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ABSTRACT:

The increased availability of unmanned aerial vehicles (UAVs) has resulted in their frequent adoption for a growing range of remote
sensing tasks which include precision agriculture, vegetation surveying and fine-scale topographic mapping. The development and
utilisation of UAV platforms requires broad technical skills covering the three major facets of remote sensing: data acquisition, data
post-processing, and image analysis. In this study, UAV image data acquired by a miniature 6-band multispectral imaging sensor was
corrected and calibrated using practical image-based data post-processing techniques. Data correction techniques included dark offset
subtraction to reduce sensor noise, flat-field derived per-pixel look-up-tables to correct vignetting, and implementation of the Brown-
Conrady model to correct lens distortion. Radiometric calibration was conducted with an image-based empirical line model using
pseudo-invariant features (PIFs). Sensor corrections and radiometric calibration improve the quality of the data, aiding quantitative
analysis and generating consistency with other calibrated datasets.

1 INTRODUCTION

Unmanned aerial vehicles occupy a previously unfilled niche through
their capability to generate ultra high spatial resolution image
data at highly flexible temporal scales (Dunford et al., 2009).
UAV imagery has value as a sole source of data, or used to fill
gaps in scale between fine scale field samples and coarser scale
aerial photography or satellite imagery. As a remote sensing
platform, UAVs offer the scientific community an unprecedented
level of accessibility and flexibility in data generation. The grow-
ing availability of small, low cost, components have provided
research groups with the opportunity to tailor a remote sensing
platform to fit their own specific research niches.

UAV development and operation require a range of technical skills
covering platform development, image data post-processing and
image analysis techniques. Post-processing techniques improve
data quality and generates consistency with other calibrated im-
age sets. Raw image data is strongly influenced and modified
by a number of sources which include environmental conditions
and sensor characteristics (M. Smith, 1999, Mahiny and Turner,
2007). These modifications place severe limitations upon the
quality and validity of further quantitative analysis. Image data
post-processing encompasses the techniques used to consistently
extract surface reflectance information from raw data. Post-processing
can be broadly divided into two main phases: sensor correction
and radiometric calibration.

1.1 Sensor Correction

Sensor correction is the first phase of image data post-processing
and encompasses the techniques used to reduce data modifica-
tions generated by the sensor. Sensor-based modifications may
arise during the collection, processing, and transmission of data
by the system (Al-amri et al., 2010). These modifications include
processes that either introduce additional measurements, obscure
measurements or alter the spatial properties of incoming light.

Sensor-based data modifications include the effects of noise, vi-
gnetting and lens distortion. Noise is defined as any additive,

unwanted measurement that is generated by the sensor indepen-
dently of incoming light (Mansouri et al., 2005). Vignetting is
a radial falloff in illumination strength caused primarily by in-
creased occlusion of the detector plane by the sensor (Goldman,
2010, Kim and Pollefeys, 2008). Vignetting results in a radial
shadowing effect towards the image periphery. Lens distortion is
generated by an uneven magnification across a lens surface and
can be further degraded by a misalignment between lens and de-
tector plane (Hugemann, 2010, Wang et al., 2006). Lens dis-
tortion results in a radial displacement of a measurements true
position.

1.2 Radiometric Calibration

Radiometric calibration is the second phase of image data post-
processing and encompasses the techniques used to reduce the
effects of relative environmental variables and extract absolute
reflectance measurements from the data. Remotely sensed mea-
surements are highly influenced by the environmental conditions
present at the time of data generation. Environmental variables
include atmospheric composition, surface conditions and tempo-
ral changes in light level (Hadjimitsis et al., 2004). Radiomet-
ric calibration is essential for generating consistency in remotely
sensed imagery acquired under a wide variety of environmental
conditions (Cooley et al., 2002).

The primary focus of this study is to provide a practical, primarily
image-based, data post-processing workflow applicable to UAV
remote sensing. The study provides a linear workflow of sen-
sor correction and radiometric calibration steps for a low cost,
consumer grade multispectral sensor. Steps are illustrated with a
practical worked example.

2 METHODS

2.1 UAV and Sensor

The UAV constructed for this study consisted of a MikroKopter
Oktokopter1 frame (see Fig.1) mounted with the miniature cam-

1http://www.mikrokopter.de
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Figure 1: MikroKopter Oktokopter with mounted mini-MCA
Multispectral Sensor (Photo: Darren Turner)

era array (mini-MCA). The mini-MCA is a small, low-cost six-
band multispectral sensor manufactured by Tetracam inc2. The
mini-MCA system consists of an array of six individual chan-
nels. Each mini-MCA channel is equipped with a CMOS sensor
and a fixed objective lens and aperture length. Factory provided
standards illustrate the monochromatic efficiency of the CMOS
chip over a range of 400 to 1120 nm. Each channel is addition-
ally fitted with mountings for an interchangeable band-pass filter,
allowing users to define the spectral band configuration of the
system. Image band data is collected at a image resolution of
1280x1024 at a dynamic range of either 8 or 10 bits.

2.2 Study Site and Data Collection

The Ralphs Bay area in Tasmania, Australia is a stretch of shel-
tered coastline undergoing urban encroachment and commercial
development. The bay provides limited areas of shelter from
strong scouring ocean tides, allowing for the establishment of
salt marsh. Salt marsh is a vegetation type that occurs primar-
ily within riparian or coastal areas and is dominated by species
that exhibit strong tolerance for water logging and/or saline con-
ditions (Emery et al., 2001). The strong water/saline gradients
exhibited along shorelines typically results in a strong zonation
in the distribution of salt marsh species (Pennings et al., 2005,
Emery et al., 2001). The topographic flatness and relatively sim-
ple distribution of species within salt marsh provides an uncom-
plicated environment for UAV research and development.

Study Site

Figure 2: Location of Salt Marsh Study Site at Ralphs Bay, Tas-
mania, Australia (Map Source: GoogleEarth)

An area of Ralphs Bay salt marsh was selected to serve as a test
site. UAV salt marsh missions were conducted at heights of 50
m and 100 m at an exposure of 2,000 and 4,000. Multispectral
imagery was generated by the mini-MCA with a bandpass filter

2http://www.tetracam.com

configuration of in order of channel: 700, 490, 530, 570, 670,
750 nm. Over 50 field samples were acquired from across the
study site. Each field sample consisted of a GPS point, a ge-
olocated true colour digital photograph and an at-surface spectral
reflectance measurement. GPS points were acquired using a Le-
ica GPS1200 RTK system. Geolocated photographs were taken
using a Canon 50D. Spectral measurements were acquired using
the ASD HandHeld 2 Portable Spectrometer. A single mini-MCA
salt marsh image acquired at 100 m at an exposure of 4,000 was
selected to demonstrate the data post-processing workflow.

2.3 Image Data Processing

Raw mini-MCA image data was converted to 10 bit digital num-
ber (DN) imagery using IDL script within the ENVI3 spatial soft-
ware package. Sensor correction and radiometric calibration pro-
cessing and application steps were also implemented through IDL
script within the ENVI environment. Image band stacking and
coregistration was implemented through ENVI.

2.4 Sensor Correction

2.4.1 Noise Reduction Sensor noise is additional, additive mea-
surements that are generated by a sensor independently to an in-
coming signal (Mansouri et al., 2005). Sources of sensor noise
include electrical interference, variable environmental conditions
and variation across the detector plane erroneously introduced
during manufacture. Raw data measurements are the sum of an
incoming signal component and a noise component. The smaller
the ratio of the signal component to the noise component be-
comes, the greater the true data measurement is obscured.

Noise correction requires an estimation of the noise component
within the data. Noise, however, exhibits random temporal prop-
erties within its distribution (Mansouri et al., 2005). The exact
proportion of sensor noise within image data at any given time,
therefore, cannot be precisely calculated. Instead techniques fo-
cus upon estimating and reducing sensor noise.

Dark offset subtraction is an image based approach for sensor
noise reduction (Mansouri et al., 2005, Mullikin, 1994). The
technique exploits the independence in the origin of sensor noise
from the incoming signal component. Dark offset imagery is
imagery that is generated in the absence of any incoming light.
This technique effectively removes the incoming signal compo-
nent from the measured data, thus providing a sample of the per-
pixel sensor noise component. Through repetition, the average
per-pixel sensor noise may be estimated. The per-pixel subtrac-
tion of this average dark offset from other imagery provides a
method of noise reduction. The per-pixel standard deviation of
dark offset imagery provides an estimation of the average per-
pixel sensor noise remaining within imagery following dark off-
set subtraction.

2.4.2 Dark Offset Image Generation Methodology Mini-
MCA dark offset imagery was generated within a dark room. The
mini-MCA was further enveloped by a Gore-Tex hood to provide
an additional barrier to incoming light. Dark offset imagery was
generated for each of the six mini-MCA channels. The expo-
sure was set to 4,000 to match the UAV salt marsh test image. A
total of 125 sample dark offset images were generated for each
channel from which the per-pixel average and standard deviation
were calculated. Dark offset subtraction was applied to the cor-
responding UAV salt marsh test image bands.

3http://www.ittvis.com
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2.4.3 Vignetting Correction Vignetting is a radially depen-
dent falloff in illumination strength. It is typically caused by sen-
sor components (e.g. barrel) occluding light from the detector
plane at wide angles (Goldman, 2010). Increased angles of in-
coming light result in stronger occlusion. This increasing occlu-
sion manifests as a radial shadowing effect that increases towards
the image periphery.

Flat field derived correction factor look-up-tables (LUT) repre-
sent an image based approach to vignetting correction. Flat fields
are surfaces that exhibit uniform, spectrally homogeneous Lam-
bertian properties (Mansouri et al., 2005). Generated imagery of
flat field surfaces, under the effects of vignetting, exhibit charac-
teristic radial deviation away from a homogeneous condition. A
quantitative assessment of this deviation allows for the per-pixel
modelling of the vignetting illumination falloff. The method rests
upon the assumption that the brightest pixel within the flat field
image exhibits the correct flat field measurement. Correction fac-
tors are then calculated for the remaining pixels to restore their
value to the brightest, correct flat field measurement. Imagery
modified by vignetting may be corrected through a per-pixel mul-
tiplication with this flat field derived correction factor imagery
(Mansouri et al., 2005, Yu, 2004).

2.4.4 Vignetting Correction Factor LUT Methodology A
white artist’s canvas was utilised as a flat field surface. Mini-
MCA flat field imagery for each of the six individual channels
was generated from the flat field. To improve noise reduction,
125 sample flat field images were generated for each sensor. The
average of these 125 sample images was calculated to improve
correspondence between the averaged noise component within
the dark offset imagery and flat field imagery. Dark offset sub-
traction was performed upon each averaged flat field image. Sen-
sor dependent vignetting correction factor LUTs were calculated
from each averaged flat field. Vignetting correction was applied
to the corresponding UAV salt marsh test image band.

2.5 Lens Distortion

Lens distortion is characterised by a radial shift in a measure-
ments true position. It is primarily generated by non-uniform
magnification across a lens surface and may be further influenced
by the misalignment between the lens and detector plane. Non-
uniform magnification results in a radial shifting of measurements.
This is typically a shift away from the image centre (barrel dis-
tortion) or towards the image centre (pincushion distortion). Mis-
alignment between lens and detector plane results in a planar shift
in the perspective of an image (Wang et al., 2009, Hugemann,
2010, Prescott, 1997).

The Brown-Conrady lens distortion model is capable of correct-
ing the effects of both non-uniform magnification and lens/detector
plane misalignment. The model, however, requires the calcula-
tion of sensor specific intrinsic and extrinsic coefficients. A com-
mon approach for the calculation of these coefficients is through
the use of calibration panels. A calibration panel is typically a
planar grid of known geometric properties. Imagery is generated
of the calibration panel from multiple angles. Sensor specific in-
trinsic and extrinsic coefficients are calculated based upon point
correspondence between the known geometric properties of the
calibration panel and the distorted geometric properties exhibited
within imagery (Wang et al., 2006, Hugemann, 2010).

2.5.1 Lens Distortion Correction Methodology Mini-MCA
imagery of a calibration panel was generated for each individual
channel from multiple angles. Corresponding dark offset subtrac-
tion and vignetting correction was applied to the calibration panel

imagery. For each mini-MCA channel, the intrinsic and extrinsic
coefficients were calculated from the calibration panel imagery
using the Agisoft Lens4 software package. The Brown-Conrady
lens distortion model was implemented using the extracted coef-
ficients for each separate channel. Lens distortion was corrected
in the UAV salt marsh test imagery for each corresponding band.

2.6 Radiometric Calibration

2.6.1 Empirical Line Regression The empirical line method
is an image-based empirical approach to radiometric correction.
The technique is built upon the assumption that an empirical re-
lationship exists between the collected sensor DN measurements
and the at-surface reflectance (M. Smith, 1999). Calculation of
this empirical relationship allows the conversion of the collected
data into at-surface reflectance measurements. This empirical
relationship is commonly extracted through the use of targets
of measured at-surface reflectance properties known as pseudo-
invariant features (PIFs) (Moran, 2001).

The suitability of PIFs is based upon several attributes. A PIF
is required to be spectrally homogeneous with Lambertian re-
flectance properties and spectrally invariant with environmental
conditions. The empirical line method requires that measure-
ments are taken for at least two PIFs, one light and one dark.
The relationship between the at-sensor PIF DN measurements
recorded within the imagery and the at-surface reflectance ac-
quired from field measurements is analysed, and a linear rela-
tionship for each band derived (Karpouzli and Malthus, 2003, M.
Smith, 1999). Imagery is then converted to at-surface reflectance
through the use of these linear equations.

2.6.2 Empirical Line Regression Methodology Three PIFs
were constructed composing of a plywood wood backing with a
white tyvac, an intermediate grey fabric and black fabric covers
respectively. The PIFs were placed within the salt marsh study
site prior to UAV flight. At-surface reflectance measurements
from the PIFs were acquired using an ASD HandHeld 2 Portable
Spectrometer. Linear relationships were calculated between the
sensor corrected spectral bands generated by the mini-MCA and
the corresponding at-surface reflectance measurements recorded
by the spectrometer. Sensor measurements were converted into
reflectance measurements by applying each linear equation to its
corresponding UAV salt marsh test image band.

3 RESULTS

A six band multispectral UAV acquired salt marsh image was se-
lected to serve as a test case for image based data post-processing
(see Fig. 3).

3.1 Dark Offset Subtraction

Dark offset imagery was generated for each of the six mini-MCA
channels at an exposure of 4,000. Figure 4 provides a compar-
ison of the six channels reveals channel 4 to have the highest
average noise (greater than 12 DN). Channel 6 records the lowest
average noise (5 DN). An examination of the standard deviation
reveals that the channel 4, despite recording the highest average
noise, is also the most responsive to dark offset subtraction (av-
erage of 92% reduction in noise). Channels 5 and 6 record the
worst response to dark offset subtraction (56% and 51% reduc-
tions respectively). The differing response of noise within each of
the dark offset imagery reveals the channel dependence of noise
measurements.

4http://www.agisoft.ru/products/lens
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Figure 3: Uncorrected True Colour UAV Salt Marsh Test Image
(Image Bands Coregistered)
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Figure 4: Per-Pixel Noise Average and Standard Deviation for
each mini-MCA Channels (exposure: 4,000)
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Figure 5: SNR of UAV Salt Marsh Test Image Bands

Signal-to-noise ratio was calculated as the ratio of the average im-
age measurement post-dark offset subtraction to the standard de-
viation of the dark offset imagery. An assessment of SNR reveals
channel 4 and 3 to have generated the highest quality of data.
Both channel 4 and 3 are equipped with filters within the low
monochromatic efficiency range of the mini-MCA. Conversely
the high efficiency range of the channel 6 filter offsets the poor
performance of dark offset subtraction. This demonstrates that

data quality across the system may be balanced through the care-
ful match of monochromatic efficiency with dark offset subtrac-
tion potential.

3.2 Vignetting

Flat Field Image

Correction Factor

Image
Vignetted Image Vignetting Corrected 

Image

Flat Field

Figure 6: Illustration of the Generation of Flat Field derived Cor-
rections Factor Images, and their application to imagery (Chan-
nel: 3)
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Figure 7: Rate of Correction Factor Change

Flat field imagery was generated for each of the six mini-MCA
channels. Vignetting correction factor look-up-tables (LUT) were
derived from each flat field. Vignetting in salt marsh UAV im-
age bands was corrected through application of correction factor
imagery (see Fig.6). LUTs recorded differences in the rate of ra-
dial illumination falloff (see Fig.7). The rate of vignetting illumi-
nation falloff was quickest within channel 6, and slowest within
channel 2. These differences in falloff rate illustrate the channel
dependence of vignetting correction factor LUTs.

3.3 Lens Distortion Correction

Imagery of a planar calibration panel was generated for each of
the six mini-MCA channels. The intrinsic and extrinsic coeffi-
cients for each channel were calculated from these images using
the AgiSoft Lens software package. The Brown-Conrady lens
distortion model was implemented for each channel using the cor-
responding coefficients. All the mini-MCA channels exhibited
barrel distortion. The rate of radial shift varied between channels
(see Fig.8). Channels 4 and 6 exhibited the strongest distortion.
Channel 2 exhibited the weakest distortion. The differing rates of
radial shift between channels illustrates the channel dependence
of lens distortion correction.
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Figure 8: Rate of Lens Distortion Radial Shift
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Figure 9: Spectral Response of Pseudo Invariant Features

3.4 Empirical Line Regression

The spectral response of the PIFs as measured by the spectrom-
eter is illustrated in Figure 9. Both the grey and black PIf ex-
hibit highly spectrally variant responses, clearly illustrating the
unsuitability of cotton fabric as a PIF material. Field measure-
ments of the PIF targets acquired within the field were regressed
against the sensor corrected PIF DN measurements. Linear rela-
tionships were extracted and applied to the mini-MCA imagery
to convert sensor DN values into at-surface reflectance measure-
ments. Figure 10 provides an illustrative example of the calibra-
tion performance of the mini-MCA through a direct comparison
of the spectral response of salt marsh landcover classes by the
ASD spectrometer.
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Figure 10: Illustrative Comparison of the Spectral Response of
Salt Marsh landcover classes recorded by the ASD spectrometer
and the calibrated mini-MCA.

Uncorrected UAV Salt Marsh Imagery                               Corrected UAV Salt Marsh Imagery

Figure 11: Visual comparison of the improvements by the appli-
cation of sensor corrections and radiometric calibration (Image
Bands Coregistered).

3.5 Final Comparison

Figure 11 is a visual illustration of the improvements to the UAV
salt marsh test imagery that both sensor corrections and radio-
metric calibration provide.

4 DISCUSSION

The science of remote sensing can be divided into three broad
phases: image acquisition, data post-processing and image anal-
ysis. These three phases exhibit a circular dependence. Image
acquisition is strongly influenced by the user’s choice of analy-
sis methods and goals. Data post-processing is dependent upon
sensor settings and characteristics during image acquisition. The
validity of image analysis is strongly influenced by the success of
data post-processing techniques.

The availability of UAV platforms to smaller research group has
allowed for all three phases of remote sensing to be carried out in-
house. Research groups are therefore required to have a broader
technical skillset to adequately address all three phases. This pro-
vides UAV research groups a significant advantage in the capacity
to tailor all three interdependent phases to their specific research
requirements.

Image data post-processing is an essential phase for both the im-
provement of data quality and for generating consistency with
other datasets. Dark offset imagery, vignetting and lens distor-
tion all exhibit channel dependent characteristics. Therefore, the
implemented data post-processing techniques were strongly de-
pendent upon settings and characteristics of the mini-MCA to de-
rive the appropriate information required to successfully apply
the corrections.

4.1 SNR Sensor Balance

The capacity for dark offset subtraction to reduce noise within
the mini-MCA ranged in average per-pixel reduction of 54.9%
(channel 6) to 94% (channel 4). The proportion of noise within
the data, however, is only one factor within the overall SNR. The
SNR is also dependent upon the proportion of signal within the
data. A strong determinate of the signal strength for the mini-
MCA is the monochromatic efficiency of the sensor. In order
to balance SNR across the mini-MCA, it becomes important to
identify the relative noise performance of individual channels. A
balance in the SNR across the system may then be achieved by
matching the noise performance of individual channels with an
appropriate bandpass filters (i.e. low efficiency wavelengths with
low noise channels, high efficiency with high noise).
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4.2 Pseudo-Invariant Feature Selection

The selection of PIFs is central to the generation of an accurate
Empirical line. Past studies to have utilised PIFs have included
man-made or natural surfaces present within satellite or aerial im-
agery (Karpouzli and Malthus, 2003, M. Smith, 1999). Typically
these features are required to cover large spatial extents to pro-
vide a pure surface spectral measurement within the captured im-
agery. The ultra high resolution of UAV imagery, however, have
significantly reduced the required spatial extents of required tar-
gets enough that it has now become practical to construct them
for use in the field. This flexibility has allowed researchers to in-
corporate materials with more suitable spectral properties. Stud-
ies continue in the search for suitable, spectrally homogeneous
materials suitable for PIF targets.

5 CONCLUSION

The mini-MCA is a low-cost, lightweight 6-channel multispectral
sensor suited to UAV remote sensing research. Primarily image-
based data post-processing techniques were applied to UAV gen-
erated salt marsh imagery. Sensor corrections were implemented
to improve data quality. Radiometric calibration was implemented
to generate consistency with other datasets. The success of data
post-processing techniques is dependent upon sensor character-
istics. In order to maximise the effects of data post-processing
of image data, it becomes necessary to modify image acquisition
approaches to balance sensor characteristics.

Remote sensing can be broadly divided into three phases: im-
age acquisition, data post-processing and image analysis. Re-
mote sensing research groups exploring UAVs as a remote sens-
ing platform require a broad skillset to accommodate all three
phases. Remote sensing studies are dependent upon robust quan-
titative data. For UAV-based research, this will require the de-
velopment of practical, improved techniques and developmental
pathways that address the interplay between all three phases of
remote sensing.
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