrial LiDAR scans with correspond-
ing high dynamic range (HDR) image spheres, and hundreds
of thousands of images from 33mp cameras and a specialized
multicam (Meyer et al., 2020). It comprises a 360-degree pan-
oramic dataset capturing the distinctive topographical layout of
San Marino, situated atop Mount Titano, complemented by ex-
tensive detailed street-level and interior building data for key
monumental structures. This controlled, high-quality dataset
enables comprehensive testing and detailed characterization of
reconstruction performance under realistic yet optimal condi-
tions, and enables a comparative analysis across scales, data
modalities, and various other conditions impacting reconstruc-
tion and rendering from optical data sources.

The majority of our data is made available to the public through
an open-data repository specifically designed for the re-use of
3d data (McAvoy et al., 2023), including both traditional outputs
suitable for metrological study, as well as pre-packaged images
and alignment derivatives enabling Nerf reconstruction through
external rendering pipelines (McAvoy et al., 2024). In this way,
we empower other scholars to reproduce and extend our results.

Street level imagery is provided through the Loog, a multi-cam
photogrammetry mobile mapping system. The dataset includes
27,000 geolocated images, or 6750 image multicam image sets,
captured in 9 surveys performed at various times of day over a
4 day period (McAvoy et al., 2025).

4. Method
4.1 Method Comparison

Table 1 provides a comparative analysis of the various state-of-
the-art real-time radiance field techniques. These methods are
differentiated by their choice of geometric primitive, appearance
representation, and core training heuristics.

A primary distinction lies in the densification strategy used dur-
ing training. 3D Gaussian Splatting (3DGS), EVER, and SV-
Raster employ a gradient-based approach, accumulating loss to
guide the addition of new primitives in regions of high error. In
contrast, 3DGS-MCMC and Deformable Beta-Splatting (DBS)
utilize a probabilistic MCMC-based method to propose the ad-
dition or removal of primitives. This treats densification as a
sampling problem rather than a direct response to error, leading
to a different evolution of the scene representation.

The rendering pipelines are also a key factor. 3DGS, 3DGS-
MCMC, DBS, and SVRaster are all fundamentally rasterization-
based, using a forward splatting process to project primitives
onto the screen. In fact, 3DGS and 3DGS-MCMC share the
exact same rendering code. DBS and SVRaster use similar
pipelines, adapted for their specific primitives (beta kernels and
voxels, respectively). This shared approach contrasts sharply
with EVER, which is a ray-traced method that casts rays to
sample its ellipsoidal primitives, a more computationally in-
tensive process.

Regarding appearance, most methods use standard Spherical
Harmonics (SH) to model view-dependent effects. DBS is an
exception, employing a custom spherical representation that can
capture higher-frequency lighting details than typical low-order
SH, though it operates under an assumption of sparsity.

These design choices directly impact performance. The ras-
terization based methods are significantly faster. DBS leads
with the highest rendering speed (138 FPS) and fastest training
(10 minutes), owing to its efficient beta kernels and MCMC
strategy. Since 3DGS and 3DGS-MCMC use identical render-
ers, the performance difference (131 vs 93 FPS) can be attributed
entirely to the scene representation produced by their respective
densification strategies; the MCMC-generated scenes are inher-
ently more complex to render. SVRaster’s high performance
(121 FPS) is also explained by its efficient voxel rasterization
pipeline. Finally, EVER’s reliance on ray tracing explains its
comparatively lower framerate (20 FPS) and the longest training
time (90 minutes).

We finally included one additional method: Hierarchical 3DGS.
This method builds on 3DGS, but adds correct anti-aliasing of
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Feature 3DGS 3DGS-MCMC EVER DBS SVRaster | Hier 3DGS
Loss Accumulation X X
MCMC X X X X
Sharp Primitives X X X
Spherical Harmonics X
Volume Rendering X X X X
Primitive Gaussian Gaussian Ellipsoid | Beta Kernel Voxel Gaussian
Training Speed 16m 16m 90m 10m 30m 336m
FPS 131 93 20 138 121 ~ 30
Depth Regularizer X X X X X
Chunking X X X X X
LODs X X X X X

Table 1. FPS taken from (Sun et al., 2024) and (Liu et al., 2025). Rescaled to represent performance on a NVIDIA RTX3090.
Training numbers represent speed on an NVIDIA RTX4090.

primitives, depth supervision using Depth Anywhere V2 (Yang
et al., 2024), levels of detail (LODs), and hierarchical recon-
struction, which are all aimed at improving it’s handling of large
datasets. The combination of chunking and LODs enable it to
handle far more primitives, while also improving densification.
Depth supervision helps on more challenging datasets. For the
San Marino streets dataset, pre-processing steps took 2 hours,
with an additional 5.6 hours of training.

4.2 Tuning

The adaptation of radiance field methods to large, complex
datasets necessitates tuning of the training and densification
schedule. For Gaussian-based methods like 3DGS and 3DGS-
MCMC, a more conservative densification strategy is crucial.
On large scenes, aggressive and early densification can lead to
a premature and excessive proliferation and pruning of Gaus-
sians, especially if pruning takes place before every image
has been seen. By delaying the start of densification (e.g.,
--densify_from_iter 8000),increasing theinterval between
densification steps
(--densification_interval 1000), and concluding the pro-

cess well before training ends (--densify_until_iter 30000),

the model is encouraged to first optimize the positions and prop-
erties of existing primitives. This slower schedule, combined
with a lower spherical harmonic degree (--sh_degree 1), en-
sures more stable training and better resource management over
a higher total number of iterations (--iterations 60000).

For voxel-based methods such as SVRaster, we accomplish sim-
ilar objectives with the following parameters: sche_mult: 3,
adapt_from: 3000, prune_from: 3000). Since it also of-
fers options to delay regularization, we delay those to prevent
them from penalizing the model too harshly during the initial
learning phase (dist_from: 3000, tv_from: 3000).

‘We did not tune Hierarchical 3DGS, as it was designed to handle
large scenes.

4.3 Maetrics

Our two datasets do not have a consistent exposure and white
balance, which is known to make evaluation difficult. Part of
the problem is that the multicam strips the metadata from the
images, leaving no information about what these exposure and
white balance values were.

GLO vectors (Duckworth et al., 2024) and Bilateral Grids (Wang
et al., 2024b) are typical solutions to this problem. However,
GLO vectors are not agnostic to the rendering method and the ap-
plication of GLO vectors to a primitive based rendering scheme
is hacky. We tried Bilateral Grids, but they do not scale well
in the number of images in the dataset, bringing training times
from minutes to days.

As a result, we used no mitigation strategy, in the same vein
as the standard evaluation of Tanks and Temples (Knapitsch
et al., 2017). The lack of metadata meant that any mitigation
strategy would prevent evaluation. Instead, we relied on the
invariance of the test metrics to white balance and exposure, as
both LPIPs (Zhang et al., 2018) and SSIM (Wang et al., 2004)
have some resilience against these problems.

5. Results

The images were split into train and test portions by selecting
every 8th image for the test set. The results in the Table 2
represent the metrics measured on the test set, after training
the model on the training set. It is important to remember that
Hierarchical 3DGS is in a whole other category of method, as
it uses extremely powerful depth regularizers and chunking to
help handle the larger scene.

Let’s first talk about the qualitative results for the San Marino
streets dataset. The only method that was able to reconstruct
a result that resembles the ground truth was EVER. 3DGS,
3DGS-MCMC, Hier-3DGS, and SVRaster all produce results
that capture a few details of the original dataset. DBS, however,
completely failed to capture any aspects of the original data-
set. This shows that the MCMC densification strategy, although
highly successful for the Mip-NeRF360 datasets, does not seem
to be robust. Interestingly, Hierarchical 3DGS actually appears
to be less robust than the original 3DGS. As seen in Fig. 2,
when Hierarchical 3DGS manages to converge on an area, it has
the potential to get the best results. However, it also failed to
reconstruct many chunks.

Quantitative results show how untrustworthy PSNR can be. To
the human eye, the fact that the structure of the images recon-
structed by EVER resembles the ground truth outweighs the
inaccuracies in the coloration. However, to PSNR, the reverse
is true. This is not really a surprising result, as this is the main
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Figure 1. Qualitative comparison on San Marino datasets. Images from test set shown. Top three rows: street level reconstruction of
San Marino using multicam setup (Meyer et al., 2020). Bottom three rows: aerial reconstruction using DJI drone.

reason datasets with varying exposure make for difficult evalu-
ation. However, LPIPs and SSIM both retrieve an ordering more
in line with the perception of the human eye. This indicates that
it might be possible to evaluate methods on imperfect datasets,
as long as LPIPs and SSIM are the focus, instead of PSNR.

The San Marino aerial dataset reconstruction was more success-
ful, with all methods retrieving a decent result. What is notable
is the black artifacts in EVER, caused by early termination of
the rays, and the blurriness of the distant objects from 3DGS.
The results on the San Marino aerial dataset demonstrate the
results from 3DGS with correct antialiasing, which was not in
the 3DGS or 3DGS-MCMC results. As can be seen in the qual-
itative evaluation, this results in improved detail on the roof of
some buildings on the 6th row. EVER, however, seem to achieve

the sharpest results. Even with the black artifacts, it achieves
very high rankings on the perceptual metrics.

These datasets show a stark contrast to the standard Mip-NeRF360
(Barron et al., 2022) evaluation. The Mip-NeRF360 dataset was
originally designed to demonstrate the test the capabilities of
early view synthesis work. Now that methods have grown more
capable, it seems likely that this dataset is no longer sufficient
for testing how well these NeRFs will work in the wild. The
Mip-NeRF 360 dataset does not have a large variety of different
capture approaches. All were taken with a consumer camera
from multiple angles. The San Marino Aerial capture is most
similar to this, which explains why it worked reasonably well.
However, the San Marino Streets capture, being taken from a
multicam carried at the same height, is starkly different. This
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Figure 2. Qualitative results on the train set of images to help illustrate the main challenges with large scale captures. Row one:
Moving object, like the car. Row two: resolution problems, often solved with LODs or chunking. Row three: mediocre capture. Poor
capture of the floor leaks upwards, degrading the building reconstruction. Row four: exposure change. Dark part of image that auto
exposure targets highlighted.
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San Marino Street
3DGS 3DGS-MCMC EVER DBS  SVRaster Hier-3DGS
PSNR 1 19.57 18.73 1842  14.71 18.17 14.9
SSIM 1 .501 491 522 453 474 0.4325
LPIPS C | 710 716 633 790 700 0.67696
LPIPS | 666 666 .605 725 676 0.63449
San Marino Aerial
3DGS 3DGS-MCMC EVER DBS SVRaster Hier-3DGS
PSNR 1 22.78 2256  19.19 = 24.40 22.87 21.61804
SSIM 1 702 724 730 774 742 0.7096
LPIPS C | 402 377 280 310 282 0.33927
LPIPS | 363 335 259 273 259 0.30969
Mip-NeRF 360
3DGS 3DGS-MCMC EVER DBS SVRaster Hier-3DGS
PSNR 1 27.45 28.08 27.51 28757 27.33% -
SSIM 1 815 .837 825  0.8457 0.822F -
LPIPS C | 257 177 233 0.2197 -
LPIPS | 216 179 194 0.1797 -

Table 2. Quantitative result. Results with | were taken from their original papers. Others were recalculated. LPIPs (C) is the corrected
LPIPs (input in [—1, 1]). Result ordering from best to worst goes red, orange, yellow. Arrow next to metric indicates whether higher or
lower is better.

explains why most of the methods failed on this dataset.
5.1 Dataset Discussion

The limitations of current radiance field methods are most ap-
parent when they are deployed on in-the-wild data that deviates
from idealized capture conditions. The San Marino datasets,
particularly the “Streets” capture, serve as a critical test case,
revealing fundamental weaknesses that standard benchmarks
like Mip-NeRF360 fail to expose.

The primary challenge in the ”Streets” dataset stems from its
capture methodology: a multi-camera rig held at a near-constant
height with a predominantly forward-facing trajectory. This mo-
tion creates a geometrically degenerate scenario, especially for
the ground plane. Without significant changes in camera elev-
ation, the parallax required to triangulate points on the ground
is minimal to non-existent. This lack of geometric constraint
is catastrophic for most NeRF-based methods. This problem
highlights a philosophical divide between classical Structure-
from-Motion (SfM) and modern neural radiance fields. In an
StM pipeline, features that cannot be robustly triangulated from
multiple viewpoints are simply filtered out and excluded from
the sparse reconstruction. Ambiguity leads to data rejection.
NeRFs, by contrast, are optimized to explain every pixel from
every given camera pose. When faced with geometric ambi-
guity, the optimization does not filter the region; it often “ex-
plodes,” leading to the cloudy, detached “floater” artifacts seen
in the 3DGS and DBS results. This can be seen in the last row
of Fig. 2.

Furthermore, SfM is inherently more robust to the variable light-
ing conditions and exposure differences present in these data-
sets. Its reliance on lighting-invariant feature descriptors, such
as SIFT (Lowe, 2004), allows it to establish a sparse geometric
scaffold even with strong shadows or changes in exposure. The
third row of Fig. 2 shows an images with particularly severe

exposure difference. The white color needs to come from some-
where, so the model adds a white primitive to the scene that
shouldn’t be there. While recent work has explored integrating
Bayesian filtering and uncertainty estimation into radiance fields
to discard these “floater” artifacts (Goli et al., 2024), such tech-
niques are not yet a standard component of mainstream methods.
The stark failure of most methods on the ”Streets” dataset under-
scores the need for NeRFs to incorporate more of the geometric
rigor and filtering mechanisms that have long been central to
classical 3D vision.

5.2 NeRF with Imperfect Data

The nature of large scale multi-scalar mapping is working with
imperfect data. It often requires integrating multiple, disparate
capture sessions. This process introduces a host of real-world
problems that push current methods beyond their limits. During
the capture of the San Marino aerial dataset, for instance, the
drone’s battery life necessitated multiple flights. Between these
sessions, the weather changed, altering the global illumination
of the entire scene. Another simple problem: many things can’t
handle different image sizes. Regularizers that could be helpful
in dealing with these variations, like MAST3R (Leroy et al.,
2024) (Wang et al., 2024a), only accepts image pairs with the
same image size.

Current solutions for photometric variation, such as GLO vec-
tors (Duckworth et al., 2024) or Bilateral Grids (Wang et al.,
2024b), are insufficient for this task. These methods are de-
signed to model discrepancies in camera hardware (e.g., ex-
posure, white balance), assuming an otherwise static scene. A
change in weather, however, is a dynamic change to the scene
itself, fundamentally altering how light interacts with every sur-
face. It is less a camera property and more akin to a massive,
transient object that cannot be modeled with a simple per-image
latent code.
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6. Conclusion

This work evaluated current state-of-the-art radiance field meth-
ods on challenging real-world datasets, giving insights into their
robustness, failure modes, and the limitations of standard evalu-
ation benchmarks. Our findings demonstrate that while methods
have matured on idealized datasets like Mip-NeRF360, signific-
ant challenges remain for their practical deployment in uncon-
trolled environments.

Our most important finding is that there can be massive gaps in
performance between NeRF methods for challenging datasets.
Trajectories with low parallax, such as the ground-level street
capture, cause issues for all NeRF methods, but these issues are
not simply a matter of fixing the capture. The relative success
of EVER shows that it is possible to improve NeRF methods
to handle problematic trajectories. The failure of Hierarchical
3DGS also could also potentially be mitigated by using a more
robust approach, like EVER, as the backbone rendering method.

Based on our analysis, we offer the following recommendations.
For captures that are sparse, large-scale, or feature challenging,
non-ideal camera trajectories, EVER is the most suitable choice.
Despite its high computational cost and susceptibility to ray
termination artifacts, its underlying representation is uniquely
capable of preserving structural coherence where other methods
fail. For more conventional captures where performance and
detail are the priority, SVRaster presents the best balance. It
delivers sharp results at interactive frame rates, outperforming
the original 3DGS by mitigating the blurriness on distant objects.

7. Future Work

NeRF does not seem quite ready for field work. Further invest-
igation into different ways to accomplish view synthesis could
result in improved robustness, which is necessary for field data
that is often quite messy.

Another path could lie in utilizing generative models to ho-
mogenize data. Recent work has shown that generative video
models can be used to create the data necessary to train a
model to “align” data to a specific time, removing the affect
of weather (Trevithick et al., 2025). However, this work is still
in it’s early stages, and any kind of learning based model can
cause problems when the input data is out of distribution.

This new frontier of mapping with imperfect, multi-session data
requires its own benchmarks and evaluation protocols. It is
inevitable that real-world data will be photometrically and geo-
metrically inconsistent. Yet, as our results indicate, we should
not let the perfect be the enemy of the good. Our findings
show that perceptual metrics like LPIPS and SSIM are robust
enough to guide meaningful progress, even in the face of these
challenges. For now, they provide a reliable signal to iterate on
methods that can withstand the rigors of real-world data.
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