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ABSTRACT: 
 
There are several data product characterization methods to describe LiDAR data quality. Typically based on guidelines developed 
by government or professional societies, these techniques require the statistical analysis of vertical differences at known checkpoints 
(surface patches) to obtain a measure of the vertical accuracy. More advanced methods attempt to also characterize the horizontal 
accuracy of the LiDAR point cloud, using measurements at LiDAR-specific targets or other man-made objects that can be distinctly 
extracted from both horizontal and vertical representation in the LiDAR point cloud. There are two concerns with these methods. 
First, the number of check points/features is relatively small with respect to the point cloud size that is typically measured, at least, 
in millions. Second, these locations are usually selected in relatively benign areas, such as hard flat surfaces at easily accessible 
locations. The problem with this characterization is that it is not likely that a statistically representative analysis can be obtained 
from a limited number of points at locations that may not properly represent the overall object space composition. There is an 
ongoing effort to address these issues, and some of the newer methods to characterize LiDAR data include an average points spacing 
measure, computed from the LiDAR point cloud. Clearly, it is an important step forward but it ignores the surface complexity. The 
objective of this study is to elaborate only on the requirements for adequate surface representation in combination with the LiDAR 
error characterization techniques to identify the relation between the two surfaces, the measured and reference (ideal), and thus, to 
support better LiDAR or, in general, point cloud error characterization. 
 

1. INTRODUCTION 

Since the introduction of digital photogrammetric techniques 
and airborne LiDAR, DEMs (Digital Elevation Model) have 
become a baseline mapping/geospatial product that is broadly 
used in almost all mapping and engineering as well as in other 
applications (Muane, 2007). For example, it is directly used in 
flood plane mapping or for line of sight analysis in 
telecommunication, and indirectly in orthophoto production or 
3D city modeling. The real proliferation of DEMs started with 
the introduction of powerful computers and softcopy 
photogrammetric systems that could provide an affordable 
platform for mass surface point generation from scanned 
airborne imagery as well as to process point cloud acquired by 
LiDAR systems. The rapid acceptance of LiDAR technology 
made the DEM production quick and inexpensive; in fact, 
image-based surface point generation lost significant market 
share at that time. This situation has started to change recently, 
as the improving performance of digital cameras and, more 
importantly, advancing image matching techniques, including 
stereo- and multi-ray image matching, have led to efficient 
point cloud creation that is becoming competitive to LiDAR in 
certain applications. Lastly, there are several terms used for 
describing surface model/data, including DSM, DED, DTED, 
DTM, DEM, etc., some of them overlap in definition, while 
others are unique; in the following, only the DEM is used as a 
general term. 

Since the introduction of LiDAR, the error characterization of 
LiDAR-derived DEM data has been a challenging task given 
the extremely large number of points and the various 
characteristics of data acquisition and processing techniques.  

Furthermore, LiDAR produces a point cloud, and thus, in most 
applications, there is a need for converting the surface data into 
one of the several data representations, including regularly 
spaced point data (gridded data or raster), TIN, and contours. 
Obviously, this conversion may introduce errors. 

Standards, guidelines and product qualification methods to 
characterize LiDAR data have been developed mostly by 
government agencies to provide for a consistent treatment of 
data, usually acquired from various sources. The primary, most 
often used regulations in the US are from USGS, FEMA, NGA, 
FGDC, ASPRS, etc. All of these standards/guidelines are 
mainly focused on the DEM data QA/QC, including accuracy, 
ground control and statistical evaluation methods, and there is 
no or little attention paid to the actual surface, or, in broader 
term, to the impact of the object space characteristics on the 
DEM characterization. The varying surface geometry and 
condition are typically considered in deciding on DEM point 
density or in using breaklines, etc. Within ASPRS, there is an 
ongoing effort to develop guidelines of point spacing 
assessment, see (Naus, 2011). 

The objective of this study is to look into the surface/object 
space condition in terms of spatial sampling of the surface and 
surface representation to analyze its impact on the QA/QC 
processes of DEM data. Though the original motivation comes 
from using surfaces extracted from LiDAR data, the discussion 
will make no distinction with respect to the origin of the point 
cloud, as the emphasis is currently shifting from LiDAR point 
cloud to the broader point cloud processing, which also includes 
stereo or multiple ray image generated surface point clouds. 
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2. THE THEORY OF SPATIAL SAMPLING 

Point cloud, produced by LiDAR, is a more complex 
geometrical structure than regular terrain surfaces, modeled by 
points, as point clouds have no limitation in the vertical 
distribution of the points. For example, multiple returns can 
provide detailed representation of the vertical composition of 
wooded areas. In general, voxel-based representation is required 
for point clouds. DEMs, in contrast, have single elevation data 
and, consequently, many times called as a 2.5D representation, 
which is the subject of the following discussion.  

Surface elevation data, Sc, with respect to a mapping plane, in 
general, can be considered as a two-dimensional continuous 
function: 

),( yxfSc   (1) 
 

where Sc is the vertical (z) coordinate,  x and y are the 
horizontal coordinates in a mapping plane. For practical 
reasons, the discrete representation of the surface is considered, 
which is typically obtained by an evenly spaced two-
dimensional sampling of the continuous function and by 
converting the continuous elevation values to discrete ones: 
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where, Qp is the quantization function (typically a regular step-
function), which maps the continuous input parameter space to 
2p discrete levels, p is the number of bit used for quantization, xi 
and yj are the coordinates at the sampling point of i and j, 
respectively. The fundamental question is how well the second 
representation (Ed

ij) describes the first representation (Sc). 
According to Shannon’s information theory (Shannon, 1948), if 
the sampling distance satisfies some conditions, then the 
continuous signal Sc can be fully reconstructed from the 
samples Ed

ij. The required sampling distance is defined by the 
well-known Nyquist frequency (Shannon, 1949). For the two-
dimensional signal case, if fx

max and fy
max are the highest spatial 

spectral frequencies for a given surface, then the sampling 
distances dx

s and dy
s are sufficient for the complete 

representation of this surface, and consequently, the continuous 
surface can be restored without any error from the discrete 
representation in this ideal case. The Nyquist criterion for the 
two-dimensional case is: 
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If the Nyquist criterion is satisfied, then the reconstruction of 
the continuous surface from the discrete samples using the 
required,, or shorter sampling distances, is described by: 
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where the sync function is defined as  
x

x)sin(
xsync   

In this ideal case, the reconstruction introduces no errors, as the 
discrete representation provides a complete description of the 
surface. The sampling distances in the x and y directions could 
be different in some specific cases. Furthermore, the concept 
can be extended to non-uniform sampling; though, it has no 
advantages in general practice. Although the quantization is a 
non-linear transformation, its impact in practice can be safely 
ignored, as in modern digital systems, the usual numerical 

representation provides high-precision representation for wide 
signal ranges, so the error introduced by converting the 
continuous signal into a discrete one is negligible (Widrow and 
Kollar, 2008). 
 

3. APPLYING THE THEORY 

In practice, it is generally impossible to achieve the ideal 
situation in terms of surface representation, described above for 
several reasons. First of all, the characteristics of real surfaces 
are rarely known, so the Nyquist criterion can be only estimated 
from the samples. Second, there are inherent limitations of the 
measurement system, which introduce measurement errors. 
Concerning the Nyquist criterion with respect to LiDAR-
derived surfaces, extracted from point clouds, such as filtered 
last returns, the following observations can be made: 

 since the Nyquist criterion is typically not known, during 
flight mission planning, only general consideration is 
given to point spacing, based on overall surface 
characteristic, such as flat areas require less dense 
sampling compared to more complex and varying terrain, 

 LiDAR data provides an uneven spatial sampling, which 
could vary over larger ranges, depending on the scanning 
solution, such as sinusoidal or saw-tooth pattern, and 
consequently, the Nyquist criterion may be satisfied at 
some locations while mostly it is not satisfied, and 

 in absolute sense, the LiDAR point spacing is below the 
Nyquist criterion in the general practice. 

In any geospatial data acquisition and product generation task, 
there is a target accuracy requirement, which allows for a 
certain level of errors. For airborne sensors, such as direct 
georeferencing-based LiDAR and large-format digital camera 
systems, the error budget is formed from navigation or sensor 
orientation errors, sensor modeling errors, and object space-
dependent errors. The last component is frequently overlooked, 
giving a somewhat optimistic estimate of the overall error 
budget. One of the most relevant factors of object space-
dependent errors is the surface undulation, as the incidence 
angle has a strong impact on the point positioning accuracy. For 
example, small incident angle will reduce the vertical accuracy 
of LiDAR (and it is similar for optical imagery too). 

In the context of the error budget, there is clearly no need to 
perfectly satisfy the Nyquist criterion, as there is allowance for 
errors and the question is more like the relative contribution of 
the different components of the error budget. Thus, the problem 
can be rephrased that for a given surface how to formulate a 
relationship between the required surface sampling distance and 
specified error level (either from sensor or from the 
specification for the product)? More precisely, there are two 
basic questions: 

 What spacing is required for a given measurement error 
level to adequately sample (represent) a surface? 

 Not satisfying the sampling requirements for a given 
surface complexity, what is the error introduced? 

To illustrate the problem of surface sampling vs. error 
introduced, Fig 1 shows a surface profile; for simplicity, the 
one-dimensional case is considered, as the generalization to 2D 
is straightforward. In Fig. 1, the brown line shows the ideal 
surface profile, and then an envelope around that profile, 
marked by blue boundaries, shows an acceptable error range; 
the error range can be defined by measurement error or product 
accuracy requirement in usual statistical terms, such as 1σ or 
CEP90. Within the error envelope, the ideal reconstruction of 
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the surface profile is not needed, and, in fact, any curve in the 
error envelop is an acceptable surface representation, as it meets 
the accuracy specification. Among the infinite number of 
profiles, the one that requires the largest sampling distance that 
meets the Nyquist criterion should be selected. In addition, to 
avoid bias, the smallest distance from the ideal surface profile 
should be considered as a second constraint. In practice, the 
first condition can be easily satisfied, while the second is 
typically not. The curve, marked in red in Fig. 2, shows a 
simple solution, which clearly meets the requirements; note 
compared to the ideal profile, the curve is smooth. Vertical 
arrows show the required sampling distances for the original 
surface profile and the selected profile, respectively. 
 

Figure 1. Allowing for surface reconstruction error. 
 
The error between the reference and reconstructed with 

error profiles can be estimated by the following expression 
(Toth, 2011): 
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where X(f) is the spectrum (PSD), and fs is the spatial frequency 
band. The expression simply states that the reconstruction error 
is due to the spatial frequency components that fall outside of 
the frequency band defined by the sampling rate. The variance 
is of more importance in accuracy assessment, so a similar 
formula can be derived: 
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There are several potential approaches to find an optimal or 
near-optimal surface curve, provided the ideal/reference surface 
is known. However, it is rarely the case; it is possible in certain 
situations, such as knowing the shape of the surface because it 
is defined by a simple geometry. Therefore, estimation is 
needed to determine the surface, which, it can be done in an 
iterative way. To account for the estimation error, the error 
envelope should be reduced in this case. Though 
computationally intensive, simulation could be another 
approach to obtain the profile that meets the requirements of the 
accuracy specification. 

The process described above can be applied in various ways to 
DEM representation with an accuracy specification.  For 
example, knowing surface complexity and DEM accuracy 
requirements, the optimal sampling rate can be determined, and, 
for example, the scan rate of a LiDAR can be configured 
accordingly. Similarly, knowing the sampling rate and the 
surface complexity, the expected DEM accuracy range can be 
estimated. Another application is the conversion of irregularly 

spaced point data to a gridded format, where the optimal grid 
constant is defined by the sampling distance satisfying the 
Nyquist criterion. 

 
4. EXPERIMENTS 

To investigate the applicability of the theoretical results to real 
scenarios, a LiDAR data set was selected and various tests have 
been performed. First, the area size should be chosen to be 
practically meaningful in terms that it is not too big and not 
small. The information theory provides a clear basis for surface 
sampling, i.e., what the maximum sampling distance should be 
to fully represent a surface, but it is a global character, meaning 
that the whole area should satisfy the Nyquist criterion. For 
larger areas, this condition could be too conservative if the 
surface changes are different within the area, such as an area 
where a river cuts into a smooth rolling terrain would require a 
higher sampling rate for the riverbank, while a moderate 
sampling would clearly satisfy the requirements for the 
remaining part of the area. Therefore, larger areas should be 
first divided into smaller areas with nearly identical sampling 
requirements. This concept is practically identical to the tiling 
process used mapping, image compression, or, to some extent, 
wavelet transformation. Based on the above consideration, a 32 
m by 32 m area of moderately hilly terrain was cut out from a 
LiDAR data set. The original point density was about 8-10 
pts/m2. Since the Fourier transformation, the basis for any 
spectral analysis, requires regularly spaced data, the LiDAR 
point cloud was resampled to a 25 cm grid, which represented a 
compromise given the surface complexity and the somewhat 
lower original sampling. For our investigation, this data set was 
assumed to satisfy the Nyquist criterion. Fig. 1 shows a 
perspective view of the surface. 
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Figure 2. Hilly test reference area, 128 x 128 grid, 25 cm 
spacing, 3x vertical exaggeration. 

 
Four representations were derived from the test area reference 
data set with sampling distances of 0.5, 1, 2, and 4 m; all of 
them are representing an under-sampling situation of the area. 
Next, the spectrum (power density function) was computed to 
estimate the error introduced by the sampling not satisfying the 
Nyquist criterion, based on Eq. (6). Finally, the differences 
were computed between the reference image and the various 
resolution representations to numerically estimate the same 
errors. Note that the interpolation needed to compare the 
different data sets (different sampling distances) was based on 
using Eq. (4). Table I below shows the comparison between the 
estimated differences based on the spectrum of the reference 
area and the statistically computed ones. In general, there is a 
good agreement between the two computations, and the minor 
differences are likely to due to numerical errors in the 
computations. 
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Sampling [m] 0.5 1 2 4 
PSD-based [m] 0.06 0.09 0.15 0.23 
STD [m] 0.05 0.08 0.13 0.20 
Min [m] -0.31 -0.56 -1.56 -1.07 
Max [m] 0.43 0.81 0.91 1.52 

 
Concerning the relationship between the error, introduced due 
to inadequate sampling distance, and the sampling rate, several 
conclusions can be drawn. For example, using a 1 m sampling 
rate, the accuracy of the representation goes down about 10 cm. 
In other words, the tradeoff in this case is that for allowing for a 
10 cm degradation in accuracy, the sampling distance can be 
quadrupled, resulting in significant reduction in storage space, 
as only 1/16 of the original data volume is enough to represent 
the same area. Similarly, if the accuracy requirements are low, 
then a 4 m sampling distance could be used. The other 
application of the table is that if the accuracy requirements are 
known, then the maximum sampling distance can be 
determined. For instance, if 15 cm accuracy is expected from 
the representation, then a 2 m sampling distance can provide 
this level. But if the requirements are tight, such as 5 cm, then 
the 0.25 m sampling distance is needed (not shown in Table 1.). 

To show the impact of the different sampling distances, Fig. 3 
shows difference surface between the reference and the 2 m 
sample representations; note the wavy pattern due to the sync-
based reconstruction. Since it is difficult to compare rendered 
surfaces, Fig.4 shows two contours from the original reference 
and the 1 m samples; note that the counter lines are not 
smoothed. 
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Figure 3. Surface difference between reference and 
reconstructed surface from 2 m samples. 

 
 

5. CONCLUSIONS 

As DEM product characterization methods to describe surfaces 
obtained from LiDAR and, in general, from other point clouds 
too, continue to advance, the surface characteristics should be 
more considered to improve QA/QC performance. The better 
understanding of the relationship between surface complexity 
and surface sampling distance (representation) is essential to 
effectively balance data acquisition planning, data storage and 
accuracy requirements.  

This study provides an initial attempt to look into one aspect of 
surface/object space dependency by analyzing the requirements 
for optimal surface representation with respect to acceptable 
error range. Preliminary results clearly demonstrate the benefit 
of the approach. This research is essential to develop practical 

metrics to define the relationship between surface complexity 
and acceptable surface representation for a given DEM error 
level, by developing categories for both typical surfaces and 
error levels defined by various guidelines and standards. 
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Figure 4. Contour representation of the reference, 0.25 m 

sampling distance (a), and the 1 m sample data (b). 
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