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ABSTRACT: 

 

This paper presents a novel family of rigorous and flexible mathematical self-calibration additional parameters (APs) for airborne 

camera calibration. It is pointed out, that photogrammetric self-calibration can – to a very large extent – be considered as a function 

approximation problem in mathematics. Based on the mathematical approximation theory, we suggest that Fourier series 

(trigonometric polynomials) be the optimal mathematical basis functions for camera self-calibration. The whole family of so-called 

Fourier Self-calibration APs is developed, whose solid theoretical foundations are Laplace Equation and Fourier Theorem. The 

Fourier APs are mathematically rigorous, orthogonal, flexible, generic and efficient for calibrating the image distortion of frame-

format airborne cameras. We show the theoretical and practical advantages of Fourier APs over the popular polynomial APs and 

physical APs. The good performance of Fourier APs is illustrated in the many practical tests on camera system calibration, including 

the DMC, DMCII, UltracamX, UltracamXp, DigiCAM cameras. 

 

 

1. INTRODUCTION 

Camera calibration is an essential subject in photogrammetry 

and computer vision. Self-calibration by using additional 

parameters (APs) has been widely accepted and substantially 

utilized as an efficient calibration technique in the 

photogrammetric society since 1970s. Many studies were 

investigated on self-calibration APs in the last decades. 

Traditionally, two types of self-calibration APs were developed 

for analogue single-head camera calibration: physical and 

mathematical. The development of physical APs was mainly 

attributed to D. C. Brown (Brown, 1971) for close-range camera 

calibration and these APs were later extended by attaching 

additional polynomials for aerial application (Brown, 1976). El-

Hakim & Faig (1977) proposed the mathematical APs by using 

spherical harmonics. Ebner (1976) and Grün (1978) built the 

second and fourth order algebraic polynomial APs, respectively. 

These early works showed the remarkable significance of self-

calibration APs in camera calibration and orientation, while the 

concerns have been raised as well on overparameterization and 

high correlations (Kilpelä, 1981; Clarke & Fryer, 1998). The 

popular polynomial APs were often criticized as “have no 

foundations based on observable physical phenomena” (Clarke 

& Fryer, 1998). 

These APs, though being widely used for many years and even 

in digital era, however, might be inadequate to fit the distinctive 

features of digital airborne cameras, such as push-broom, multi-

head, virtual images composition, various image formats 

(Honkavaara et al., 2006; Cramer, 2009). A considerable 

progress was made for the digital camera calibration. Many tests 

were carried on to re-test the traditional APs. Cramer (2009) 

and Jacobsen et al. (2010) reported comprehensive empirical 

tests, in which lots of different APs were employed to 

compensate the image distortion. However, many of the APs are 

purely the combinations of the traditional APs while lack of 

solid physical or mathematical foundations. 

Moreover, the successful incorporation of navigation system 

demands calibrating the overall system rather than camera lens 

distortion only. The systematic effect caused by direct 

georeferencing, such as shift/drift and misalignment, must be 

calibrated for the photogrammetric applications (Honkavaara, 

2004; Cramer et al., 2010). One major challenge of whole 

system calibration is that each calibration effect must be 

decoupled from others. Serious considerations are desired on 

high correlations. 

All the above motivate our present work on airborne camera 

self-calibration. One intrinsic deficiency of the polynomial APs 

is revealed. Theoretically, algebraic polynomials are not proper 

for self-calibration purpose. After examining many 

mathematical bases, the Fourier series (trigonometric 

polynomials) are favored as the optimal mathematical basis 

functions for building self-calibration APs. Then, a whole 

family of so-called Fourier APs is developed. The Fourier APs 

are mathematically rigorous, flexible, generic and efficient for 

calibrating the image distortion of frame-format airborne 

cameras. The advantages of Fourier APs are demonstrated over 

the polynomial APs. The performance of Fourier APs is 

evaluated in several empirical tests. 

The rest of the paper is organized as follows. The mathematical 

principle of self-calibration APs is briefly reviewed and the 

Fourier APs are constructed in Section 2. Empirical test results 

are demonstrated in Section 3. The discussions are made in 

Section 4 to compare Fourier APs with other counterparts. This 

work is concluded in the end. 

 

2. FOURIER SELF-CALIBRATION APS 

The collinearity equations, which are the mathematical 

fundamental of photogrammetry, read as in Eq. (1).  
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where    and    denote the distortion, and   indicates the 

random error. The denotations of other parameters can be seen 

in textbooks such as Kraus (2007). The distortion terms are two-

variable functions whose form is unknown. They have to be 

approximated by some models, i.e., self-calibration APs. 

Thus, the key work is to develop a proper parametric model 

which can accurately represent the actual distortion. Do note 

that there are several kinds of basis functions available in 

mathematics, whose combination can well approximate any 

unknown function.  Thus, the distortion, on which even little is 

known, can be modeled by using the linear combination of 

specific basis functions. The unknown coefficients of the linear 

combinations can be computed in the adjustment process. Or in 

a loose sense, the coefficients can be fixed by the noisy image 

measurements during the least-squares adjustment. It quite 

resembles the problem of least squares fitting to the irregular 

spaced data in mathematics (for the mathematical materials on 

the fitting problem, the readers are referred to the textbooks 

such as Rao (2001)). Therefore, photogrammetric self-

calibration can – to a very large extent – be considered as a 

function approximation or, more precisely, a curve fitting 

problem in mathematics.  

Then, we need to find a proper group of basis functions for the 

self-calibration purpose. Various mathematical basis functions 

can be taken into account. We start with algebraic polynomial 

since of the historical prevalence of the polynomial APs.  

 

2.1 Polynomial APs 

Based on the standard 60% forward overlapping level and the 

3×3 and 5×5 grid pattern of image point distribution, Ebner 

(1976) and Grün (1978) proposed the polynomial APs of second 

and fourth order, respectively. Although they constructed their 

polynomial APs in a quite different way from mathematical 

function approximation, we showed that the mathematical 

principle of both sets of APs is the well-defined Weierstrass 

Theorem (Tang et al., 2012a). This theorem indicates, that any 

function can be approximated with arbitrary accuracy by a 

polynomial of sufficiently high degree. We also showed how to 

derive both sets of APs from the rigorous principle of function 

approximation. It can also be proved that the grid pattern is not 

prerequisite for applying both APs. The main effect of the 

irregular image point distribution is degrading correlations but 

not decaying calibration. This is the exact reason why the Ebner 

and Grün APs still work quite well in the cases where the ideal 

regular grid pattern is unsatisfied. 

In fact, we have developed in our previous work a new family 

of so-called Legendre Self-calibration APs, which is established 

on the basis of the orthogonal univariate Legendre polynomials 

(Tang et al., 2012a and 2012b).  The mathematical relations can 

be derived between Legendre APs and the two historical 

polynomial APs. From both theoretical analyses and practical 

tests, Legendre APs must be preferred to the two conventional 

ones. In fact, the Legendre APs can be considered as the 

superior generalization of the Ebner and Grün models in many 

senses.  

However, there are one intrinsic deficiency of all polynomial 

APs, including Ebner, Grün and Legendre APs. That is, all 

polynomial APs need to eliminate four high correlated 

parameters (NOT six, since two of them, i.e. two constant 

terms, are purely the principle point shifts). The elimination 

imposes four constraints on the polynomial APs. These four 

constraints, which are caused by high correlations, violate the 

mathematical principle of polynomial APs. Because according 

to the approximation theory and the Weierstrass Theorem, all 

unknown parameters in    should be fully independent of those 

in   . Therefore, algebraic polynomials are not the optimal 

mathematical bases for building self-calibration APs. The 

discussions on this theoretical deficiency of the polynomial APs 

were also made in Tang et al. (2012b). 

Our view was shared in Ziemann (1986) that algebraic 

polynomials “are undesirable from a mathematical point of view 

because of the high correlation between the different terms”. 

Another inconvenience of the polynomial APs is that they 

usually require large number of unknown APs for calibration, 

compared with other counterparts (the APs in Brown (1976), for 

example). 

 

2.2 Fourier self-calibration APs 

Besides the algebraic polynomials, other basis functions are the 

potential alternatives for developing mathematical APs. We 

briefly review the mathematical basis functions for function 

approximation applications. Three groups of quite useful basis 

functions can be derived from the renowned Laplace Equation, 

depending on the defined coordinate system: Fourier series 

(trigonometric polynomials) for the Cartesian coordinates, 

Bessel functions for the cylindrical coordinates and spherical 

harmonics for the spherical coordinates. Wavelet functions and 

rational functions are also useful for specific implementations. 

For more on mathematical approximation theory, the readers are 

referred to textbooks such as Oliver et al. (2010). 

For the self-calibration purpose, wavelet functions are not 

appropriate since of its non-analytical form, which precludes 

them from being incorporated into the collinearity equations. 

The form of rational functions is rather inconvenient for 

building APs and can burden the adjustment. For the three basis 

functions derived from Laplace Equation, Fourier series should 

be favored since of the Cartesian coordinates in the rectangular 

image format. Actually, the APs using spherical harmonics (El-

Hakim & Faig, 1977) encounter the similar difficulty of high 

correlations as algebraic polynomial APs. We develop below 

the self-calibration APs on the basis of Fourier series. 

Bivariate Fourier series are given as follows. 
 

                                         (2) 
 

where           . The Fourier Theorem indicates that any 

two-variable functions, defined in              , can be 

approximated with arbitrary accuracy by the combinations of 

bivariate Fourier series of sufficiently high degree. 

Let     and     denote the width and length of the image 

format, respectively.   and   indicate the metric coordinate of 

the image measurement,                  . Denote  

 
                                 

                                       
                                 

 

Then, the linear combination of the bivariate Fourier series is 

used to approximate the distortion terms    and   , 

respectively. The general form of self-calibration APs is given 

in Eq. (3). 

 

                         
    

 
   

                      
   

                           
    

 
   

                        
   

              (3) 

 

where     ,     ,       and       are unknown coefficients to 

be computed in adjustment.   and   are the maximum degrees 

chosen by the users (Generally speaking, more complicated the 

distortion is, larger   and   it requires). The number of 

unknown APs is                          . 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B1, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

154



 

 

As this family of self-calibration APs (with respect to the 

chosen   and  ) is established based on Fourier series, they are 

named as Fourier self-calibration APs. Do note that in Eq. (3) 

the unknown parameters in    is fully independent of those in 

  .  

Particularly, the Fourier APs of       (16 unknowns) are 

given with lexicographic order in Eq. (4).  

 
                               

                             

                                  

                                 

                 (4) 

 

The Fourier APs of        with 48 unknowns are depicted 

in Eq. (5). 

 
                                             

                                                

                                                 

                                                   

                                                   

                                                   

                                                 

                                                   

 

  (5) 

 

Theoretical comparisons can be made between Fourier APs and 

algebraic polynomial APs. The Weierstrass Theorem and 

Fourier Theorem are the main mathematical foundations behind 

the polynomial APs and the Fourier APs, respectively. It is 

guaranteed in theory that both APs of proper degree can well 

represent the unknown distortion function and effectively 

compensate the image distortion. 

However, the Fourier APs own a remarkable theoretical 

advantage over the polynomial APs. In contrast to the 

polynomial APs which need to remove four parameters due to 

high correlations, all Fourier terms are independent of IO 

parameters and EO. There is no need to eliminate any parameter 

of Fourier APs and there is no constraint imposed between the 

unknown parameters in    and those in    of Eq. (3). 

Therefore, Fourier APs rigorously obey their theoretical 

principle (Fourier Theorem) while polynomial APs do not. 

From a mathematical viewpoint, the Fourier APs are more 

rigorous and more proper for camera self-calibration than the 

polynomial APs.  

 

2.3 Overall system calibration 

As mentioned previously, the systematic effects caused by 

direct georeferencing must be compensated. The effects of 

important interests include the misalignment between camera 

and navigation instruments and the shift/drift effect in direct 

georeferencing (if present). For the overall system calibration, 

one of the most challenging works is to minimize the coupling 

effect of different correction parameters. The decoupling is of 

vital importance, in the sense that each systematic error must be 

independently and appropriately calibrated and the calibration 

results are block-invariant. 

For this purpose, we suggest the joint application of the Fourier 

APs (for calibrating the image distortion, as the conventional 

APs do) with the other correction parameters, i.e., the three 

interior orientation (IO) parameters used for correcting the 

principle point offsets and the focal length deformation, and 

GPS/IMU shift/drift and misalignment correction parameters. 

The low correlation must be warranted among these calibration 

parameters and between them and exterior orientation (EO). As 

will be seen in Section 4, the correlations between Fourier APs 

and EO, and between Fourier APs and other correction 

parameters, are fairly small. The low correlation is another 

advantage of Fourier APs. 

 

3. PRACTICAL TESTS 

The Fourier self-calibration APs are tested by using the data 

from the recent DGPF (German Society for Photogrammetry, 

Remote Sensing and Geoinformation) project, which was 

performed under the umbrella of DGPF and carried out in the 

test field Vaihingen/Enz nearby Stuttgart, Germany. This 

successful project aims at an independent and comprehensive 

evaluation on the performance of digital airborne cameras, as 

well as offering a standard empirical dataset for the next years. 

The readers are referred to Cramer (2010) and DGPF website 

(2010) for the project details.  

Four flights’ data of the frame cameras are adopted: DMC 

(GSD 20cm, ground sample distance), DMC (GSD 8cm), 

UltracamX (GSD 20cm) and UltracamX (GSD 8cm). Each 

camera was flown at two heights. For each flight, we are 

interested in two most often contexts: the in-situ calibration one 

and the operational project one. The former context is with high 

side overlapping (≈60%) and dense GCPs and the later with low 

side overlapping (≈20%) and few GCPs.  

 

3.1 In-situ calibration context 

The system calibration strategy in Section 2.3 is adopted for all 

the blocks. Particularly, IMU misalignment, horizontal GPS 

shift (factually insignificant in the tests), IO parameters and 

Fourier APs of       are employed. Higher degree’s 

Fourier APs seem unnecessary in these tests since they deliver 

insignificant accuracy refinement. The derived external 

accuracy, indicated by “self calibrating”, would be compared to 

the theoretical accuracy and the “without APs” one, for which 

the same correction parameters except Fourier APs are used.  

The derived external accuracy is demonstrated in Fig. 1. By 

comparing “Self calibrating” with “Without APs”, the 

refinement by applying Fourier APs is significant in all tests, up 

to 10 cm in the DMC (GSD 20cm) block. Moreover, all the 

“self calibrating” accuracy reaches very close to the theoretical 

one. It means that the optimal accuracy has been achieved in all 

the tests. All the “self calibrating” accuracy reaches to around 

1/5 GSD in the horizontal directions and 2/5 GSD in the vertical 

directions in the four blocks. It is also interesting to notice that 

although the DMC and UltracamX cameras are differently 

manufactured, very similar external accuracy can be obtained 

by using Fourier APs in the blocks of similar configuration, i.e., 

similar GSD, similar forward and side overlapping levels and 

similar GCPs distribution. This fact, independent of the used 

cameras, coincides well with our photogrammetric accuracy 

expectation.  

Now look at the estimation of the precision of image 

measurements. The posterior std. dev. estimation is 1.58, 1.44, 

0.88 and 0.79    for DMC (GSD 20cm and 8cm) and 

UltracamX (GSD 20cm and 8cm) blocks, respectively. These 

values are around 0.12 pixel, which are 12 and 7.2    for DMC 

and UltracamX cameras, respectively. They match very well the 

expected precision of the automatic tie point transfer 

techniques, which are 0.1-0.2 pixel for aerial images. 
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Fig.1 External accuracy in four in-situ calibration blocks, dense 

GCPs and p60%-q60% (‘without APs’ indicates without using 

Fourier APs only) 

 

 
Fig. 2 External accuracy in four operational project blocks, 4 

GCPs and p60%-q20% (‘without APs’ indicates without using 

Fourier APs only) 

 

3.2 Operational project context 

There are 4 GCPs and 20% side-overlapping level in each 

block, much weaker than the in-situ calirbation context. The 

IMU misalignment, IO parameters  and the Fourier APs with 

      are employed in the adjustment. This derived 

external accuracy is analogously denoted as “self calibrating” 

one. Due to 4 GCPs available only, the GPS/IMU observations 

have to be weighted carefully to achieve best accuracy. 

We also evaluate the quality of the in-situ calibration in last 

subsection. The calibration results of IO parameters and image 

distortion in Section 3.1 are utilized as known and fixed values 

in the adjustment of the corresponding “reduced” operational 

blocks, i.e., the cameras are assumed being calibrated and need 

no further self-calibration. The derived external accuracy is 

named as “after calibration”. We compare “after calibration” 

with “self calibrating”, “without APs” and theoretical ones. 

The adjustment accuracy results are illustrated in Fig. 2. On the 

one hand, the self-calibrating Fourier APs help improve the 

external accuracy. It is noticed that for the blocks of weak 

geometry, the accuracy in vertical direction is generally worse 

than 1/2 GSD. By comparing the closeness between “self-

calibrating” accuracy and the optimal “theoretical accuracy”, it 

is observed that self-calibration gains less significant refinement 

in the operational blocks than in the in-situ block (Section 3.1). 

On the other hand, the “after calibration” yields more 

remarkable refinement in all four operational blocks, 

particularly in the vertical accuracy. Further, the “after 

calibration” accuracy is very close to the optimal theoretical one 

in every block. Therefore, these tests not only recognize the 

sufficient accuracy obtained by Fourier APs in the operational 

projects, but also confirm their great efficiency in the in-situ 

calibration. Besides, from the considerable distinction between 

“self-calibration” and “after calibration” accuracy in Fig. 2, it 

demonstrates the necessity of in-situ calibration in the presence 

of the significant image distortion. 

 

It is worth mentioning that the Fourier APs have also been 

assessed by the flight data of other airborne cameras in other 

test fields, like medium-format DigiCAM, large-format 

UltracamXp and single-head DMC II cameras. The similarly 

good performance of Fourier APs is confirmed while the details 

are not published here. 

 

4. DISCUSSIONS 

In this section, comparisons are made among different sets of 

APs, with respect to external accuracy, correlations analyses 

and systematic calibration effect. The APs taken into account 

include the classical physical APs (Brown, 1971; Fraser,  1997), 

extended Brown model (Brown, 1976), APs in Ebner (1976), 

APs in Grün (178), Legendre APs (Tang et al., 2012a) and the 

presented Fourier APs. They are denoted respectively by 

“Fraser (10)”, “Brown (21)”, “Ebner (12)”, “Grün (44)”, 

“Legendre (66)” and “Fourier (16)”, where the figure in 

parentheses indicates the number of unknown parameters. 

 

4.1 External accuracy 

We compare the external accuracy obtained by different APs in 

two blocks, the in-situ and operational blocks of ‘DMC (GSD 

20cm)’.  The results are illustrated in Fig. 3. It is obvious that 

“Ebner (12)” and “Fraser (10)” derive rather worse accuracy 

than the others. Yet, the reasons for their poor performance are 

quite different. The poor performance of “Ebner (12)” is 

because the second order algebraic polynomials are insufficient 

to approximate the image distortion. Polynomials of higher 

degree are required for better approximation, according to the 

Weierstrass Theorem. The considerable improvement is clearly 

achieved by using higher-order polynomial APs, e.g., the fourth 

order Grün models and the fifth order Legendre APs. On the 

other hand, “Fraser (10)” fails mainly due to that the classical 

distortion model of close-range camera is in general 

inappropriate for airborne camera calibration. The distortion in 

aerial images is not dominated by the radial distortion as in 

close-range camera. The good performance of extended “Brown 

(21)” model is mainly since this model includes several high 

order polynomial terms, which although were supposed to 

compensate film deformation and unflatness (Brown, 1976).  

Do note that Fourier APs (16 unknowns) achieve similar 

accuracy with Legendre polynomial APs (66 unknowns), but 

use much fewer unknowns. Certainly, fewer APs imply better 

efficiency. Fewer APs also help improve the stability of block 

geometry against overparameterization, which is always a main 

concern for applying the self-calibration APs. Mathematically, 

fewer terms indicate, that Fourier series, instead of algebraic 

polynomials, are the more proper basis functions to approximate 
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the unknown distortion. This is a significant practical advantage 

of Fourier APs over polynomial APs. 

 

 
Fig. 3 Accuracy comparison of different APs in two blocks: the 

in-situ block (above) and the operational block (below) 

 

4.2 Correlation analyses 

Correlation analyses deserve more importance in integrated 

sensor orientation than in the conventional aerial triangulation. 

Heterogeneous observations from multi-sensors may contain 

various systematic errors. Each systematic error must be 

calibrated independently from the others. The coupling effect 

must be minimized and low correlations between different 

correction parameters must be guaranteed. It is illustrated in 

Table. 1 the correlation analyses of different APs in the DMC 

(GSD 20cm) in-situ block. The correlations are examined 

between APs and EO, IO parameters, IMU misalignment 

correction parameters and the intra-correlations among APs 

themselves (denoted by ‘Intra-corr’ in Table. 1). ‘< 0.1’ denotes 

the percentage of correlations smaller than 0.1 and ‘max’ 

denotes the maximum correlations. As ‘Ebner (12)’ and ‘Fraser 

(10)’ deliver rather poor accuracy, their performance in 

correlations is not demonstrated. 

 

Table 1. Correlation analyses in DMC (GSD 20cm) in-situ 

block (47GCPs/138ChPs, p60%-q60%) 

APs corr. EO IO IMU Intra-corr 

Brown  

APs (21) 

< 0.1 98% 78% 86% 78% 

max 0.19 0.87 0.55 0.92 

Grün  

APs (44) 

< 0.1 100% 80% 83% 88% 

max --- 0.73 0.53 0.93 

Legendre  

APs (66) 

< 0.1 100% 97% 100% 96% 

max --- 0.44 --- 0.57 

Fourier  

APs (16) 

< 0.1 100% 89% 92% 92% 

max --- 0.45 0.20 0.53 

 

Some interesting observations can be obtained from Table. 1. 

Firstly, all APs hold very low correlations with EO. Secondly, 

Legendre APs and Fourier APs deliver much lower correlations 

with IO and IMU misalignment than the Brown and Grün 

counterparts. Thirdly, the correlations with IMU misalignment 

are similar for the Fourier APs and the Legendre APs. Although 

the correlations of Fourier APs (92%) seem slightly worse than 

those of Legendre APs (100%) in ‘< 0.1’, the difference is 

negligible since the ‘max’ correlation of Fourier APs is 0.20. 

The ‘Intra-corr’ shows the orthogonality of the Legendre APs 

and the Fourier APs. This orthogonality, though having no 

significant impact on calibration and accuracy, helps the 

stability of adjustment process. 

Thus, the Legendre APs and the Fourier APs perform similarly 

best in correlation analyses. They minimize the coupling effect 

in calibration. Therefore, they can derive more reliable 

calibration results than the others. It is also expected that they 

will produce similar calibration result, as will be demonstrated 

in next subsection. 

 

4.3 IO parameters and IMU misalignment calibration 

We consider the calibration results of IO parameters and IMU 

misalignment. It is quite interesting to check whether different 

APs can deliver coincident results. The ‘Brown (21)’, ‘Legendre 

(66)’ and ‘Fourier (16)’ are compared. 

We examine two in-situ calibration blocks: DMC (GSD 20cm) 

and UltracamX (GSD 20cm). It is illustrated in Fig. 4 and Fig. 5 

the calibration results of IO parameters and IMU misalignment, 

respectively. It is found in Fig. 4 that in most cases, the 

Legendre APs and the Fourier APs derive quite coincident 

results in IO parameters, while the Brown models get diverse 

results, particularly the focal length calibration in the DMC 

(GSD 20cm) block. From Fig. 5, three APs yield similar results 

on IMU misalignment calibration, while the results of the 

Legendre APs and the Fourier APs are closer. It is reasonable 

and expectable, that the Legendre APs and the Fourier APs 

obtain coincident calibration results, since both calibrate 

effectively the image distortion and have very low correlations 

with IO parameters and IMU misalignment. The high 

correlations between ‘Brown (21)’ and IO parameters are 

probably the reason causing the deviation in IO calibration 

results. With the decreased correlations with IMU misalignment 

parameters, the ‘Brown (21)’ models obtain more consistent 

results with the other two APs. 

 

 
Fig. 4 Calibration results of IO parameters derived by three 

different APs in the blocks of DMC (left) and UltracamX (right) 

cameras (unit:
 
  ) 

 

 
Fig. 5 Calibration results of IMU misalignment derived by three 

different APs in the blocks of DMC (left) and UltracamX (right) 

cameras (unit: gon) 
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5. CONCLUSIONS 

We present a novel family of self-calibration Fourier APs for 

calibrating the image distortion of frame-format digital airborne 

cameras. We point out that photogrammetric self-calibration can 

– to a very large extent – be considered as a function 

approximation problem in mathematics. Fourier APs have solid 

mathematical foundations: Laplace Equation and Fourier 

Theorem. It is guaranteed, that the Fourier APs are rigorous, 

orthogonal, generic, flexible and effective for airborne camera 

calibration. 

The high performance of the Fourier APs was identified in 

several empirical tests. These tests show that Fourier APs can 

fully calibrate the image distortion of the current airborne 

cameras, including the DMC, DMC II, UltracamX, UltracamXp 

and DigiCAM cameras. Optimal accuracy can be achieved by 

using Fourier APs of proper degree. In principle, the Fourier 

APs can be used for calibrating frame cameras of large-, 

medium- and small-format CCDs, mounted in single- and multi-

head systems. 

We also make comparisons between the Fourier APs and other 

APs. In contrast to the physical APs, Fourier APs performs 

much better in low correlations, which are of vital importance in 

multi-sensor calibration. Fourier APs possess theoretical and 

practical advantages over the popular polynomial APs. It is 

shown that Fourier APs are theoretically preferable, since the 

Fourier series are the more appropriate (or optimal) 

mathematical basis functions to develop self-calibration APs, 

rather than the algebraic polynomials. Moreover, Fourier APs 

show an important practical advantage, that in general Fourier 

APs need fewer parameters for effective calibration. In fact, we 

believe that the Fourier APs of first order or second order are 

sufficient for most airborne camera calibration tasks. This 

advantage helps to reduce the overparameterization effect and 

improve the block stability. 
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